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Abstract

Macroeconomic research often relies on structural vector autoregressions to uncover

empirical regularities. Critics argue the method goes awry due to lag truncation:

short lag-lengths imply a poor approximation to DSGE-models. Empirically, short lag-

length is deemed necessary as increased parametrization induces excessive uncertainty.

The paper shows that this argument is incomplete. Longer lag-length simultaneously

reduces misspeci�cation, which in turn reduces variance. For data generated by frontier

DSGE-models long-lag VARs are feasible, reduce bias and variance, and have better

coverage. Thus, contrary to conventional wisdom, the trivial solution to the critique

actually works.
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1 Introduction

Structural Vector Autoregressions (SVARs) have proven to be an important tool for mea-

suring macroeconomic regularities. Following Sims�(1980) seminal contribution Bernanke

(1983), Blanchard and Quah (1989), Sims (1989, 1992), Eichenbaum and Evans (1995), Galí

(1999), Fisher (2006), Beaudry and Portier (2006) and others provided SVAR-based evidence

for a variety of shocks, with each essentially spurring a separate �eld of research.

Yet the SVAR method is not without its critics. Many critiques of SVARs boil down

to the problem of lag truncation. In particular, while DSGE models tend to imply reduced

form VAR representations with long lag-length (often in�nity), when going to the data,

macroeconomists invariably settle on using a very small number of lags (typically one to four

quarters). Because lags are truncated, the critics show, impulse response functions (IRFs)

computed using the SVAR may not correspond to those of the underlying DSGE model.

Chari, Kehoe and McGrattan (2008, henceforth CKM) is the most recent and well-known

elicitation of that critique.1

The trivial solution to lag truncation, i.e., dramatically increasing lag-length, is unex-

plored. What keeps macroeconomists from using long lag-lengths is the intuition that uncer-

tainty becomes pervasive. That is, increasing lag-length increases the number of parameters

rapidly, thereby reducing the degrees of freedom and making con�dence bandwidth explode.

We show that this standard intuition is only part of the story. In the face of misspeci�ca-

tion due to lag truncation, increasing lag-length can actually reduce uncertainty. The reason

is that as truncation reduces, misspeci�cation reduces. The reduction in misspecifcation not

only leads to the well-known bias reduction, but it also reduces variance. This reduction in

variance will work against the imprecision resulting from increased parametrization. This

trade-o¤ is general: it applies to all truncated VARs, no matter whether they are identi�ed

with short-run, long-run or sign restrictions.

1Others include Faust and Leeper (1997), Cooley and Dwyer (1998) and Ravenna (2007).
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We show that in increasing lag-length in standard SVARs on small samples of data

generated by standard DSGE models, the variance-e¤ect of misspeci�cation reduction of-

ten dominates the increased imprecision due to increased parametrization. The result is

then almost unequivocally in favor of long-lag VARs: reduced truncation bias, more precise

inference, reduced MSE, better coverage rates.

The implication is, contrary to conventional wisdom, that it is possible to estimate SVARs

with long lags, and hence reduce truncation bias, and still derive precise structural predictions

from them.

The paper is organized as follows. We start by laying out a standard single-equation

omitted variables argument. This provides the intuition for the e¤ect of reducing truncation

in SVAR impulse responses, where analytics are not tractable. We then assess long-lag VARs

on the basis of a series of Monte Carlo experiments. We draw data from a variety of DSGE

models, estimate SVARs of di¤erent (and possibly very long) lag-length and evaluate their

performance. Finally, we assess the implications of our results and discuss some possible

avenues for future research.

2 Misspeci�cation

We �rst brie�y re-state a textbook omitted variables argument, which facilitates understand-

ing the intuition behind the general VAR results.

2.1 Some useful single-equation intuition

Consider a data-generating process

yt = X1t�1 +X2t�2 + �t; V (�t) = �
2 (1)
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where a variable y is determined by two (sets of) exogenous variables, X1 and X2 and a

shock �. Now run the regression

yt = X1tb1 + et; V (et) = s
2: (2)

It is well-known that omission of the relevant variable X2 leads to biased point estimates

(unless X1 ? X2):

E(b1) 6= �1

as well as an upwardly biased variance estimate (always):

s2 > �2:

2.2 Omitted variables and truncation in VARs

The single-equation textbook result straightforwardly generalizes to VARs. It su¢ ces to

think of y as a vector of variables, X1 as the lags the researcher includes, and X2 as the lags

not included, or truncated.

It is then immediate that a VAR, denoted by

Yt = B1Yt�1 + :::+BpYt�p + ut; E(utu
0
t) = �

B(L) = B1L+ :::+BpL
p;

which has p � p� (where p� denotes the true lag-length) will su¤er from truncation bias.

The omitted variables argument above highlights why: lag truncation (or omitting relevant

variables) results in a bias in the reduced form coe¢ cients B(L) and in the reduced form

covariance matrix �. Any SVAR analysis has impulse responses as a function of both these

reduced form objects; let

IRF = f(B(L);�): (3)

Because impulse responses are a function of both B(L) and � they will tend to become
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less biased if both its arguments become less biased.2 In other words, reducing truncation

reduces bias.

But what do we know about variance? Recall that the intuition that keeps macroeco-

nomics from considering long lag-lengths is that the increased parametrization (dimension

of B(L)) leads to increased imprecision.

Though conceptually simple, equation (3) helps formalize that standard intuition. Es-

sentially, recalling that V (:) denotes variance, the intuition simply states that V (B(L)) "=)

V (IRF ) " as lag-length increases. But (3) also makes clear that this argument is incom-

plete. In particular, it neglects that there is a second argument, �. Therefore, any claims

about V (IRF ) solely based on V (B(L)) are only partial. Importantly, the omitted variables

argument suggests a reduction in bias of the estimate of �, which may well contribute to a

reduction in variance of impulse responses.

Equation (3) also makes clear why general statements about V (IRF ) are hard to make:

the non-linearity of f (also across horizons) interacts with the multi-dimensionality of both

its arguments, B(L) and �. Therefore, we ascertain the balance of this trade-o¤ by means of

a series of Monte Carlo experiments based on frequently studied models in macroeconomics.

3 Monte Carlo evidence

For each DSGE model considered, we sample data of length equal to that available in typical

macro data samples (T = 200).3 Given one such draw of data, we estimate VARs of di¤er-

2We merely refer to a documented tendency in DSGE models analyzed in the literature (see, for instance,

CKM). From a theoretical perspective, this reduction in bias is not a certitude. Generally, bias reduction

in its arguments does not guarantee bias reduction in the impulse response function. See Sims (1972) for

an elicitation of a related point in terms of reduced form objects: convergence in individual point estimates

(i.e. function arguments) may imply divergence of the sum of coe¢ cients (i.e. the function itself).
3When comparing VARs of di¤erent lag-length, we ensure each VAR has the same number of e¤ective

observations, equal to T = 170. That is, lag initialization does not a¤ect sample size.
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ent lag-lengths, calculate impulse response functions and construct con�dence bands using

standard methods.4 We repeat that exercise 1000 times for each model and subsequently

investigate bias, uncertainty bandwidth, mean-squared error and coverage rates.

3.1 Setup

We consider a range of models, both real and nominal, and identi�ed with both short and

long-run restrictions. More precisely, we consider estimating IRFs using long-run restrictions

on data generated from CKM�s RBC model as well as the short-run restriction version in

Christiano, Eichenbaum and Vigfusson (2007), henceforth CEV, of that same model (in

which agents do not observe the productivity shock at the time of making the labor decision).

We consider both these models because they have taken center stage in much of the debate

on the use of SVARs. In addition, we also consider the Smets and Wouters (2007) model,

henceforth SW, because it nests many shocks and frictions frequently discussed in macro

and arguably captures dynamics deemed important in the data. As a simple way of building

in a short-run restriction in that model, we assume that monetary policy responds only to

lagged macroeconomic aggregates. The identifying restriction is then that only the monetary

policy shock a¤ects the interest rate contemporaneously. Because each of these models is

well-known, we refer the reader to the respective papers for a precise description of model

equations and parameter calibration (or, in the case of SW, estimation).5

We work under a number of maintained simpli�cations. First, the identi�cation assump-

tions are invariably correct (i.e., the long or short run restrictions hold true in the DGP).

4See Christiano, Eichenbaum and Vigfusson (2007) for a discussion of why this is the appropriate way

to evaluate SVARs. Essentially, one takes an econometrician�s perspective - who has only one draw of data

and faces a question of inference on the basis of just that data.
5For CKM and CEV, we follow the CKM baseline calibration. For SW we modify the policy rule to

rt = �rt�1 + (1� �)
�
r��t�1 + ry

�
yt�1 � ypt�1

�	
+ "rt

and calibrate the model at the median of SW�s posterior distribution.
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Second, invertibility is never a problem; all the models we consider are fundamental. Third,

all our experiments are based on two-shock models and two-variable VARs. Both RBC

models �t that framework by construction, but the SW model does not. For the latter, we

consider the model with only monetary policy and preference shocks, and a VAR on GDP-

growth and the short term interest rate (in that order).6 In Section 5.1, we discuss the extent

to which restricting attention to two-variable systems matters. Finally, inference is standard.

Uncertainty bands are computed as in e.g. Canova (2007) and Uhlig (2005). In particular,

given a weak conjugate prior, VARs have a posterior distribution of the Normal-Inverse

Wishart form, where the distributions are centered around their OLS estimates.7

3.2 Results

Figure 1 contains, for each model, the median bias across all replications for VARs of di¤erent

lag-length. The �gure resembles those found in the literature and shows how short lag-length

can imply substantial bias. Particularly, the short-lag VAR (p = 4) frequently exhibits the

maximum bias at multiple horizons for the di¤erent models considered. Long lag-length, or

reduced truncation, can induce signi�cant bias reduction, most notably in CKM and, from

intermediate horizons onward, in CEV and SW. To evaluate if such biases are of concern,

we now turn to measures of uncertainty.

Result 1: Uncertainty does not explode for long-lag VARs Figure 2 plots the

median width of the con�dence bands across all draws.8 A �rst glance at that �gure reveals

that, contrary to common wisdom, bandwidth does not explode. Instead, even for VARs

6Results for di¤erent shocks and variables are qualitatively similar.
7Our results go through for bootstrap-based con�dence bands, used e.g. in CEV. However, bootstrap-

based procedures tend to run into non-stationarity problems more frequently. For instance, Kilian�s (1998)

double bootstrap often implies an unstable bias correction for large lag-lengths.
8That is, for each draw we subtract the 5th percentile from the 95th, and then take the median across all

draws. Results are similar for 68% credible intervals.
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with very long lags uncertainty bands are roughly in the same ballpark as those of short-lag

VARs.

Result 2: Short-lag VARs have maximal uncertainty for horizons where un-

certainty is not mechanically low For short horizons short-lag VARs have maximal

bandwidth. This holds true for each of the models considered. A possible reason for that to

occur is that misspeci�cation error is maximal for short-lag VARs. Individual reduced-form

coe¢ cients may be estimated more precisely for a given draw, but across draws short-lag

VARs have increased variance due to the misspeci�cation of the VAR. Long-lag VARs, by

contrast, may have individually imprecise reduced form coe¢ cients, but they su¤er much

less from misspeci�cation.

For longer horizons, short-lag VARs trivially attain minimum bandwidth. The reason is

that a VAR(p) cannot propagate much beyond horizon p. As a result, uncertainty cannot

propagate much beyond that horizon either. The consequence is, as apparent from Figure

2, that bandwidth mechanically converges to zero soon after horizon p.

Result 3: Long-lag VARs have comparable coverage and comparable or better

MSE than short-lag VARs Combined with a tendency to produce smaller biases, long-

lag VARs have favorable properties compared to more standard short-lag VARs. Figure 3

documents how long-lag VARs attain coverage rates that are 1) reasonably good overall, 2)

comparable to those for short-lag VARs for the CKM and CEV models, 3) much better for

the SW model, where short-lag VARs with short run restrictions go astray entirely.9

Figure 4 combines bias and bandwidth in a di¤erent way, by plotting mean-squared

errors (MSE) across horizons. The message is very much the same: at short horizons -

9The huge swings in coverage for short-lag VARs arise naturally as the combination of substantial bias and

mechanically low uncertainty. As a result, from intermediate horizons onward, the econometrician becomes

relatively certain about the wrong point.
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where uncertainty does not mechanically shrink - short-lag VARs are either comparable or

considerably worse than long-lag VARs.

4 Decomposing uncertainty e¤ects

From the above results it may not be obvious that standard intuition - increased parame-

trization leading to increased uncertainty - holds at all. We here provide a decomposition to

measure the impact of the standard intuition on the total variance e¤ect.

Figure 5 plots the Monte Carlo distribution of uncertainty bandwidth for three types of

impulse responses. Speci�cally, for each draw of data from the DSGE model, we measure the

bandwidth around the contemporaneous impulse response. For short-lag VARs, the dashed

line (B4;�4) plots the distribution of bandwidths across all 1000 draws. Similarly, the solid

line plots the distribution of bandwidths for a long-lag VAR (B30;�30). The medians of

these two distributions are already contained in Figure 2: the contemporaneous response for

CKM and SW, the second horizon for CEV.10 Comparing these two distributions con�rms the

earlier results: long-lag VARs do not necessarily imply overwhelmingly dispersed uncertainty

bands.

To understand why, and to relate our results to the standard intuition, we construct the

following counterfactual impulse responses:

IRF = f(B30(L);�4):

These hypothetical IRFs are constructed using the (many) reduced form coe¢ cients of a

long-lag VAR, B30(L), combined with the reduced form covariance matrix of a short-lag

VAR. Such IRFs can be interpreted as isolating the e¤ect of increased parametrization.

10While similar e¤ects are at work at longer horizons for all models considered, they are harder to dis-

entangle due to the mechanical reduction in uncertainty for short-lag VARs, as apparent in Figure 2. For

CEV the contemporaneous response of hours to technology shocks is subject to a zero restriction and is thus

uninformative. The �gure therefore contains the IRF uncertainty distribution for the second horizon.
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They shut down the e¤ect of misspeci�cation reduction by ignoring the reduced bias in

�. The dotted (B30;�4) distributions in Figure 5 show the bandwidth associated with these

counterfactual impulse responses. Standard intuition dictates that long lag-length makes the

entire distribution shift outward, through the additional uncertainty created by the strong

increase in number of parameters.

It is immediately apparent that, across models, the dotted distribution does not un-

equivocally lie to the right of the dashed distribution. In other words, the strong increase in

number of parameters need not imply an increase in uncertainty. For the SW model, there

is no e¤ect at all from increased parametrization, since the short-run restriction implies that

the contemporaneous IRF only depends on � and not on B (L). For the CEV and CKM

models the right tail of the bandwidth distribution becomes fatter, as standard intuition

would suggest. However, two observations stand out. First, the increase in bandwidth is not

overwhelming. Second, a signi�cant portion of the mass is shifting to the left of the dashed,

short-lag distribution, indicating reduced uncertainty.

The fact that increased parametrization does not invariably increase uncertainty is at

odds both with standard intuition (less degrees of freedom) and with a well-known omitted

variables result. Particularly, coe¢ cient estimates b1 in (2) are not only biased, but also have

too low variance. Intuitively, to the extent that omitted variables correlate with included

ones, the explanatory power of those included will appear to be larger than it really is.

Analytically, if we denote the coe¢ cients on X1 in the correct regression (which does include

X2) by b1:2, then

V ar(b1) < V ar(b1:2): (4)

This suggests that by including additional relevant variables one increases the variance of

coe¢ cients. We now provide detail on the e¤ects in each of the individual models, which

will lay bare the reasons for these seemingly counterintuitive results.

Let us start with the SW model in Figure 5. As mentioned above, since identi�cation is
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based on short run restrictions, contemporaneous IRFs are not a function of B(L), only of

�. Hence, the dashed and dotted lines overlap. The e¤ect of misspeci�cation reduction, on

the other hand, substantially reduces uncertainty, as can be seen by the shift to the solid

distribution.

Now consider the bandwidth distribution for the CEV model. Here, taking into account

the long-lag polynomial clearly only partially results in an increase in uncertainty measures.

To see the reason for this, note that IRFs are functions involving multiple coe¢ cients. As a

result, covariance between coe¢ cients becomes an issue. For the sake of argument, consider

the simplest possible function involving two parameters in (1), their sum. LetX1 = [X1a; X1b]

and denote the corresponding point estimates by b1a and b1b. Then the variance of the sum

of the two coe¢ cients in b1 in the equation that omits X2 is

V (b1a + b1b) = V (b1a) + V (b1b) + 2Cov(b1a; b1b): (5)

Similarly, the variance of the sum in the correct regression (which includes X2) is

V (b1a:2 + b1b:2) = V (b1a:2) + V (b1b:2) + 2Cov(b1a:2; b1b:2): (6)

While we know that each of the �rst two terms is smaller in (5) than the corresponding

terms in (6), the presence of the covariances prevents any automatic conclusion on whether

V (b1a + b1b) Q V (b1a:2 + b1b:2).

Thus, as soon as one considers functions that combine coe¢ cients of a regression subject

to omitted variables, the usual variance relation in (4) can break down. This explains the

shift from the dashed to the dotted distribution in the CEV model, and particularly why

there can be signi�cant mass shifting towards lower uncertainty despite having a big increase

in the number of parameters.

The quantitatively more important e¤ect on uncertainty is not due to the big increase in

parametrization, however, but rather the e¤ect of the reduction in misspeci�cation. This is

illustrated by the shift from the dotted to the solid distribution.
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Finally, consider the CKM model in Figure 5. The dotted line in the �gure shows how

increased parametrization, along the lines of standard intuition, tends to shift the distribution

of uncertainty outward compared to the short-lag VAR. Here, too, there is some mass that

shifts leftward. As in the case of the CEV model, this can occur because IRFs involve a

combination of parameters.11 Despite the push toward increased uncertainty following the

increase in number of parameters, once the misspeci�cation e¤ect through � is incorporated

long-lag VARs appear associated with smaller, not larger uncertainty bandwidth.

Thus, the �gures show the uncertainty trade-o¤: increased parametrization (B4 �! B30)

which can - but need not - push the distribution outward (from dashed to dotted) vs. reduced

misspeci�cation (�4 �! �30) which shrinks uncertainty and thus pulls the distribution to the

left (from dotted to solid). In sum, while standard intuition on increased parametrization is

partially correct and clearly part of the story, misspeci�cation reduction tends to have more

substantial variance e¤ects. As a result, for VARs on data generated by standard DSGE

models, the total e¤ect of increasing lag-length can easily imply a reduction in variance.

5 Concluding remarks

5.1 On the maintained simpli�cations

Throughout the analysis, the only modi�cation as compared to the standard approach in e.g.,

Galí (1999), is an increase in lag-length. No additional degree of complexity is introduced,

and only standard tools are used. Let us brie�y dwell on one of the simpli�cations, notably

that all simulations are based on two variable VARs. Considering small VARs serves to keep

the number of parameters limited. As lags increase, the increase in parameters increases

11The reduction in uncertainty in the dotted distribution can also be the result of reduced misspeci�cation

in B(1), documented by Sims (1972), in combination with long-run identifying restrictions. This e¤ect

exists because B(1) enters the identi�cation procedure in the case of long-run restrictions. For more on the

importance of B(1), see Christiano, Eichenbaum and Vigfusson (2004).
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faster the more variables in the system.

Since much of the in�uential SVAR evidence in the literature is based on small VARs,

with two, maximum three variables, it seems reasonable to focus on small VARs. Moreover,

many developments in empirical macro enable dealing with larger systems. For instance,

variants on Minnesota-type priors can allow inclusion of long lags in VARs with many vari-

ables. Alternatively, factor dynamics with potentially long lags may well improve structural

inference without a large increase in parameters relative to the size of the data. Smoothness

priors are yet another available alternative. In short, there are potentially many ways of

dealing with larger systems. Irrespective of the particular approach, the variance trade-o¤

we document will be at work in larger systems, too.

5.2 On choosing lag-length

All of the above results are in terms of structural inference. None of our results imply

that long-lag VARs ought to be used for matters such as forecasting. For instance, the large

dimensionality of the lag polynomial in long-lag VARs prohibits any success in forecasting due

to the lack of parsimony. While one can certainly envisage ways to reduce the dimensionality,

that is not the issue here. Rather, if one wants to draw structural conclusions, e.g. by means

of IRFs, then misspeci�cation concerns are essential. Therefore, if forecasting is not the

main purpose of the model, it may be ill-advised to trust lag-selection criteria which focus

on parsimony.12

A potential drawback of including longer lags is that it induces over�tting. We have

extensively investigated this possibility. For the models and the lag-lengths considered here,

we �nd it not be a major problem. One way to see this is as follows. If present, over�tting

should have a �rst-order e¤ect on bias. In other words, one would expect bias to increase

12See Kilian (2001) for a similar argument. He argues that lag criteria which punish parametrization less

heavily often have better properties in terms of IRF.
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when over�tting sets in. This does not generally occur in our simulations. That said, one

avenue of future research lies in the development of information criteria that take into account

that the purpose of the model is structural inference, while also avoiding issues of over�tting.

5.3 Generality

We document a general trade-o¤. Of course, it is possible to design models or �nd data

for which the balance of the trade-o¤ leans toward short lag-lengths. However, contrary

to common wisdom, long lag-length need not imply prohibitively large imprecision. While

increased parametrization in itself may increase uncertainty, this e¤ect is counteracted by a

reduction in misspeci�cation. For SVARs run on data generated by frequently used DSGE

models, longer lag-length tends to imply less bias and more precise inference. Long-lag VARs

are therefore a viable instrument in the empirical macroeconomist�s toolkit.

In ongoing empirical work we �nd that the variance trade-o¤ in VARs is not particular

to data generated by DSGE models. For long-lag versions of many prominent SVARs in the

literature, the balance of uncertainty e¤ects seems to favor misspeci�cation reduction over

parametrization concerns. In particular, we �nd that results can be substantially di¤erent

from their short-run counterparts and that uncertainty does not explode.
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Figure 1: Bias
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Figure 2: Bandwidth (95th-5th percentile)
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Figure 3: Coverage (90 percent)
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Figure 4: Mean-squared error
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Figure 5: Bandwidth distribution
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