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Abstract

A goal of this paper is to make sense of the seemingly puzzling be-

havior of interest rates and inflation - and the role of central banks in

that behavior - during and after the Great Recession, particularly in the

United States. To this end, we construct a model in which government

debt plays a key role in exchange, and can bear a liquidity premium. If

asset market constraints bind, then there need not be deflation under an

indefinite zero interest rate policy (ZIRP). Further, ZIRP may not be op-

timal under these circumstances. A Taylor-rule central banker could be

subject to a ZIRP trap and persistently undershoot target inflation. As

well, a liquidity premium on government debt creates additional Taylor

rule perils, because of a persistently low real interest rate. We make a case

that this is the key policy predicament currently faced by many central

banks in the world.

1 Introduction

In this paper, we start with a basic idea — that modeling the role of all govern-

ment and central bank liabilities as liquidity can give us important insights into

the behavior of inflation, interest rates, and the effects of monetary policy. We

then show how this can matter for our understanding of the Great Recession and

its aftermath, and for the performance of conventional monetary policy rules.
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icy. This paper represents the views of the authors, and not those of the Federal Reserve

Bank of St. Louis, the Federal Reserve System, or the Board of Governors. We wish to

thank seminar participants at the Federal Reserve Bank of St. Louis, participants at the

Carnegie/Rochester/NYU conference at Carnegie-Mellon University, November 2014, Huberto

Ennis, and Marvin Goodfriend, for their helpful comments and suggestions.
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In the United States, short-term nominal interest rates have been close to

zero since late 2008. Thus, the zero lower bound has been a reality for the Fed

for more than six years. In standard monetary models, a central bank policy rule

that keeps the nominal interest rate at zero forever is a Friedman rule (Fried-

man 1969). Typically, however, the Friedman rule is associated with deflation.

For example, in versions of the neoclassical growth model with no aggregate

uncertainty and a role for money, the Friedman rule will imply deflation at the

rate of time preference. But, since at least early 2010, the inflation rate in the

U.S. has varied roughly between 1% and 3% on a year-over-year basis. The flip

side of those two observations — near-zero short-term nominal interest rates and

positive inflation — is that real interest rates have been persistently low since

the Great Recession.

What are we to make of these observations, and what are the implications for

monetary policy? A typical approach to explaining the persistence of low real

interest rates in New Keynesian (NK) models (e.g. Werning 2011) is to introduce

a preference shock — an increase in the representative agent’s discount factor —

which lowers the “natural real rate of interest.” Confronted with such a shock,

it can be optimal for a central banker correcting sticky price frictions to set

the nominal interest rate at the zero lower bound. The zero lower bound then

represents a constraint on policy, and NK models are thus used to argue that

the real interest rate is too high relative to what is optimal. The NK approach

is then to find policy remedies in central bank forward guidance (Werning 2011,

Woodford 2012) or increases in government spending (Eggertsson and Krugman

2012). But baseline NK models have difficulty in explaining recent inflation

experience in the United States. A cornerstone of NK models is the Phillips

curve, which posits a negative relationship between the inflation rate and the

output gap — the difference between output if prices were flexible, and actual

output. Given the size of perceived output gaps during the Great Recession,

inflation appears to have been too high to be explained by New Keynesian

models.1 As well, since 2012 in the United States, inflation has been falling

while the unemployment rate is falling, and inflation expectations have been

“anchored” in the Fed’s view. These facts seem hard to reconcile with the New

Keynesian Phillips curve.

Does standard Monetarism help us understand post-Great Recession expe-

rience in the United States? The quantity theory view is that we can decide,

on empirical grounds, on an appropriate monetary aggregate — a collection of

assets with a high velocity of circulation that is judged to have a stable demand

function. That demand function, according to this view, should have few argu-

ments, for example a short-term nominal interest rate, the price level, and real

income. But, for the United States, whatever monetary aggregate was deemed

by a quantity theorist to be appropriate prior to the financial crisis would surely

be judged inappropriate now, with the benefit of hindsight. For example, sup-

pose we consider the period from the beginning of 2009 to the present — a period

1Though Christiano et al. (2014) argue that including the effects of higher costs can explain

the Great Recession inflation data for the U.S.
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over which the nominal interest rate has been essentially zero. If money demand

were stable over this period, the velocity of money — defined in terms of the rel-

evant monetary aggregate — should have been roughly constant (cutting some

slack for the possibility that money demand may not be proportional to nominal

income). However, from first quarter 2009 to fourth quarter 2014, in the United

States the velocity of the monetary base dropped by 49%, the velocity of M1 by

32.5%, and the velocity of M2 by 11.6%. Thus, in general, standard monetary

aggregates have become disconnected from the behavior of nominal income and

the price level.

Any reconciliation between the quantity theory of money and the behavior

of monetary quantities during the Great Recession and its aftermath requires

revising our views about what money is, or delving more deeply into the roles

played by assets in the economy. Either way, we would be taking an approach

inconsistent with standard Monetarism, which has had difficulty in the past

with financial disruption, changes in financial regulations, and technological

change. There are theories that can potentially make sense of the behavior of

asset quantities during the Great Recession and after. For example, Williamson

(2012, 2014a, 2014b) studies economies in which an expansion in interest-bearing

reserves — even away from the zero lower bound on the nominal interest rate

— need not be inflationary. As well Ennis (2014), in a different type of model,

shows how a large increase in excess reserves need not be connected to an in-

crease in the price level. But those theories are not what old-school monetarism

is about.

To address these issues, we build on ideas from Williamson (2012, 2014a,

2014b), in a somewhat different modeling framework from what was used in

those papers, allowing us to extend the ideas in new directions. The model we

construct is highly tractable, and has the property that exchange is intermedi-

ated by an array of assets. In the model, economic agents are arranged in large

households — a device in the spirit of Lucas (1990) or Shi (1997), for example,

which permits us to capture the key functions of sophisticated financial market

arrangements, without the modeling difficulties associated with intermediated

structures and complicated contracts. Households trade in asset markets and

goods markets, and can make transactions using money, government bonds, and

credit, though money can be used in a wider array of transactions than can other

assets. The model is constructed to capture how assets are intermediated and

used by the banking system for transactions purposes, though the large house-

hold construct allows us to abstract from the details of banking arrangements,

which are considered explicitly in Williamson (2012, 2014a, 2014b).

If the asset market constraints of households in the model do not bind,

the model behaves in a conventional way, i.e. much like Lucas and Stokey

(1987), in terms of how assets are priced, and the relationship between real and

nominal interest rates.2 As well, if asset constraints do not bind, even at the zero

lower bound on the nominal interest rate, then a Friedman rule for monetary

policy is optimal. However, if asset market constraints bind, the behavior of

2See also Bansal and Coleman (1996), which has a transactions role for government bonds.
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the model is quite different. The binding asset market constraint imparts a

liquidity premium to government bonds, and bonds bear a low real return to

reflect that. In general equilibrium, the asset market constraint binds because

private credit is limited, government bonds can be used to substitute for limited

private credit, and the supply of government bonds is determined by exogenous

fiscal policy. We assume that the fiscal authority acts to set the real value of

the consolidated government debt, and then the job of the central bank is to

determine the composition of that consolidated government debt, through open

market operations.

When the asset market constraint binds, lower nominal interest rates will

reduce output and consumption, and will reduce welfare when the nominal in-

terest rate is close to zero. Thus, a binding asset market constraint implies that

the zero lower bound is not optimal. A financial shock (which we can interpret

as a financial crisis shock) can make the asset market constraint bind, or will

tighten the asset market constraint if it binds in the absence of the shock. A

financial crisis shock will then lower the real interest rate, but the optimal mon-

etary policy response (given fiscal policy) is not to go to the zero lower bound,

in contrast to what occurs in NK models. The reason we get these results is

that, when asset market constraints bind, an open market sale of government

bonds at the zero lower bound involves an exchange of bonds, which are useful

in exchange, for money, which is also useful in exchange, but in a different way.

On net, this is beneficial.

If the asset market constraint binds, at the zero lower bound the inflation

rate is higher the tighter is the asset market constraint. Basically, the liquidity

premium on government debt implies the real interest rate is low, so the inflation

rate is higher at the zero lower bound the higher is the liquidity premium. Thus,

for a sufficiently tight asset market constraint, the inflation rate need not be

negative at the zero lower bound, and the inflation rate will fluctuate if there

are fluctuations in factors that make the asset market constraint more or less

tight. Thus, the ideas represented in this model can potentially explain inflation

behavior during and after the financial crisis — behavior that might otherwise

appear anomalous.

Central bankers — particularly in the United States — tend to formulate

policy in terms of Taylor rules. That is, central banks set a short term nominal

interest rate target in response to the inflation rate and some measure of the

inefficiency of real outcomes (an output gap, for example). The Taylor rule has

also become a cornerstone of NK theory (see Woodford 2003). But the Taylor

rule has also been shown to have poor properties in standard monetary models.

For example, Benhabib et al. (2001) demonstrate that an aggressive Taylor

rule, under which the central bank adjusts the nominal interest rate more than

one-for-one with changes in the inflation rate (the Taylor principle), can lead to

multiple dynamic equilibria converging to a liquidity trap steady state. In the

liquidity trap steady state, the nominal interest rate is zero, the central bank

undershoots its target inflation rate, and the central bank would like to lower

the nominal interest rate but is constrained by the zero lower bound.

In this paper, we explore further the “perils” of Taylor rules, in cases where
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the Taylor rule (as in Benhabib et al. 2001) is a function only of the inflation

rate. An important issue here is that the economy behaves much differently if

asset market constraints do not bind than if they do. In the former case, typi-

cal Taylor rules will yield performance in the spirit of Benhabib et al. (2001).

The Taylor principle implies that there are two equilibria, one in which the cen-

tral bank achieves its inflation target, and another in which the central bank

persistently undershoots its target — a liquidity-trap zero-lower-bound equilib-

rium. Under some versions of the Taylor rule, there also exists a continuum

of equilibria, each of which converges in finite time to the liquidity trap steady

state.

When asset market constraints bind, however, there are additional perils

associated with Taylor rules. First, given binding asset market constraints,

the real interest rate is endogenous even in the long run. That is, the long

run real interest rate in this case depends in particular on the real stock of

government debt outstanding and households’ credit limits. This is problematic

for the standard Taylor rule, as the rule needs to account for endogeneity in the

long run real interest rate to support the central banker’s inflation target as an

equilibrium. Therefore, a Taylor rule with good operating characteristics must

be considerably more complicated.

As well, with binding asset market constraints, a given Taylor rule can yield

a more formidable multiple equilibrium problem than when asset market con-

straints are non-binding. Even if there is a steady state equilibrium in which

the central bank achieves its inflation target, there can be other equilibria with

positive nominal interest rates in which the inflation target is not achieved, and

a liquidity trap equilibrium may also exist. Further, Taylor rules can lead to

multiple dynamic equilibria converging to the liquidity trap equilibrium, just as

in the case with nonbinding asset market constraints. But in contrast to the

unconstrained case, in the constrained case this need not arise only when the

Taylor principle holds. Indeed, there are Taylor rules under which there are

multiple dynamic equilibria converging to the liquidity trap equilibrium even

when the central bank does not aggressively respond to inflation, if asset mar-

ket constraints do not bind.

All of this illustrates a general tendency for Taylor rules to lead to policy

traps. The central bank can have an inflation target in mind, and attempt

to hit the target by way of a Taylor rule. But under various rules, there is a

tendency (though not in all cases) for there to exist a stable liquidity trap steady

state, with inflation below the central bank’s target. Thus, the economy can

be drawn to the liquidity trap steady state and become stuck there, unless the

central bank changes its rule. It seems fair to argue that this describes what is

currently occurring in the Euro area, the United States, Sweden, Switzerland,

the U.K., and Japan, among other countries. In these cases, central banks

appear stuck at the zero lower bound, inflation is lower than the central bank’s

target, and the central bank appears powerless to raise the inflation rate.

The key novel results in the paper follow from the binding asset market

constraint, which gives rise to a liquidity premium on government debt. That is,

the price of government debt is greater than its fundamental value as dictated by
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the present value of the payoffs on government debt, appropriately discounted.

There is an inefficiency, and the low real interest rate reflects it. A similar

inefficiency occurs, for example, in Williamson (2014a, 2014b), but there the

liquidity premium is associated with a binding collateral constraint. Though

the role for government debt that arises in our model is a transactions role,

the model permits an interpretation of this as a role for collateral, and of the

binding asset market constraint as a collateral scarcity.3

The collateral scarcity is critical for our key results, and we want to re-

late these results to U.S. experience in the Great Recession and its aftermath.

Therefore, we would like some assurance that collateral scarcity is an empir-

ically relevant phenomenon. What is the empirical evidence, beyond the fact

that real interest rates on government debt have been historically low since the

Great Recession? Figure 1 presents some evidence on the quantities of safe

assets, potentially useful as collateral in financial markets, in the world, from

2001-2013.4 Here, before the financial crisis, we include U.S. government debt,

Euro-area government debt, U.S. agency debt, and asset-backed securities, as

safe collateral. After the financial crisis, we drop asset-backed securities from

the stock of safe collateral, as the financial crisis effectively decimated these

asset categories. Then, in 2011, we drop Euro-area debt other than French and

German debt, as European sovereign debt crises implied that the debt of some

European countries was no longer perceived as safe. While these calculations

are crude, they give us an idea of the magnitude of the effects of these world

financial events on the stock of safe collateral.

[Figure 1 here.]

Furthermore, Gorton (2010) documents how high-grade collateral assets fa-

cilitate transactions among institutional investors. The practice of tranching

asset pools allows the private sector to create safe assets, and the rehypothe-

cation of collateral permits it to be used in multiple credit contracts.5 Much

of this latter type of activity occurred in the “shadow banking” sector. Thus,

the destructive effect of the financial crisis on the stock of collateral could be

much larger than what we see in Figure 1, due to a multiplier effect — houses

are used as collateral to back mortgages, the mortgages are sold and repackaged

as asset-backed securities which are then used as collateral in financial markets,

and the asset-backed securities are rehypothecated, etc. Therefore, we think

there is good direct evidence that collateral scarcity during and following the

Great Recession was an important phenomenon.

The remainder of the paper proceeds as follows. In the second section the

baseline model is set up, and equilibria are constructed and their properties

3The model also admits an interpretation financial arrangements as banking with deposit

liabilities backed 100% by government bonds (at least in the case where credit limits are zero).
4This figure is an updated version of Exhibit 137 in Credit Suisse (2011). Their figures

exclude U.S. treasury debt held by the Fed, but we include it in our calculations since we

count Fed reserve liabilities as safe assets.
5 See Andolfatto, Martin and Zhang (2014).
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studied in Section 3. Section 4 involves a study of the model’s behavior under

Taylor rules for monetary policy. Section 5 is a conclusion.

2 Model

There is a continuum of households with unit mass, each of which consists of a

continuum of consumers with unit mass, and a worker/seller. Each household

maximizes

0

∞X
=0


∙Z 1

0

(())− 

¸
 (1)

where () denotes the consumption of the 
 consumer in the household, and

 ∈ [0 1] with consumer names uniformly distributed over the unit interval.
In (1), 0    1   0 and  is the labor supply of the worker in the

household. The household possesses a technology that permits one unit of the

perishable consumption good to be produced with each unit of labor supplied by

the worker in the household. The consumers in the household cannot consume

the household’s own output.

The household enters each period with a portfolio of assets, and then trades

on a competitive asset market. The worker/seller then supplies labor and pro-

duces output. Then, the worker/seller takes the produced output of the house-

hold,  and chooses one of two distinct competitive markets on which to sell

it. In market 1, only money is accepted in exchange for goods, as there is no

technology available for verifying the existence of other assets that the buyer

of goods may hold in his or her portfolio, and no technology for collecting on

debts. In market 2, government bonds and money are accepted in exchange,

and buyers of goods can also use a limited amount of within-period credit.

An individual consumer cannot decide which market he or she will visit (1

or 2), nor does the household decide this. At the beginning of each period, a

consumer in the household knows that he or she has a probability  of going

to market 1 and probability 1 −  of going to market 2. Then, after the asset

market has closed, and before goods markets open, the household learns which

consumers will visit which markets, and the law of large numbers dictates that a

fraction  of consumers in the household will visit market 1, and a fraction 1−
will visit market 2. After the household learns the markets in which consumers

will trade, it can allocate assets to consumers in a manner that maximizes

household utility. Consumers then take the assets they receive from households,

they trade on goods markets, and consume on the spot. It is not possible for

consumers in the household to share consumption among themselves. We can

then write the preferences of the household as

0

∞X
=0


£
(1 ) + (1− )(2 )− 

¤
 (2)

where 

 denotes the consumption of consumers in the household who trade in

market 
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The household begins each period with  units of money carried over from

the previous period, along with  maturing one-period government bonds ac-

quired in the asset market of the previous period, and 

 maturing one-period

government bonds acquired in the goods market of the previous period, by the

worker/seller. Here,  

  and 


 are measured in units of period  − 1 con-

sumption good 1. The household also receives a money transfer   from the

government in the asset market, defined in units of current consumption good

1. The household then takes beginning-of-period wealth, and trades on the asset

market to obtain the money and bonds that it will distribute to consumers in

the household to make purchases. The asset market constraint for the household

is

1 + 
2
 + 


+1 +2

 ≤
−1


( +  + 

 ) +   (3)

where  denotes the price of government bonds in terms of money, 
2
 and 2



are government bonds and money, respectively, that are given to consumers in

the household who purchase goods in competitive market 2, and +1 denotes

bonds that will be held over by the household until period  + 1. The price

 denotes the price of good 1 in terms of money. Note that 
1
 appears on

the left-hand side of (3), as this is the quantity of money, in real terms, that is

distributed to consumers who will purchase goods in market 1.

In the analysis that follows, the nonnegativity constraint on bonds held over

from the current asset market to the next period is critical (all other nonnega-

tivity constraints remain implicit):

+1 ≥ 0 (4)

Constraint (4) is implied by limited commitment, in that the household cannot

commit to pay off debt in future periods that is acquired in the current period.

The household can borrow on behalf of consumers who purchase goods in

market 2, and these consumers can also make purchases with money and bonds.

The household’s within-period debt is constrained, in that it can pay back at

most  at the end of the period, where  is exogenous. As well, credit transac-

tions are not feasible in market 1. Total purchases by consumers who purchase

in market 2 are then constrained by

(1− )2 = 2 +2
 +  (5)

Note that bonds are not discounted when accepted in exchange, since either one

bond or one unit of money is a claim to one unit of money at the beginning of

period +1 from the point of view of the seller in the goods market. However,

bonds can trade at a discount on the asset market, i.e. we can have   1 We

also assume in (5) that the household always borrows up to its credit limit, and

we will later derive a condition that assures this in equilibrium. In (5), a claim

to one unit of market 1 consumption goods at the end of the period exchanges

for one unit of goods in market 2.
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The household’s budget constraint is

1 +(1−)2++1+

+1+


+1 =

−1


( +  + 

 )+ ++−

(6)

In equation (6), +1 denotes money held over until period +1 and the quan-

tity 

+1 denotes bonds received in payment for goods sold by the household,

or in settlement of within-period credit Note that the price of good 2 in terms

of good 1 is  which is implicit from (3) and (5). An additional unit of credit

implies that the household can purchase one more unit of consumption goods

in market 2. Thus, since the price of market 2 consumption goods in terms of

market 1 consumption goods is  the term  appears on the right-hand side

of equation (6). But one unit of credit is a promise to pay one unit of market 1

consumption goods at the end of the period, which accounts for the − term on
the right-hand side of (6). Further, in equation (6), as we have already pointed

out for equation (5), we have assumed that the household borrows up to its

within-period credit limit.

The government’s budget constraints are

̄0 + 0̄0 = 0 (7)

̄ − −1


̄−1 + ̄ − −1


̄−1 =    = 1 2 3  (8)

where ̄ and ̄ are, respectively, the quantities of money and and bonds out-

standing (net of government bonds held by the central bank) after asset market

transactions in period . Note that we have assumed that there are no gov-

ernment liabilities (money or bonds) outstanding at the beginning of period

0.

In the model, the heterogeneous-agent representative household is a conve-

nient device that allows us to avoid some complications that might ensue if we

were to model financial intermediation arrangements at a more fundamental

level. For example, in Williamson (2012, 2014a, 2014b), which works from a

Lagos-Wright (2005) base, there are transactions in which different types of as-

sets can be used, and the role of financial intermediaries is essentially to provide

insurance against the need for cash — instances in which sellers of goods will not

accept intermediary liabilities or other assets. Williamson (2014a, 2014b) also

includes a role for assets as collateral. In our model, government bonds are used

directly in transactions, rather than as collateral, but economically that is not

fundamentally different from an arrangement in which financial intermediary

deposits are used in transactions, and those deposits are backed by government

bonds, perhaps with the government bonds functioning as collateral for the fi-

nancial intermediary, as in Williamson (2014a, 2014b). Indeed, the model we

work with here has operating characteristics that are similar to the models in

Williamson (2012, 2014a, 2014b).
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3 Equilibrium

Let 1  
2
  and  denote, respectively, the multipliers associated with con-

straints (3), (5), and (6). The consumer chooses 1  
2
   

2
  

2
  


+1 +1

and 

+1 in the current period. Then, from the household’s optimization prob-

lem, we get

0(1 )− 1 −  = 0 (9)

0(2 )− 2 −  = 0 (10)

− +  = 0 (11)

−1 + 2 = 0 (12)

−1 + 2 ≤ 0 (13)

−(1 + ) + 

∙


+1

¡
1+1 + +1

¢¸ ≤ 0 (14)

− + 

∙


+1

¡
1+1 + +1

¢¸
= 0 (15)

First, from (12) and (13), note that if   1 then consumers will not

purchase good 2 with money, as it is cheaper to pay with bonds if bonds trade

at a discount on the asset market. Reducing (9)-(15) to something we can work

with, we get

− + 

∙


+1
0(1+1)

¸
= 0 (16)

0(2 )− 
0(1 ) = 0 (17)

0(2 )−  ≥ 0 (18)

and from (16) and (17) we can derive

 =
0(2 )
| {z }×

liquidity premium



∙


+1

0(1+1)
0(1 )

¸
| {z }

fundamental

(19)

1 =
0(1 )
| {z }×

liquidity premium



∙


+1

0(1+1)
0(1 )

¸
| {z }

fundamental

(20)

Equations (19) and (20) price bonds and money, respectively. In each equation,

the left-hand side is the price of the asset, in units of money, and the right-hand

side is a liquidity premium multiplied by the “fundamental,” which would be

the value of the asset if it were not useful in exchange. Note that the liquidity

premium for bonds is the inefficiency wedge for good 2,
0(2 )


(the ratio of

marginal utility of the good to the disutility of producing it) while the liquidity

premium for money is the inefficiency wedge for good 1,
0(1 )

. Under any

circumstances, at the zero lower bound on the nominal interest rate ( = 1)

10



the liquidity premia on bonds and money must be equal, as from (19) and (20),

1 = 2  As we will show later, though, liquidity premia on bonds and money

need not be unity at the zero lower bound.

We can also determine the real interest rate, as follows. Suppose a real bond

that sells at price   in units of consumption good 1, in the asset market of

period , and pays off one unit of consumption good 1 in the asset market of

period +1 Also suppose that this asset is accepted in exchange, just as nominal

bonds are. Its price at the end of the period — the price a firm is willing to take

for the real bond in exchange for consumption good 2 — is given by 

 . Then,

optimization by the household implies

− 1 + 2

 = 0 (21)

− + 

¡
1+1 + +1

¢
= 0 (22)

Therefore, from (9), (11), (12), (17), (21), and (22), we can determine the price

of the real bond as

 =
0(2 )
| {z }×

liquidity premium



∙
0(1+1)
0(1 )

¸
| {z }

fundamental

 (23)

Note, in equation (23), as in (19), that we can write the price of the real bond

as a liquidity premium,
0(2 )


 multiplied by the fundamental.

We will specify fiscal policy as setting the real value of the consolidated

government debt each period,  i.e.

 = ̄ + ̄ (24)

where  is exogenous. Then, from (8),

0 = 0

  =  − −1


−1 − ̄−1
−1


(1− −1)  (25)

so the period 0 real transfer to the private sector is exogenous, but the transfer

in each succeeding period is endogenous, and in general will depend on monetary

policy, which affects prices. Thus, fiscal policy responds passively to monetary

policy so as to achieve a particular time path for the total real value of the

consolidated government debt. Monetary policy consists of setting a target 
for the price of government bonds, and this target is then supported by open

market operations. The relationship between fiscal and monetary policy here

is the same as in Williamson (2014a, 2014b). As it turns out, the real value of

the consolidated government debt will play a critical role in our model, and for

the key results, so it proves convenient (and realistic, we think) to specify the

fiscal policy rule as setting the real value of the consolidated government debt

exogenously. Then, monetary policy is about determining the composition of the

consolidated government debt so as to achieve a particular price for government

11



debt in financial markets. But, a key element in how monetary policy affects

inflation, for example, will be determined by the nature of the fiscal policy rule.

Let  =

−1

denote the gross inflation rate. Then, from (3), (5), (6), (16)-

(18), (24) and market clearing, an equilibrium is a stochastic process
©
1  

2
  +1

ª∞
=0

solving

− + 

∙
0(1+1)
+1

¸
= 0 (26)

0(2 )− 
0(1 ) = 0 (27)

0(2 )−  = 0 and  +  ≥ 1 + (1− )
2
  (28)

or

0(2 )−  ≥ 0 and  +  = 1 + (1− )
2
  (29)

given a stochastic process {  }∞=0 with  ≤ 1 In (28) and (29) note that,
if 0(2 ) −  = 0 then the real value of government debt plus the credit limit

is more than sufficient to finance purchases in market 2, so this is the case in

which constraint (4) does not bind. But, if 0(2 ) −   0 i.e. if exchange in

market 2 is inefficient, then the value of consumption of both goods consumed

is constrained by the real quantity of consolidated government debt plus the

credit limit, and the nonnegativity constraint (4) binds.

Filling in the remaining equilibrium details, the price level at the initial date

is determined by

0 =
0 + 00

0
 (30)

where 0 and 0 denote, respectively, the nominal quantity of money and the

number of bonds outstanding in period 0, where each bond is a claim to one unit

of money in period 1. Thus, in period 0, the central bank announces 0 and

the fiscal authority issues bonds with a total current nominal market value of

0+ 00 The central bank then issues 0 units of money, in nominal terms,

and exchanges this money for government bonds in the initial open market

operation, at the market price 0 Then, given 0 from (30), the sequence of

inflation rates {+1}∞=0 determines the price level path. Further, the central
bank must choose a sequence of open market purchases and sales consistent

with its nominal interest rate targets. First, if   1 so that households wish

to use all money balances during the period in transactions in market 1, then

̄ = 1  (31)

In this case, the size of the central bank’s open market purchase in period 

must be sufficiently large that consumers in market 1 can purchase their desired

quantity of consumption goods at market prices. As well, the open market

operation cannot be too large, as households would not want to hold money

balances over until the next period, given market prices. Next, if  = 1 then

there is a liquidity trap and

̄ ≥ 1  (32)

12



In this case, the household is indifferent between allocating money or bonds to

consumers who make purchases in market 2. Thus, the open market purchase

in period  needs to be sufficiently large, so that consumers in market 1 have

enough money, but as money and bonds are perfect substitutes in market 2

transactions, the central bank could purchase the entire stock of government

debt and this would not matter for equilibrium quantities and prices.

The way we have specified policy here shares ideas with the literature on

the fiscal theory of the price level (FTPL), if only because we recognize the

importance of the interaction between monetary and fiscal policy (see for exam-

ple Leeper 1991 and Woodford 1995). The FTPL emphasizes the consolidated

government budget constraint, and the role of the fiscal authority in determin-

ing the price level. In this model, the fiscal policy rule we specify bears some

resemblance to the one that Leeper (1991) studies, but in our context it would

not be correct to say that fiscal policy determines the price level. Given the

fiscal policy rule, monetary policy will matter for the prices of goods in terms of

money. For example, if the fiscal authority fixes the total quantity of nominal

bonds issued in period 0, then from (30), the choice of 0 by the central bank

matters for 0 Then, in each periods 1, 2, 3, ..., monetary policy will matter

for the inflation rate, in general, so fiscal and monetary policy jointly determine

prices — and quantities.

For now we model {  } as an exogenous stochastic process, but later
we will permit endogeneity in the central bank’s choice of . To solve for an

equilibrium, note first, given our specification for monetary policy, that from

(27)-(29) consumption quantities 1 and 2 depend only on   and  i.e.

we can solve period-by-period for consumption, and then for output  = 1 +

(1−)2 and labor supply  = We then need to solve for a stochastic process

for the gross inflation rate {} which must solve (26) given our solution for
the stochastic process for 1  It is straightforward to verify that one solution to

(26) is always

 =
0(1 )


 (33)

But is this a unique solution? Suppose, for example, that {  } is a two-
state Markov process. Then, it is straightforward to show that, if {  }
is i.i.d., the solution for the inflation rate is indeterminate, with (33) describ-

ing only one solution in a continuum. But, if {  } is serially correlated,
then we can also show that (33) describes the unique solution. If we are con-

cerned with uniqueness of equilibrium, then the fact that there exist stochastic

processes for the exogenous variables which imply a unique solution is reas-

suring. In any case though, we can only be assured of uniqueness within the

class of equilibria for which the endogenous variables depend only on the exoge-

nous state. It is well-known that in standard monetary models there can exist

multiple periodic or sunspot equilibria, for example.

Let unconstrained equilibrium and constrained equilibrium, denote the cases

where (28) and (29) apply, respectively, i.e. in which the nonnegativity con-

straint (4) binds, and does not bind, respectively. For a given stochastic process
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{  } it is possible that (28) will apply in some periods and (29) in other
periods, but it will prove useful to consider two special cases: (i) (28) applies in

all periods — the unconstrained equilibrium — and (ii) (29) applies in all periods

— the constrained equilibrium.

3.1 Unconstrained Equilibrium

An unconstrained equilibrium has standard properties that we would find in

typical cash-in-advance cash good/credit good models, e.g. Lucas and Stokey

(1987). In an unconstrained equilibrium, from (28), exchange in market 2 is effi-

cient as 0(2 )−  = 0. For convenience, let ∗ denote the efficient consumption
quantity, which solves

0(∗) =  (34)

Thus, from (19) and (20), there is no liquidity premium associated with bonds,

but there is a standard liquidity premium associated with money. From (33)

and (26), 1 solves

0(1 ) =



 (35)

i.e. the inefficiency in market 1, and the liquidity premium on money (from

equation (20)) are associated with a positive nominal interest rate (  1)

From (33) and (35), we can solve for the gross inflation rate:

 =



 (36)

Equation (36) is the Fisher relation — there is an approximately one-for-one

relationship between the inflation rate and the nominal interest rate. Further,

from (23), we get

 = 

∙
1

+1

¸
 (37)

where the real interest rate is 1

− 1

Note that, from (28),

 +  ≥ 1 + (1− )
∗ (38)

must be satisfied for the unconstrained equilibrium to exist. This equilibrium is

unconstrained, as the consolidated government debt  and the credit limit 
are irrelevant for the solution, at the margin. So, Ricardian equivalence holds,

and the solution has the property that growth in the money supply determines

the inflation rate. For example, if  =   =   1 for all  and (38) holds,

then 1 is constant for all  and so from (31) and (36), the price level and the

money stock both grow at the constant rate 

− 1 But  could fluctuate in

arbitrary ways, as long as (38) holds for all  and so the growth rate in the nom-

inal quantity of government debt could fluctuate in ways that are disconnected

from the inflation rate. Further, from (37), the real interest rate is determined

solely by monetary policy.
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We can illustrate the unconstrained equilibrium in Figure 2. With a positive

nominal interest rate, i.e.  = 1  1 the equilibrium is at point  where the

locus defined by (27), dropping time subscripts, intersects 2 = ∗ An efficient
allocation is  which will be the equilibrium allocation when  = 1 At point

 1 = 2 = ∗ which is the conventional Friedman rule allocation.

[Figure 2 here.]

3.2 Constrained Equilibrium

In the constrained equilibrium, (4) binds for all  so the quantity of government

bonds, plus the credit limit, constrains the quantity of consumption in market

2. The constrained equilibrium is the unconventional case, in which, from (3),

(4) with equality, (5), (24), and market clearing, 1 and 2 solve

 +  = 1 + (1− )
2
 (39)

and (27). Again, note that the solution for 1 and 
2
 depends only on the current

exogenous variables   and  and then we can solve for  from (33). The

model solves period-by-period, so comparative statics is straightforward. In a

constrained equilibrium, dropping  subscripts for convenience, from (39) and

(27) we get

1


=

00(2)− 0(2)(1− )
h
2

00(2)
0(2)

+ 1
i

00(2) + 2(1− )00(1)
(40)

2


=

0(1) + 00(1) [− (1− )2]

00(2) + 2(1− )00(1)
(41)

Note that (5) implies that, if (4) binds, then

  (1− )2 (42)

so that the credit limit does not permit all the goods supplied in market 2

to be purchased with credit in equilibrium. Then, (23) and (41) imply that
2


 0 The sign of 1


is in general ambiguous, but, if − 00()
0()  1 then

1


 0 Thus, provided there is not too much curvature in the utility function,

a lower nominal interest rate (higher ) reduces consumption in market 2 and

increases consumption in market 1. Essentially, an increase in  is an increase

in the relative price of consumption in market 2, from the household’s point of

view. Then, − 00()
0()  1 implies that the substitution effect of the relative price

change dominates the income effect in terms of the the net effect on consumption

in market 1. Further, if − 00()
0()  1 then (31) implies that, if the central bank

wants the nominal interest rate to fall, i.e. wants  to rise, then consumption

in market 1 must rise, which requires that the central bank conduct an open

market purchase of government bonds. This will increase the quantity of cash in

market 1, in real terms, and reduce the quantity of assets exchanged in market 2,
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as the quantity of bonds outstanding falls. As a result, consumption in market

2 falls.

We can illustrate the constrained equilibrium in Figure 2. Here, 0 is the

locus defined by (39) for the case in which  = 1 while 1 is the same locus

when  = 1  1 Then, a reduction in  from 1 to 1 shifts the equilibrium from

 to  Consumption in market 2, 2 must increase, while 1 may rise or fall.

As well, it is useful to look at the effect of an increase in the nominal interest

rate on real GDP, which we can express as

 = 1 + (1− )2  (43)

Then, from (40) and (41),




=
[− (1− )2] [

00(2) + (1− )00(1)] + 0(1)(1− )(1− )

00(2) + 2(1− )00(1)


Therefore, given (42), 


 0 so output goes down when the nominal interest

rate goes down. We could also do a welfare calculation to find the optimal

monetary policy in this economy under a constrained equilibrium, taking fiscal

policy as given. We can do a period-by-period maximization of period utility for

the representative household, so drop  subscripts and write the welfare measure

as

 = (1) + (1− )(2)−  [1 + (1− )2]

Then, differentiating, we get




=  [0(1)− ]

1


+ (1− ) [0(2)− ]

2


(44)

So, at the zero lower bound ( = 1), where 1 = 2 =  + 




= [0( + )− ]




 0

Therefore, given (42),   1 is optimal, so optimal monetary policy is not a

zero-lower-bound policy if the equilibrium is constrained. In general, from (44),

(40), and (41), we can write




=
[00(2) + (1− )00(1)] [0(1)− ] [− (1− )2]− (1− )0(1)(1− )

00(2) + 2(1− )00(1)


Therefore, we can say, in general, that welfare increases as the nominal interest

rate increases, so long as the nominal interest rate is close to zero, i.e.  is close

to 1. Thus, close to the zero lower bound, an open market sale of government

bonds by the central bank will increase consumption in market 2 — the goods

purchased with bonds — and reduce consumption in market 1 — goods purchased

with money. On net, this will increase output and, provided the nominal interest

rate is close enough to zero, we can be assured that welfare will increase. One’s

intuition might lead one to believe that an open market purchase should imply
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less liquidity and lower welfare, but that is not the case here, as bonds and

money are both liquid assets.

Thus, since 2 is strictly decreasing in  from (41), which implies that the

inefficiency wedge in market 2,
0(2)


 is strictly increasing in  a constrained

equilibrium exists if and only if the equilibrium is constrained at the zero lower

bound. In a constrained equilibrium at the zero lower bound, 1 = 2 =  + 

Therefore, from (29), a constrained equilibrium exists for some  if and only if

0( + )


 1 (45)

i.e. if and only if  + is sufficiently small. Furthermore, if (45) holds, then if 

is sufficiently small, the equilibrium will be unconstrained. To be more precise, if

(45) holds, then the equilibrium is constrained for  ∈ (̂ 1] and unconstrained
for  ≤ ̂ where (̂ ̂1) solve

0(̂1) =


̂
 (46)

 + ̂ = ̂1 + (1− )̂∗ (47)

How does monetary policy affect the real interest rate in a constrained equi-

librium? One way to think about this is to consider an equilibrium that is

constrained, with  =   =  and  =  for all  so that 1 = 1 and

2 = 2 for all  Then, from (23),

 =
0(2)


 (48)

Therefore, from (48), the real interest rate depends on the inefficiency wedge

(the ratio 0(2)) in market 2, i.e. on the liquidity premium on real bonds.

Thus, from (41), a decrease in the nominal interest rate by the central bank also

reduces the real interest rate, as this reduces the supply of bonds, tightens the

finance constraint, and increases the liquidity premium on government debt.

We can interpret a constrained equilibrium as one in which there is a scarcity

of government debt, since the quantity of government debt plus private credit

is insufficient to finance an efficient level of consumption in market 2. This

scarcity is reflected in a low real interest rate, and it manifests itself only when

the nominal interest rate is low. Further, reducing the nominal interest rate

when the asset scarcity exists only exacerbates the inefficiency, reducing aggre-

gate output and welfare. This contrasts with results from the New Keynesian

literature, for example Eggertsson and Krugman (2012) and Werning (2011). In

New Keynesian models a low real interest rate, whether caused by a preference

shock or a tighter borrowing constraint, can imply that there is a welfare im-

provement from lowering the nominal interest rate to zero, with the zero lower

bound constraining optimal policy.

Fiscal policy matters for the equilibrium allocation and prices in the con-

strained equilibrium, in contrast to the non-constrained equilibrium. In partic-

ular, from (27) and (39), the real quantity of consolidated government debt 
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matters for the equilibrium consumption allocation, so the equilibrium is non-

Ricardian. As well, the constrained equilibrium has the property that nominal

growth in the quantity of government debt will matter for inflation. For ex-

ample, suppose a constant quantity of real consolidated government debt  a

constant credit limit  and a constant price for government debt,  as deter-

mined by monetary policy Then, 1 is constant for all  and from (33) the

inflation rate is a constant,  − 1 If   1 then, from (31), the stock of money

grows at rate − 1 But, given (39), it will be true in general that, with   1
and given (31), that

(1− )2 = ̄ +  (49)

i.e. consumption in market 2 is equal to the end-of-period value of government

debt plus the credit limit. So, since we are considering an experiment in which

all exogenous variables are constant for all , so that 2 is constant in equilibrium,

therefore, from (49) ̄ = ̄ a constant for all  and the real value of government

debt is constant over time Therefore, the nominal stock of government debt

also grows at the rate of inflation, as does the nominal consolidated government

debt.

Note that it would not be correct to say that fiscal policy determines prices

or inflation in the constrained equilibrium with   1. Indeed, fiscal policy and

monetary policy jointly determine prices and quantities.

However, suppose, as above, that all exogenous variables are constant for all

 and  = 1 for all  in a constrained equilibrium. Then, (32) must hold, but

this could be consistent with money growth that does not match the inflation

rate over long periods of time. But, since (39) holds in this equilibrium, the

rate of growth in nominal consolidated government debt is equal to the inflation

rate for all  in equilibrium. Thus, in a liquidity trap, monetary policy becomes

irrelevant and fiscal policy determines the inflation rate.

3.3 Credit Constraints and Government Debt

What happens if there is a change in the credit constraint ? For example, we

might think of a decrease in  as capturing some of what occurred during the

financial crisis. In an unconstrained equilibrium, a change in  has no effects at

the margin, as the credit limit and government debt are large enough to support

efficient exchange in market 2. Therefore, given monetary policy, there is no

change in consumption or output.

However, from (46) and (47), a decrease in  acts to reduce ̂ so there is an

increase in the critical value for the nominal interest rate, below which the equi-

librium will be constrained. Therefore, a discrete decrease in  could result in

a constrained equilibrium in a case in which the equilibrium was unconstrained

before the change in  Further, given  the constrained equilibrium will have

lower consumption in both markets and lower real output if  decreases, from

(27) and (39). In Figure 3, the equilibrium is initially at  at the intersection

between the upward-sloping locus defined by (27), and the downward-sloping

locus defined by (39). Then, holding monetary policy constant, so  is constant,
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the locus defined by (39) shifts from 0 to 1 with a decrease in  As a result,

consumption in both markets, 1 and 2 must fall, and from (43), total real

GDP falls as well.

[Figure 3 here.]

A decrease in  acts directly in a constrained equilibrium to reduce the

demand for consumption in market 2, given the quantity of government bonds

(in real terms) outstanding. This would tend to increase  which is the price

of consumption in market 2 relative to consumption in market 1. But the

central bank, which targets  offsets the incipient increase in  with an open

market sale of government bonds, which tends to reduce consumption in market

1 and increase consumption in market 2. On net, the effect of the increase in

government bonds outstanding does not completely offset the reduction in the

credit limit, so consumption in market 2 falls. Consumption in market 1 falls

because there is less money outstanding, in real terms.

More formally, from (27) and (39),

1


=

00(2)
00(2) + 2(1− )00(1)

 0 (50)

2


=

200(2)
00(2) + 2(1− )00(1)

 0 (51)

Therefore, a reduction in  reduces consumption in both markets, and lowers

real output. As well, from (27) and (39), we get

1


=
1



1


 (52)

2


=
1



2


 (53)

Therefore, a decrease in the real quantity of consolidated government debt has

the same qualitative effect as a reduction in the credit limit. Put another way, a

reduction in the credit limit can be mitigated or eliminated if the fiscal authority

acts to increase the quantity of government debt. However, one of our goals in

this paper is to examine the effects of monetary policy in the face of suboptimal

behavior of the fiscal authority which, in this case, will not act to relax asset

market constraints even if that is appropriate.

We can also examine how changes in  and  affect the real interest rate.

If, as above, we look at cases where  =  and  =  for all  then from (48),

(51), and (53), a decrease in  or  will lower the real interest rate, because

this increases the inefficiency wedge in market 2, and therefore increases the

liquidity premium on government bonds.

As well, note from (33) that a decrease in  or  will increase the inflation

rate, given  Because the asset market constraint tightens, increasing the liq-

uidity premium on government bonds and lowering the real interest rate, the
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inflation rate must rise since the nominal interest rate is being held constant in

these experiments.

These results — that a reduction in credit limits will reduce consumption

and output, reduce the real interest rate, and lead to an increase in the inflation

rate (given the nominal interest rate) — are consistent with observations on the

U.S. economy following the financial crisis. Post-2008, the real interest rate on

government debt was low, and it may seem surprising, given the zero-lower-

bound policy of the Fed, that the inflation rate was still positive. However, this

is consistent with what our model predicts.

To see more clearly where these results are coming from, we consider in the

next subsection what happens at the zero lower bound.

3.4 Liquidity Trap

It is useful to examine the properties of the model when the nominal interest

rate is set to zero by the central bank, or  = 1so that we have a liquidity trap

equilibrium. From (27), this implies that 1 = 2  so consumption is equalized

across markets. If (45) does not hold, so that the real value of the consolidated

government debt plus the credit limit is sufficiently large, then the liquidity trap

equilibrium is unconstrained, so from (28), we have 0(1 ) = 0(2 ) =  and,

from (33),  = . Therefore, if assets used in exchange and credit are suffi-

ciently plentiful, then a liquidity trap equilibrium has conventional properties.

Exchange in markets 1 and 2 is efficient, and there is deflation at the rate of

time preference. This is a standard Friedman-rule equilibrium.

However, a constrained liquidity trap equilibrium has very different proper-

ties. If (45) holds, then from (39),

1 = 2 =  =  +  (54)

so consumption and output are determined by the value of the consolidated

government debt plus the credit limit. This shows, in the most obvious way,

the non-Ricardian nature of the constrained equilibrium. In a liquidity trap,

increases in the quantity of government debt (in real terms) are not neutral,

and will increase output and consumption one-for-one. As well, from (33), the

inflation rate in a liquidity trap, if the equilibrium is constrained, is given by

 =
0( + )


 (55)

so the inflation rate increases with the inefficiency wedge in goods markets,

which determines the liquidity premium on all assets — money and bonds. Ba-

sically, a lower quantity of government debt plus credit limit implies a larger

inefficiency wedge in goods markets, a larger liquidity premium on assets used in

exchange, and a larger inflation rate. There need not be deflation in a liquidity

trap, in contrast to the standard Friedman-rule unconstrained equilibrium.

This is a key property of the model, and in principle it can help us explain,

for example, why a long-period of near-zero short-term nominal interest rates, as
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in the United States since late 2008, need not produce deflation. But could the

mechanism at work in this model — a large liquidity premium on government debt

— account quantitatively for inflation rates as high as 3% (as in the United States

after the Great Recession) when the short-term nominal interest rate is near

zero? Exploring this issue properly would be the subject of another paper, but

the evidence of Krishnamurthy and Vissing-Jorgensen (2013) provides support

for our case. These authors find empirical evidence of a significant liquidity effect

on the prices of short-maturity and long-maturity Treasury debt, measured from

Treasury debt yields and the ratio of Treasury debt to GDP.

To better understand the role of fiscal policy in determining the inflation

rate in a constrained liquidity trap equilibrium, consider the special case where

 = 0 for all   =  and  = 1 where  is a nonnegative constant. Then,

from the government budget constraint, (25),

 = 

µ
1− 1



¶
 (56)

and (55) gives

 =
0( )


 (57)

Given our specification of policy, the real value of the consolidated government

debt  is exogenous, and (56) and (57) determine the gross inflation rate  and

the real transfer (i.e. the real government deficit) in periods  = 1 2  denoted

  Thus, given   is uniquely determined by (57). Suppose that () = 1−
1− 

where   0 is the coefficient of relative risk aversion. Then from (56) and (57),

we can obtain a closed form solution for the government deficit

 =  − 


 +1 (58)

for  ∈ [0  ∗) where
 ∗ = −

1


is the value for the consolidated government debt above which the constrained

equilibrium does not exist. In Figure 4, we illustrate the determination of  

as in equation (58). Note that the function on the right-hand side of (58), as

plotted in Figure 4, is nonmonotonic in  To understand this, note that the

right-hand side of (58) is the seigniorage revenue from the inflation tax on the

consolidated government debt at the zero lower bound. The tax base is 

and the inflation tax rate is 1 − 1

 An increase in  increases the tax base,

but from (57) this reduces the inflation rate and reduces the inflation tax rate.

Thus, essentially Figure 4 is a Laffer curve. An increase in  could result in a

decrease or an increase in the government deficit, depending on what side of the

Laffer curve we start on but, in the neighborhood of zero inflation, an increase

in  is associated with a reduction in the government deficit.

[Figure 4 here.]
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We could explore alternative fiscal policy rules. For example, in (56) and

(57), suppose that the real government deficit  is exogenous, with (56) and (57)

determining  and  Again assuming a utility function with constant relative

risk aversion, and letting  = 1

for convenience, use (56) and (57) to obtain

 =

µ




¶ 1
 ³


1
 − 

1

−1
´
 (59)

In equation (59), the right-hand side is again the revenue from the inflation tax,

but with this policy rule we can have two solutions. Figure 5 illustrates equation

(59). Clearly, for any exogenous  ≥ 0 that is feasible, there are two solutions
for  one with a high value for  and a low inflation rate, and one with a low

value for  and a high inflation rate. If
³
1


´ 1


(1 − 1

)    0 then there is

deflation, and only one value for  that solves (59).

So, when we specify fiscal policy in this way, we get another type of conven-

tional Laffer curve. If the fiscal authority wants to generate a given quantity of

revenue from the inflation tax, then in general there are two ways to do that

— with a high tax rate (a high inflation rate) or a low tax rate (a low inflation

rate). Of course there is nothing new about this, as such Laffer curves exist in

other monetary models, for example in pure-currency overlapping generations

models (see Sargent 1987 for example). In a liquidity trap, we would be sur-

prised if this model did not behave like a pure currency model, and exhibit a

Laffer curve relationship under this type of fiscal policy rule.

[Figure 5 here.]

A question we might ask is what policy can do to raise the inflation rate

at the zero lower bound. We have been treating  as our policy variable, so

the question is whether, given  = 1 there is any policy that can raise the

inflation rate. To be more concrete, in the circumstances we outlined above, in

which exogenous variables are constant for all time and  = 1 for all  what

options are open to policymakers if an increase in the inflation rate is desired?

From (32), we know that the central bank must assure that a given quantity

of money — in real terms — is outstanding in order to support a zero nominal

interest rate. But the central bank could go so far as to purchase the entire

stock of government debt outstanding, and this would have no effect on the

consumption, output, labor supply, or the inflation rate — that is the nature of

a liquidity trap. However, fiscal policy is not powerless. From (57), the fiscal

authority can set  to achieve any inflation rate  − 1 ≥  − 1 that it wants.
Of course, we also know that a reduction in  reduces welfare at the zero lower

bound, so higher inflation implies lower welfare.

4 Taylor Rules

Thus far, we have established the operating characteristics of this model econ-

omy, and have characterized optimal monetary policy, given a fiscal policy rule
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which is in general suboptimal. In this section, we want to understand what

will happen in this economy if a central banker adopts a standard type of policy

rule — a Taylor rule. We know at the outset that the Taylor rule will be subop-

timal here, in general, given fiscal policy, but we wish to understand what types

of pitfalls would meet a Taylor rule central banker in this context. Real-world

central bankers certainly take an interest in Taylor rules, and such rules seem

to fit historical central banking behavior well, particularly in the United States.

If this is what central banks do, we want to know exactly what is wrong with

it. Is the Taylor rule a good approximation to optimal central bank behavior,

or does it go radically wrong?

For simplicity we assume that the central banker cares only about inflation,

and the Taylor rule takes the form

1


= max[ (

∗)1−  1] (60)

Here, 1

is the gross nominal interest rate, ∗ is the central bank’s target gross

inflation rate, and  is the adjustment the central bank makes for the real rate

of return on government debt. In general,   0 and if   1 the rule follows

the “Taylor principle,” whereby deviations of the inflation rate from its target

are met with an aggressive nominal interest rate response by the central bank.

Some of the details in the Taylor rule — whether   1 or   1 the form that

 takes, or whether it is  or gross inflation at some other date that appears

on the right-hand side of (60) — will matter for our results. In addition, we want

to explore how the nature of the equilibrium — unconstrained or constrained

— will make a difference. We already know from the work of Benhabib et al.

(2001) that there can be “perils” that result from adherence to Taylor rules by

central bankers, including multiple equilibria, in some of which the central bank

does not achieve its inflation target in the limit. Here, we want to explore some

of the pitfalls of Taylor rules in more depth.

4.1 Unconstrained Equilibrium

First, for the unconstrained equilibrium, we will examine the behavior of the

model under four different versions of the Taylor rule. These four cases are:

(i) constant adjustment for the long-run real interest rate; (ii) endogenous real

interest rate; (iii) forward-looking rule; and (iv) backward-looking rule.

4.1.1 Constant Long-Run Real Interest Rate

Assume that (45) holds, so the equilibrium is unconstrained for all  ≤ 1.

From (23), if all exogenous variables are constant forever, then the gross real

interest rate will be 1

 Therefore, in a standard fashion, if the real interest rate

adjustment in the Taylor rule is set to match the long-run behavior of the model,
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then  =
1

 Then from (34)-(36) and (60), we can solve for equilibrium  from

1 = max

"µ

∗



¶1−
 

#
 (61)

Note in particular that there are no dynamics associated with this Taylor rule,

which is in part due to our assumption of quasilinear preferences. Assume

∗ ≥  so that the target inflation rate is larger than minus the rate of time

preference. Then, if the Taylor rule follows the Taylor principle, so   1

there are two equilibrium solutions to (61), as depicted in Figure 6. The two

solutions are  =

∗  which implies that  = ∗ and the central bank achieves

its target rate of inflation, and  = 1 which is the liquidity trap solution for

which  =  ≤ ∗ In the liquidity trap equilibrium the central banker sees

a low inflation rate, and responds aggressively by setting the nominal interest

rate to zero, which has the effect of producing a low inflation rate. This is a

well-known property of monetary models (see Benhabib et al. 2001) — under

the Taylor principle there are multiple steady states, including the liquidity-

trap steady state. In this particular model, in an unconstrained equilibrium,

the Taylor rule does not impart any dynamics to the economy (in contrast to

Benhabib et al. 2001), but we will show in what follows how dynamic equilibria

arise with other forms of the Taylor rule.

[Figure 6 here.]

If, however,   1 then, as in Figure 7, there is a unique equilibrium with

 = 
∗  and the central banker always achieves his or her inflation target. Thus,

given this form for the Taylor rule, in an unconstrained equilibrium the Taylor

principle is not a good idea, as this implies an equilibrium in which the central

banker will not achieve his or her inflation target. Note that, if ∗ =  then

this maximizes welfare in the unconstrained equilibrium, and the equilibrium is

unique for any   0 In this case the Taylor rule gives us the Friedman rule

solution as a unique equilibrium.

[Figure 7 here.]

4.1.2 Endogenous Real Interest Rate

In the Taylor rule the term  makes an adjustment for the real interest rate,

typically in line with some view about the long-run Fisher relation. With an

appropriately chosen  term, there is at least the possibility that the Taylor

rule will lead to convergence to the central bank’s inflation target in the long

run. But, what if the central bank accounted explicitly for endogeneity in the

real interest rate? In particular, suppose that the central bank chooses

 =
1


 (62)
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where  is the price of a real bond, as determined in (23). In this case, the

central bank recognizes that the real interest rate is endogenous, and sets the

nominal interest rate in line with fluctuations in that rate. Suppose for conve-

nience that we consider only deterministic dynamic equilibria. Substituting in

(60) using (23), (28), (33), (36) and (62), we get

+1 = max
h
 (

∗)1−  
i
 (63)

which is a nonlinear first-order difference equation in the gross inflation rate 

which we can use to solve for an equilibrium. An unconstrained dynamic equi-

librium satisfying this version of the Taylor rule is a sequence {1   2  }∞=0
satisfying (33), (36), (63), and 2 = ∗ for all 
First, suppose that   1 Then there are two steady states, just as for

the Taylor rule with  = −1 and these are the same steady states as for the
simpler Taylor rule — a high-inflation steady state in which the central bank

achieves its inflation target, and the liquidity trap equilibrium in which the

central bank falls short of its inflation target.

In contrast to the case with  = −1 though, there are nonstationary equi-
libria. With   1 there exists a continuum of nonstationary equilibria, indexed

by the initial inflation rate, that converge to the liquidity trap steady state in

finite time. In each of these equilibria,   0  ∗ and

+1 = max
n
 (

∗)1−  
o
 (64)

for  = 1 2  with

 =



 (65)

In Figure 8,  is the high-inflation steady state,  is the liquidity trap steady

state, and we have depicted one of the nonstationary equilibria, for which the

initial gross inflation rate is 0 and there is convergence to the liquidity trap

steady state in period 4.

[Figure 8 here.]

Second, if   1 then there is a unique steady state with  = ∗ and
 =


∗  As well, there exists a continuum of nonstationary equilibria that

converge in the limit to the steady state equilibrium. For each of these equilibria,

 ≤ 0 ∞

+1 =  (
∗)1−

for  = 1 2  1 solves (64), and  is given by (65). In Figure 9, we show the

case   1 where  is the steady state, and we show one of the nonstationary

equilibria, for which the initial gross inflation rate is 0 and there is convergence

in the limit to the steady state.

[Figure 9 here.]
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4.1.3 Forward Looking Taylor Rule

Alternatively, suppose that we specify the Taylor rule in a forward-looking man-

ner, as
1


= max[+1 (

∗)1−  1] (66)

so now the central bank targets the current nominal interest rate as a function of

the inflation rate in the next period, again restricting attention to deterministic

cases. Suppose also that  =
1

 Then, from (66) and (36), we can construct a

difference equation that solves for the equilibrium sequence, {}∞=0 i.e.

+1 = max[
1


 (
∗)1−

1
  ] (67)

with 0 ≥  Then, from (67), the liquidity trap steady state, with  =  for

all , exists if and only if

(∗)1−
1
 ≤ 1−

1
  (68)

Therefore, since ∗ ≥  (68) holds if   1 and does not hold if   1 Thus,

in contrast to the Taylor rule given by (60), the forward-looking Taylor rule

(66) implies that, under the Taylor principle, there is a unique steady state

with  = ∗ but if   1 there are two steady states: the liquidity trap with

 = 1 and  =  for all  and the high-inflation steady state with  = ∗ and
 =


∗ 

Finally, exploring the dynamics of the forward-looking Taylor rule (66), if

  1 then there exists a continuum of dynamic equilibria with 0 ∈ [ ∗)
each of which converges in finite time to the liquidity trap steady state. However,

if   1 then there exists a continuum of dynamic equilibria with 0 ≥  each

of which converges to the high-inflation equilibrium for which the central bank

achieves its inflation target. Therefore, the forward-looking Taylor rule (66) has

good properties under the Taylor principle.

4.1.4 Backward-Looking Taylor Rule

The last Taylor rule we consider is a backward-looking rule of the form

1


= max

∙
−1 (

∗)1−
1


 1

¸
 (69)

which implies, from (36), the difference equation

+1 = max
h
 (

∗)1−  
i


This is then identical to (64), so this rule implies equilibria identical to the

Taylor rule with an endogenous real interest rate.

Given the four alternative Taylor rules we considered here, the “Taylor prin-

ciple” (the case   1) sometimes has bad properties, and sometimes not, in this

standard unconstrained case. The Taylor principle, which implies an aggressive
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reaction of the central bank to deviations of the inflation rate from its target,

can yield a liquidity trap steady state in which the central banker falls short of

his or her inflation target. If this steady state exists, it is stable, in the sense

that there exists a continuum of nonstationary equilibria that converge to the

liquidity trap steady state in finite time. When the Taylor rule is badly behaved

under the Taylor principle, the results have the flavor of those in Benhabib et

al. (2001).

4.2 Constrained Equilibrium

The results in the previous confirm the spirit of previously known results, but

our main interest is in what happens in the constrained equilibrium case. Here,

suppose that (45) holds, so that the equilibrium will be constrained for suffi-

ciently large  Just as for the unconstrained case, we will examine the four

alternative Taylor rules and their implications for the equilibrium allocation.

4.2.1 Constant Long Run Real Interest Rate

First, let  =  a constant, so that there will be a period-by-period equilibrium

solution (1 2  ) solving, from (27), (29), (33), and (60),

1


= max

h
 (∗)1−  1

i
 (70)

0(2)− 0(1) = 0 (71)

 +  = 1 + (1− )2 (72)

 =
0(1)


(73)

Then, from (54), a liquidity trap equilibrium, with  = 1 has 1 = 2 =  + 

Therefore, from (70) and (73) this is an equilibrium if and only if∙
0( + )



¸
(∗)1−  ≤ 1 (74)

Note that (74) does not hold if  +  is sufficiently small i.e. if government

debt is sufficiently scarce and the credit limit is sufficiently low. From (73),

smaller  +  lowers consumption at the zero lower bound, and increases the

inflation rate. Thus, if  + is small, so that  is large at the zero lower bound,

then at the zero lower bound the Taylor-rule central banker wants to raise the

nominal interest rate, so the zero lower bound is not an equilibrium. This is one

way in which our results differ from the unconstrained case, in which there is

an equilibrium at the zero lower bound with an aggressive Taylor rule (  1).

When government debt is scarce and the credit limit is low, there is a liquidity

premium on government debt, and the inflation rate can be high enough at the

zero lower bound that, even if the central banker reacts very aggressively to

inflation, the zero lower bound is not an equilibrium.
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To characterize equilibria, it will be useful again to restrict attention to

the utility function () = 1−
1−  where   0 is the coefficient of relative risk

aversion. Then, from (70)-(73), we get

1


= max

⎡⎣µ


¶ "
 + (1− )1−

1


 + 

#
(∗)1−  1

⎤⎦  (75)

which solves for equilibrium  Previously, we determined, from (40), that   1

is sufficient to guarantee that a reduction in  (an increase in the nominal interest

rate) implies a decrease in 1 and an increase in the inflation rate, supported

by an open market sale of government bonds by the central bank. But, if   1

then the first argument under the max operator on the right-hand side of (75) is

strictly decreasing in  Since the left-hand side of (75) is also strictly decreasing

in  this opens up the possibility of multiplicity of equilibria satisfying   1

A convenient example that illustrates this is () = log  Note that, from (40),

the log case implies that, if   0 then 1 will decline when  decreases (just as

for any   1), which is a key property that makes the log example “standard.”

From equations (70)-(73) it is convenient to characterize the equilibrium solution

in terms of an equation that solves for the gross inflation rate ,



 −  
= max

h
 (∗)1−  1

i
(76)

First, for this example, a liquidity trap equilibrium exists if and only if, from

(74), ∙


( + )

¸
(∗)1−  ≤ 1 (77)

Next, if there is an equilibrium in which the central banker achieves his or her

inflation target away from the zero lower bound, then from (76), existence of

such an equilibrium requires

 =


 − ∗
 (78)

if we restrict attention to Taylor rules for which  is a function only of exogenous

variables. As well, it must be the case, from (70) that ∗ ≥ 1 or from (78),

∗ ≥ 

( + )
 (79)

Condition (79) states that, if there is an equilibrium in which the central bank

achieves its inflation target ∗ then the inflation target must be greater than
the inflation rate when the nominal interest rate is zero. Then, (78) and (79)

are necessary and sufficient for such an equilibrium to exist.

Therefore, for the central bank to achieve its inflation target requires that 

be set correctly in the Taylor rule (70). Further,  is a function of the exogenous

variables  and  i.e. the credit limit and the real quantity of consolidated

28



government debt. Also,  depends on the inflation target itself. Thus, in the

constrained equilibrium, in which the real interest rate is endogenous, one cannot

assure that the Taylor rule will achieve the inflation target (in the short run or

the long run) as in the unconstrained case in this model.

However, even if the central banker sets  appropriately, so that there exists

an equilibrium in which the inflation target is achieved, there may exist other

equilibria. For example, if (78) holds, then from (76), an equilibrium away from

the zero lower bound satisfies

 − ∗
 − 

=
³ 

∗

´−1
(80)

Suppose that  = 2 and  − ∗  0 Then, there can exist two equilibria

away from the zero lower bound, and the equilibrium with the higher rate of

inflation has the property that  = ∗
For arbitrary , we can construct examples for which there are three equi-

libria. For example, if  = 2 then we can write (76) as



 −  
= max

∙
 (∗)−1 

1



¸
 (81)

and then it is clear from Figure 10 that there can be three equilibria, denoted by

  and  in the figure: one at the zero lower bound, and two other equilibria

for which the nominal interest rate is strictly positive.

[Figure 10 here.]

However, note in this example that, if   1 then the equilibrium must

be unique, and we could either have a liquidity trap equilibrium at the zero

lower bound, or one with a positive nominal interest rate. Further, if (78) and

(79) hold, then the unique equilibrium has the property that the central banker

achieves his or her inflation target.

The log utility example illustrates two problems with standard Taylor rules.

The first is particular to the constrained equilibrium. A scarcity of government

debt creates the problem that the real interest rate is endogenous, so simple

Taylor rules will not achieve the central banker’s inflation target unless he or

she accounts appropriately for this real interest rate endogeneity. As well, mul-

tiplicity of equilibria can potentially be a worse problem in the constrained

equilibrium case. In circumstances in which there could be two equilibria in the

unconstrained case, we constructed an example in which there could be three.

Finally, as in the unconstrained case, the Taylor principle may not help matters.

In the example, there is a unique equilibrium when the Taylor principle does

not hold (  1) but if   1 there could be multiple equilibria.

4.2.2 Endogenous Real Interest Rate

Next, suppose that (45) holds, and the central bank follows a Taylor rule that

allows for the endogeneity in the real interest rate. Then, from (23), (27), and

29



(33),

 =
1

+1
 (82)

Therefore, from (61), (82), (27), and (39), assuming that  =  and  =  for

all  we can express the Taylor rule as

+1 = max

∙
 (

∗)1− 
0( + )



¸
 (83)

Which is identical to (63) for the unconstrained case, except that the second

argument in the max operator on the right-hand side of (63) is a different con-

stant than in (83), because the inflation rate at the zero lower bound is different

in the unconstrained and constrained cases. The results here are identical to

the constrained case, except that, if

∗ 
0( + )




then the only equilibrium is the liquidity trap equilibrium, and the central bank

will perpetually exceed its inflation target, as

 =
0( + )


 ∗

in the liquidity trap equilibrium. However, if

∗ ≥ 0( + )


 (84)

then the results will be qualitatively the same as in the unconstrained case in

which the Taylor rule adjusts for endogeneity in the real interest rate. There

exist two steady state constrained equilibria, a high-inflation equilibrium in

which the central bank achieves its inflation target, and a liquidity trap steady

state in which the central bank perpetually undershoots its inflation target.

Also, as in the unconstrained case, there exists a continuum of nonstationary

equilibria, which either converge to the liquidity trap steady state (if   1) or

the high-inflation steady state (if   1).

This Taylor rule solves the problem which occurs due to endogeneity of

the real interest rate in a constrained equilibrium, and it does no worse than

the same Taylor rule in the unconstrained case. But the same problems that

occurred in the unconstrained equilibrium are present here. In particular, the

Taylor principle leads to multiple steady states, and the liquidity trap steady

state is stable. As well, there are multiple dynamic equilibria, even in the

absence of the Taylor principle.

4.2.3 Forward Looking Taylor Rule

Next, consider the forward-looking Taylor rule, as specified by (66). Then,

similar to (76), in the case where () = log   =  for all  and  =  for

30



all  we obtain


 −  
= max

h
+1 (

∗)1−  1
i
 (85)

Then, {}∞=0 is a solution to the difference equation

+1 = max

"µ


 −  

¶ 1


(∗)1−
1
 −

1
 



 (+  )

#
(86)

with 0 ≥ 
(+ )



Suppose that we consider the case  = 1 If

 −  (+  )−1 ≥ 0 (87)

then there exist two steady state equilibria: the liquidity trap equilibrium, and

a high-inflation equilibrium. In the high-inflation equilibrium, the central bank

achieves its inflation target if and only if

 =


 − ∗ 


and

∗ ≥ 

 (+  )


Thus, due to real interest rate endogeneity in the constrained case, the ad-

justment  for the real rate must depend on exogenous variables, including

the inflation target, in the example. If (87) does not hold, then there is only

one steady state equilibrium, which is the liquidity trap equilibrium. As well,

if (87) holds, then there exists a continuum of dynamic equilibria with 0 ∈h


(+)
 −

−1

 

´
 and each these equilibria converges in finite time to the

liquidity trap equilibrium.

An interesting feature of the example is that, in contrast to some of the other

cases we have examined involving constrained and unconstrained equilibria, the

dynamic properties of the model do not differ according to whether   1

or   1 In the example, by continuity the qualitative characteristics of the

dynamics are the same in the neighborhood of  = 1

4.2.4 Backward looking Taylor Rule

Now, consider the backward looking rule

1


= max

h
−1 (

∗)1−  1
i
 (88)

As in the previous case, consider the example () = log   =  for all  and

 =  for all  Then, similar to (85), we obtain



 −  
= max

h
−1 (

∗)1−  1
i
 (89)
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Then, as in the previous case, restrict attention to  = 1 so (89) gives a

difference equation

+1 = max

∙


+  




( + )

¸
 (90)

There exists a steady state in which the central bank achieves its inflation target

if and only if

 =


 − ∗ 
(91)

and



 ∗ ≥ 

( + )
 (92)

Then, (90)-(92) imply that the liquidity trap steady state does not exist. From

(90), if (91) and (92) hold, then there exists a continuum of dynamic equilibria

with 0 ∈
h


(+)

 ∗
´
 each of which converges to the steady state with  =

∗ for all 
Therefore, this example turns the previous one on its head. Again, the

properties of the model will be qualitatively identical for  in the neighborhood

of unity. In contrast to the case with the previous Taylor rule, the backward

looking Taylor rule in this example has good properties.

4.2.5 Discussion: Taylor Rules in the Constrained Case

A key difficulty that adherence to a Taylor rule presents in the constrained case

is that the real interest rate is endogenous, even in the long run. Part of the logic

behind the Taylor rule — as written down by Taylor himself — is that monetary

policy cannot affect the real interest rate in the long run, and the steady state

real interest rate is a constant, independent of exogenous variables. But that

is not the case in a constrained equilibrium, in which monetary policy matters

for the long run real rate, and the long run real rate depends on exogenous

variables, including the stock of government debt outstanding.

There are solutions to this constrained-equilibrium Taylor rule problem,

which involve modifying the rule to account for real interest rate endogene-

ity, as we showed. But any of these solutions involve making the rule more

complicated. Either additional variables need to go into the rule, or the central

banker needs to include in the rule a measure of the real interest rate. Ulti-

mately, though, even if such steps are taken, adherence to the Taylor rule can

lead to a policy trap. The Taylor-rule central banker can be drawn to — and

become stuck indefinitely in — a liquidity trap equilibrium. Alternatively, there

may exist steady state equilibria for which the nominal interest rate is positive,

but the central bank does not achieve its inflation target.
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5 Conclusion

During and after the Great Recession, the behavior of asset prices, inflation, and

the role of central banks in that behavior, appears puzzling, both in the United

States and elsewhere. Short-term real interest rates have been persistently low,

and deflation is not yet in evidence in the United States, in spite of the fact

that the Fed has kept short-term interest rates at or close to zero for more

than six years. In the 1970s and 1980s, a common view was that central banks

have a tendency to create excessive inflation, and that commitment to policy

rules will solve that problem. But, in the United States, Europe, the U.K.,

Switzerland, and Sweden, for example, the inflation rate has fallen below central

bank inflation targets. These central banks seem well aware of policy rules and

what they are about, but they seem powerless to create more inflation. The

post-Great Recession central banking problem seems to be a lack of inflation

rather than too much of it.

In this paper, we have attempted to come to grips with these puzzles, in part

by recognizing the special role that government debt plays in financial markets.

In the model, government debt literally serves a transactions role, but this can

be taken to stand in for a broader role for government debt as collateral in

financial markets. Government debt is then a substitute for private credit and

private assets that serve as collateral. A financial shock that impairs private

credit and effectively destroys private collateral can then create a shortage of

government debt, in the sense that the liquidity premium on government debt

increases, and the short-term real rate of interest falls. The existence of a large

liquidity premium can imply that, even if the short-term nominal interest rate

is at the zero lower bound, the inflation rate can be positive, just as we have

been observing in the United States.

Further, if asset market constraints bind in the model, which makes the

real rate of interest low, then a zero interest rate policy (ZIRP) is not optimal.

An open market purchase of government bonds by the central bank implies a

higher quantity of outside money outstanding relative to government debt. But

if government debt is scarce, an open market purchase that lowers the nominal

interest rate will lower the amount of government debt available to support

aggregate economic activity, and this can be bad for economic performance, on

net.

A lesson that central bankers appear to have absorbed from the 1970s is that

commitment to policy rules is important. John Taylor’s work (see Taylor 1993),

and interest in the Taylor rule by New Keynesians (Woodford 2003), focused

central bankers on this particular rule as a way to structure how they think

about monetary policy. It has been known for some time (see Benhabib et al.

(2001)) that the Taylor rule has poor properties in standard monetary models.

In particular, under Taylor rules that prescribe an aggressive response of the

target nominal interest rate to a change in the inflation rate, there are multiple

equilibria that converge to an undesired ZIRP under which the central bank

persistently undershoots its inflation target.

Our model is consistent with the results of Benhabib et al. (2001) when
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asset market constraints do not bind, but if asset market constraints bind this

further adds to the problem. With scarce government debt, the central bank

must modify the Taylor rule in potentially complicated ways, adjusting for en-

dogeneity in the short-term real interest rate so as to achieve its inflation target.

And the liquidity premium on government debt can create added multiplicities.

There may not only be multiple equilibria that yield convergence to ZIRP, but

steady state equilibria with a positive nominal interest rate for which the central

bank does not achieve its inflation target.

A central banker following a Taylor rule, when confronted with a financial

crisis, would be inclined — as, for example, the Fed was — to resort to ZIRP. Our

model tells us that, if the financial shock is severe enough, and if government

debt is in short enough supply, then the central bank could continue to see

an inflation rate at or above its target, even given a prolonged period of ZIRP.

Thus, the central bank could become complacent about its inflation target. But,

as the private economy repairs itself and asset market constraints are relaxed,

the inflation rate will tend to fall if ZIRP continues. Then, if the central banker

is following a Taylor rule that dictates an aggressive response to inflation, that

will serve to maintain ZIRP indefinitely, unless the policy rule changes. The

central banker continues to see low inflation, and the logic behind his or her

Taylor rule says that ZIRP will eventually produce more inflation. But that

never happens.

Thus ZIRP is a policy trap — one which central banks in the world may now

be falling into. One could be hopeful that the nature of the trap would become

obvious. But Japan’s experience — short-term nominal interest rates close to

zero since 1995, with an inflation rate of roughly zero over that period — should

give one pause.
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Figure 2: Equilibrium Allocations
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Figure 3: A Decrease in V or κ, Constrained Equilibrium
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Figure 4: Example: Government Deficit as a Function of
Outstanding Consolidated Government Debt at the Zero
Lower Bound
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Figure 5: Example: Government Deficit as a Function of
the Inverse of the Gross Inflation Rate at the Zero Lower Bound
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Figure 6: Taylor Rule Equilibrium, Unconstrained, α >1
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Figure 7: Taylor Rule Equilibrium, Unconstrained, α < 1
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Figure 8: Taylor Rule Equilibrium, Unconstrained, α > 1,
Endogenous Real Interest Rate
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Figure 9: Taylor Rule Equilibrium, Unconstrained, α < 1,
Endogenous Real Interest Rate
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Figure 10: Example: Taylor Rule Equilibrium, Constrained Case,
Constant Real Interest Rate
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