Financial Fragility with SAM?

Daniel Greenwald¹ Tim Landvoigt² Stijn Van Nieuwerburgh³

¹MIT Sloan

²Wharton, NBER, and CEPR

³Columbia GSB, NBER, and CEPR

Sveriges Riksbank Workshop on Housing, Credit and Heterogeneity September 14, 2018

- Standard mortgage contracts share house price risk in a particular way
 - Borrower bears all house price risk until default
 - Lender bears tail risk when house prices fall enough to trigger default

- Standard mortgage contracts share house price risk in a particular way
- ▶ Foreclosure crisis called into question this risk-sharing arrangement

- Standard mortgage contracts share house price risk in a particular way
- ▶ Foreclosure crisis called into question this risk-sharing arrangement
- Led economists to propose alternative risk-sharing arrangements
 - Popular proposal: Shared Appreciation Mortgage (SAM)
 - Payments fall if house price declines, staving off foreclosures
 - Lender receives share of the upside upon sale

- Standard mortgage contracts share house price risk in a particular way
- ▶ Foreclosure crisis called into question this risk-sharing arrangement
- Led economists to propose alternative risk-sharing arrangements
- But is it safe to shift house price losses to lenders?
 - Banks and credit unions hold \$5.5T in mortgage debt on balance sheets
 - Large undiversifiable component to house price risk
 - Losses inflicted at times when banks may be fragile already
 - Offset by improved risk sharing/reduced defaults? Need GE model.

This Paper

- Question: how do Shared Appreciation Mortgage (SAM) contracts influence financial stability and risk sharing?
- **Approach**: build GE model of mortgage and housing market with explicit financial sector to intermediate between borrowers and savers.
 - Start from realistic mortgage debt contracts: long-term, nominal, prepayable, defaultable
 - Consider different forms of mortgage payment indexation (SAMs)

Main insights:

- 1. Indexing to aggregate house prices increases financial fragility
- 2. Indexing to relative local prices can dampen fragility
- 3. Schemes that help risk sharing often hurt financial sector profits

This Paper

- Question: how do Shared Appreciation Mortgage (SAM) contracts influence financial stability and risk sharing?
- Approach: build GE model of mortgage and housing market with explicit financial sector to intermediate between borrowers and savers.
 - Start from realistic mortgage debt contracts: long-term, nominal, prepayable, defaultable
 - Consider different forms of mortgage payment indexation (SAMs)
- Policy conclusion: only carefully designed mortgage indexation leads to aggregate stability and risk-sharing benefits.
 - Commonly proposed features like asymmetric and interest-only adjustment have important macro consequences.

Related Literature

- Asset pricing models with financial intermediaries:
 - Brunnermeier + Sannikov 14, 15, 17, Gârleanu + Pedersen 11, Gertler + Karadi 11, He + Krishnamurthy 12, 13, 15, Adrian + Boyarchenko 12, Savov + Moreira 16
 - Contribution: split banks and borrowers, risk sharing with multiple contract types
- Quantitative macro models of mortgage markets:
 - Favilukis, Ludvigson, Van Nieuwerburgh 17, Corbae + Quintin 14, Elenev, Landvoigt, Van Nieuwerburgh 16, Landvoigt 15, Garriga, Kydland, Sustek 15, Greenwald 16, Wong 15
 - Contribution: realistic mortgages and intermediation in GE
- Alternative mortgage contracts/SAMs:
 - Eberly + Krishnamurthy 14, Hall 15, Kung 15, Mian 13, Mian + Sufi 14, Piskorski + Tchistyi 17, Guren, Krishnamurthy, McQuade 17
 - Contribution: effect on risk sharing, housing/mortgage markets with levered intermediaries

Financial Fragility with SAM

Model Overview

Demographics, Endowments, Preferences

Demographics

- Three types of agents: Borrowers, Depositors, Intermediaries
- Population mass χ_j for $j \in \{B, D, I\}$
- Perfect consumption insurance within, but not across types (aggregation).
- Endowments

Preferences

Demographics, Endowments, Preferences

- Demographics
- Endowments
 - Non-durable endowment, income shock:

 $\log Y_{t} = (1 - \rho_{y}) \log \bar{Y} + \rho_{y} \log Y_{t-1} + \sigma_{y} \varepsilon_{y,t}, \quad \varepsilon_{y,t} \sim N(0, 1)$

- Agent $j \in \{B, D, I\}$ receives share s_j of Y_t , taxed at rate τ .
- Housing tree provides services in fixed supply $(\bar{K} = H_t^B + H_t^D + H_t^I)$.

Preferences

Demographics, Endowments, Preferences

- Demographics
- Endowments
- Preferences
 - Epstein-Zin:

$$\begin{aligned} \boldsymbol{U}_{t}^{j} &= \left\{ \left(1-\beta_{j}\right) \left(\boldsymbol{u}_{t}^{j}\right)^{1-1/\psi} + \beta_{j} \left(\mathbb{E}_{t}\left[\left(\boldsymbol{U}_{t+1}^{j}\right)^{1-\gamma_{j}}\right]\right)^{\frac{1-1/\psi}{1-\gamma_{j}}} \right\}^{\frac{1}{1-1/\psi}} \\ \boldsymbol{u}_{t}^{j} &= (C_{t}^{j})^{1-\xi_{t}} (H_{t}^{j})^{\xi_{t}} \end{aligned}$$

- Borrowers, intermediaries more impatient: $\beta_b = \beta_i < \beta_d$
- Fixed intermediary/depositor housing demand: $H_t^I = \bar{K}^I$, $H_t^D = \bar{K}^D$.
- Housing demand shock ξ_t .

Mortgage Contract

- Mortgages are geometric perpetuities with duration parameter δ
- Example: borrow face value M_0 at rate r_0^* at t = 0
 - Each period, pay off 1δ of principal, $M_{t+1} = \delta M_t$.
 - Fixed rate: interest payment of $r_0^*M_t$ in each period (tax deductible).
- Costly debt renewal at endogenous rate
 - Renewers choose new mortgage balance M_t^* and house size K_t^* , subject to borrowing constraint at origination: $M_t^* \leq \phi^K p_t K_t^*$.
- Default and foreclosure
 - Indiv. borrowers draw idiosyncratic house value shocks $\omega_{i,t} \stackrel{na}{\sim} \Gamma_{\omega,t}$. Endogenous fraction with worst shocks default.

Mortgage Contract

- Mortgages are geometric perpetuities with duration parameter δ
- Example: borrow face value M_0 at rate r_0^* at t = 0
 - Each period, pay off 1δ of principal, $M_{t+1} = \delta M_t$.
 - Fixed rate: interest payment of $r_0^* M_t$ in each period (tax deductible).
- Costly debt renewal at endogenous rate
 - Renewers choose new mortgage balance M_t^* and house size K_t^* , subject to borrowing constraint at origination: $M_t^* \leq \phi^K p_t K_t^*$.
- Default and foreclosure
 - Indiv. borrowers draw idiosyncratic house value shocks $\omega_{i,t} \sim \Gamma_{\omega,t}$. Endogenous fraction with worst shocks default.

Mortgage Contract

- Mortgages are geometric perpetuities with duration parameter δ
- Example: borrow face value M_0 at rate r_0^* at t = 0
 - Each period, pay off 1δ of principal, $M_{t+1} = \delta M_t$.
 - Fixed rate: interest payment of $r_0^* M_t$ in each period (tax deductible).
- Costly debt renewal at endogenous rate
 - Renewers choose new mortgage balance M_t^* and house size K_t^* , subject to borrowing constraint at origination: $M_t^* \leq \phi^K p_t K_t^*$.
- Default and foreclosure
 - Indiv. borrowers draw idiosyncratic house value shocks $\omega_{i,t} \stackrel{iid}{\sim} \Gamma_{\omega,t}$. Endogenous fraction with worst shocks default.

Financial Fragility with SAM

Idiosyncratic Shocks and Mortgage Default

- At start of *t*, all borrowers have same housing capital K_t^B , debt (M_t^B, A_t^B)
- Draw idiosyncratic/local home valuation shock $\omega_{i,t} \stackrel{iid}{\sim} \Gamma_{\omega,t}$.
 - Local (insurable) component ($\omega_{i,t}^L$) + uninsurable indiv. component ($\omega_{i,t}^{U}$):

$$\log \omega_{i,t} = \log \omega_{i,t}^L + \log \omega_{i,t}^U$$

- Constant local share of variation (*α*), time-varying XS variance:

$$\operatorname{Var}_t(\log \omega_{i,t}^L) = \alpha \sigma_{\omega,t}^2 \qquad \operatorname{Var}_t(\log \omega_{i,t}^U) = (1-\alpha)\sigma_{\omega,t}^2$$

▶ Borrowers with $\omega_{i,t} < \bar{\omega}_t$ optimally default. Banks seize housing capital and erase debt of defaulting borrowers.

- Default rate: $Z_{D,t} = \Gamma_{\omega,t}(\bar{\omega}_t).$
- Frac. housing retained: $Z_{K,t} = \int_{\omega_{i,t} > \bar{\omega}_t} \omega_{i,t} d\Gamma_{\omega,t}$.

Idiosyncratic Shocks and Mortgage Default

- At start of *t*, all borrowers have same housing capital K_t^B , debt (M_t^B, A_t^B)
- Draw idiosyncratic/local home valuation shock $\omega_{i,t} \stackrel{iid}{\sim} \Gamma_{\omega,t}$.
 - Local (insurable) component ($\omega_{i,t}^L$) + uninsurable indiv. component ($\omega_{i,t}^{U}$):

$$\log \omega_{i,t} = \log \omega_{i,t}^L + \log \omega_{i,t}^U$$

- Constant local share of variation (*α*), time-varying XS variance:

$$\operatorname{Var}_t(\log \omega_{i,t}^L) = \alpha \sigma_{\omega,t}^2 \qquad \operatorname{Var}_t(\log \omega_{i,t}^U) = (1-\alpha)\sigma_{\omega,t}^2$$

- Borrowers with ω_{i,t} < ω_t optimally default. Banks seize housing capital and erase debt of defaulting borrowers.
 - Default rate: $Z_{D,t} = \Gamma_{\omega,t}(\bar{\omega}_t).$
 - Frac. housing retained: $Z_{K,t} = \int_{\omega_{i,t} > \bar{\omega}_t} \omega_{i,t} d\Gamma_{\omega,t}$.

Mortgage Contract: Summary

- State variables for borrower: principal balance (M_t^B) , promised interest payment (A_t^B) , borrower-owned housing (K_t^B) .
 - 1. Costly debt renewal at endog. rate $Z_{R,t}$.
 - 2. Default and foreclosure at endog. rate $Z_{D,t}$.
- Transition laws:

$$M_{t+1}^{B} = \bar{\pi}^{-1} \begin{bmatrix} Z_{R,t}(1 - Z_{D,t})M_{t}^{*} + \delta(1 - Z_{R,t})(1 - Z_{D,t})M_{t}^{B} \end{bmatrix}$$

$$A_{t+1}^{B} = \bar{\pi}^{-1} \begin{bmatrix} Z_{R,t}(1 - Z_{D,t})r_{t}^{*}M_{t}^{*} + \delta(1 - Z_{R,t})(1 - Z_{D,t})A_{t}^{B} \end{bmatrix}$$

$$K_{t+1}^{B} = Z_{R,t}(1 - Z_{D,t})K_{t}^{*} + (1 - Z_{R,t})Z_{K,t}K_{t}^{B}$$

Indexation: Basics

- Define a borrower's initial leverage as $\lambda = M/p\omega K$, where *p* is national house price, and ω is relative value of individual house.
- Housing wealth hit by two forces that shift leverage:

$$p\omega K \to \left(\frac{p'}{p}\right) \cdot \left(\frac{\omega'}{\omega}\right) \cdot p\omega K, \qquad \lambda' = \left(\frac{1}{p'/p}\right) \cdot \left(\frac{1}{\omega'/\omega}\right) \lambda$$

for idiosyncratic shock ω .

Indexation scales mortgage debt, dampening shocks to leverage:

$$M \to \zeta_p \cdot \zeta_\omega \cdot M, \qquad \lambda' = \left(\frac{\zeta_p}{p'/p}\right) \cdot \left(\frac{\zeta_\omega}{\omega'/\omega}\right) \lambda$$

Full indexation ($\zeta_p = p'/p$, $\zeta_\omega = \omega'/\omega$) implies $\lambda' = \lambda$.

10/2

Indexation: Implementation

SAM: index by scaling both principal balance and payment

1. Aggregate: $\zeta_{p,t} = \frac{p_t}{p_{t-1}}$

2. Individual/local: $\zeta_{\omega}(\omega_{i,t}) = \frac{\omega_{i,t}^{\omega}}{\omega_{i,t-1}^{L}}$

Transition laws:

$$\begin{split} M_{t+1}^{B} &= \bar{\pi}^{-1} \qquad \begin{bmatrix} Z_{R,t}(1-Z_{D,t})M_{t}^{*} + \delta(1-Z_{R,t})(1-Z_{D,t})M_{t}^{B} \end{bmatrix} \\ A_{t+1}^{B} &= \bar{\pi}^{-1} \qquad \begin{bmatrix} Z_{R,t}(1-Z_{D,t})r_{t}^{*}M_{t}^{*} + \delta(1-Z_{R,t})(1-Z_{D,t})A_{t}^{B} \end{bmatrix} \\ K_{t+1}^{B} &= Z_{R,t}(1-Z_{D,t})K_{t}^{*} + (1-Z_{R,t})Z_{K,t}K_{t}^{B} \end{split}$$

Default threshold ("Q" terms are average continuation values/costs):

$$\bar{\omega}_{i,t}^{U} = \frac{1}{\omega_{i,t}^{L}} \cdot \frac{Q_{A,t}A_t + Q_{M,t}M_t}{Q_{K,t}K_t^B}$$

Indexation: Implementation

SAM: index by scaling both principal balance and payment

1. Aggregate:
$$\zeta_{p,t} = \frac{p_t}{p_{t-1}}$$

2. Individual/local: $\zeta_{\omega}(\omega_{i,t}) = \frac{\omega_{i,t}^{\nu}}{\omega_{i,t-1}^{\Gamma}}$

Transition laws:

$$\begin{split} M_{t+1}^{B} &= \bar{\pi}^{-1} \zeta_{p,t+1} \Big[Z_{R,t} (1 - Z_{D,t}) M_{t}^{*} + \delta (1 - Z_{R,t}) (1 - Z_{D,t}) M_{t}^{B} \Big] \\ A_{t+1}^{B} &= \bar{\pi}^{-1} \zeta_{p,t+1} \Big[Z_{R,t} (1 - Z_{D,t}) r_{t}^{*} M_{t}^{*} + \delta (1 - Z_{R,t}) (1 - Z_{D,t}) A_{t}^{B} \Big] \\ K_{t+1}^{B} &= Z_{R,t} (1 - Z_{D,t}) K_{t}^{*} + (1 - Z_{R,t}) Z_{K,t} K_{t}^{B} \end{split}$$

Default threshold ("Q" terms are average continuation values/costs):

$$\bar{\omega}_{i,t}^{U} = \frac{1}{\omega_{i,t}^{L}} \cdot \frac{Q_{A,t}A_t + Q_{M,t}M_t}{Q_{K,t}K_t^B}$$

Indexation: Implementation

SAM: index by scaling both principal balance and payment

1. Aggregate:
$$\zeta_{p,t} = \frac{p_t}{p_{t-1}}$$

2. Individual/local: $\zeta_{\omega}(\omega_{i,t}) = \frac{\omega_{i,t}^L}{\omega_{i,t-1}^L}$

Transition laws:

$$\begin{split} M_{t+1}^{B} &= \bar{\pi}^{-1} \zeta_{p,t+1} \Big[Z_{R,t} (1 - Z_{D,t}) M_{t}^{*} + \delta (1 - Z_{R,t}) (1 - Z_{D,t}) M_{t}^{B} \Big] \\ A_{t+1}^{B} &= \bar{\pi}^{-1} \zeta_{p,t+1} \Big[Z_{R,t} (1 - Z_{D,t}) r_{t}^{*} M_{t}^{*} + \delta (1 - Z_{R,t}) (1 - Z_{D,t}) A_{t}^{B} \Big] \\ K_{t+1}^{B} &= Z_{R,t} (1 - Z_{D,t}) K_{t}^{*} + (1 - Z_{R,t}) Z_{K,t} K_{t}^{B} \end{split}$$

Default threshold ("Q" terms are average continuation values/costs):

$$\bar{\omega}_{i,t}^{U} = \frac{\omega_{i,t}^{L}}{\omega_{i,t}^{L}} \cdot \frac{Q_{A,t}A_t + Q_{M,t}M_t}{Q_{K,t}K_t^B}$$

Borrowers

- Perfect sharing of nondurable consumption and housing services risk within borrower family \implies aggregation.
- Representative borrower chooses
 - housing and non-housing consumption
 - refinancing rate

- for refinancers only: { new mortgage balance new housing purchases

- default rate

to maximize utility subject to budget constraint and loan-to-value constraint on new borrowing

- ▶ Intermediary sector consists of **banks**, **REO firms**, and **households**
- Intermediary households receive endowment income and hold equity of banks and REO firms
- **Banks** maximize SHV, pay dividends to intermediary households
- Limited liability and deposit insurance s.t. capital requirement
- **REO firms** maximize SHV, pay dividends to intermediary households

Complete Problem

- Intermediary sector consists of banks, REO firms, and households
- Intermediary households receive endowment income and hold equity of banks and REO firms
- **Banks** maximize SHV, pay dividends to intermediary households
 - Issue new loans to borrowers
 - Take deposits from depositors
 - Seize foreclosed properties and sell to REO firms at price $p_t^{REO} < p_t$
 - Trade mortgages on the secondary market (IO + PO strips)
- Limited liability and deposit insurance s.t. capital requirement
- REO firms maximize SHV, pay dividends to intermediary households

[•] Complete Problem

- ▶ Intermediary sector consists of **banks**, **REO firms**, and **households**
- Intermediary households receive endowment income and hold equity of banks and REO firms
- **Banks** maximize SHV, pay dividends to intermediary households
- Limited liability and deposit insurance s.t. capital requirement
 - Receive idiosyncratic profit shocks and default if optimal
 - Government assumes all assets and liabilities of defaulting banks
 - Fraction η of bankrupt banks' assets are DWL to society
 - Capital requirement:

deposits $\leq \phi^{I}$ (MV of mortgage securities)

REO firms maximize SHV, pay dividends to intermediary households

Complete Problem

- Intermediary sector consists of banks, REO firms, and households
- Intermediary households receive endowment income and hold equity of banks and REO firms
- **Banks** maximize SHV, pay dividends to intermediary households
- Limited liability and deposit insurance s.t. capital requirement
- ▶ REO firms maximize SHV, pay dividends to intermediary households
 - Buy foreclosed houses from banks
 - Maintain REO housing stock ($\nu^{REO} > \nu$)
 - Rent current REO stock to borrowers
 - Slowly sell REO properties back to borrowers

[•] Complete Problem

Depositors and Government

Depositors:

- More patient than borrowers and intermediaries
- Only invest in deposits

Government:

- Discretionary spending from income tax net of mortgage deduction
- Funds fraction τ_L of deposit shortfall of failing banks through lump-sum taxation, the remainder by issuing debt

$$q_t^f B_{t+1}^G = (1 - \tau_L) \left(B_t^G + \text{bailout}_t \right)$$

- ▶ Benchmark case: immediate full taxation ($\tau_L = 1, B_t^G = 0 \forall t$)
- Results robust to partial debt funding with $\tau_L < 1$

Equilibrium

- Given prices and parameters, three households, banks, and REO firms maximize their value functions subject to budget and borrowing constraints
- Markets clear
 - New mortgages (→ mortgage rate)
 - Secondary mortgage market (\rightarrow mortgage bond price)
 - Housing purchases (\rightarrow house price)
 - REO purchases (\rightarrow REO house price)
 - Housing services (\rightarrow rental rate)
 - Deposits and government debt (\rightarrow riskfree rate)
- Resource constraint

$$Y_t = CONS_t + GOV_t + \underbrace{\nu^K p_t(\bar{K} - K_t^{REO})}_{\text{regular basis a maint}} + \underbrace{\nu^{REO} p_t K_t^{REO}}_{\text{BEO basis a maint}} + \underbrace{DWL_t}_{\text{basis failures}}$$

regular housing maint.

State Variables and Solution Method

Exogenous states

- Persistent aggregate **income** *Y*_t, discretized
- Persistent disp. of idio. housing (**uncertainty**) shock: $\sigma_{\omega,t}$
- Persistent housing (**demand**) shock: ξ_t
- Six endogenous states: housing stock, mortgage principal, mortgage payments, deposits, intermediary wealth, government debt
 - Wealth distribution matters for asset prices due to incomplete markets
 - Intermediary wealth is a key state variable
- Nonlinear global solution method: policy time iteration
 - Risk premia have important implications for welfare results
 - Occasionally binding intermediary constraint
 - Non-linear dynamics when intermediaries are constrained

State Variables and Solution Method

- Exogenous states
 - Persistent aggregate **income** *Y*_t, discretized
 - Persistent disp. of idio. housing (**uncertainty**) shock: $\sigma_{\omega,t}$
 - Persistent housing (**demand**) shock: ξ_t
- Six endogenous states: housing stock, mortgage principal, mortgage payments, deposits, intermediary wealth, government debt
 - Wealth distribution matters for asset prices due to incomplete markets
 - Intermediary wealth is a key state variable
- Nonlinear global solution method: policy time iteration
 - Risk premia have important implications for welfare results
 - Occasionally binding intermediary constraint
 - Non-linear dynamics when intermediaries are constrained

State Variables and Solution Method

- Exogenous states
 - Persistent aggregate **income** *Y*_t, discretized
 - Persistent disp. of idio. housing (**uncertainty**) shock: $\sigma_{\omega,t}$
 - Persistent housing (**demand**) shock: ξ_t
- Six endogenous states: housing stock, mortgage principal, mortgage payments, deposits, intermediary wealth, government debt
 - Wealth distribution matters for asset prices due to incomplete markets
 - Intermediary wealth is a key state variable
- Nonlinear global solution method: policy time iteration
 - Risk premia have important implications for welfare results
 - Occasionally binding intermediary constraint
 - Non-linear dynamics when intermediaries are constrained

Quarterly calibration targeting sample 1991.Q1 - 2016.Q1

- 1. Demographics (pop., income) from 1998 SCF
 - "Borrower" is mortgagor with LTV $\geq 30\%$ (hold 89% of debt).
 - Intermediary income based on FIRE sector.
- 2. Exogenous shocks
- 3. Mortgage debt: realistic calibration of prepayment and credit risk
- 4. Banks: match average FDIC bank failure rate, receivership costs
- 5. Preferences: EZ utility with EIS 1

▶ All parameters

- Quarterly calibration targeting sample 1991.Q1 2016.Q1
 - 1. Demographics (pop., income) from 1998 SCF
 - 2. Exogenous shocks
 - Income: AR(1), match detrended labor income persistence, vol.
 - **Uncertainty**: two regimes, transition probs match fraction of time in foreclosure crisis, vols to match conditional default rates.
 - Housing demand: same two regimes, match average expenditure share, house price vol.
 - 3. Mortgage debt: realistic calibration of prepayment and credit risk
 - 4. Banks: match average FDIC bank failure rate, receivership costs
 - 5. Preferences: EZ utility with EIS 1

► All parameters

Quarterly calibration targeting sample 1991.Q1 - 2016.Q1

- 1. Demographics (pop., income) from 1998 SCF
- 2. Exogenous shocks
- 3. Mortgage debt: realistic calibration of prepayment and credit risk
 - Choose renewal cost parameters following Greenwald (2018)
 - Max LTV at origination 85%
 - REO maint. v^{REO} to match loss given default on mortgages of 40%
- 4. Banks: match average FDIC bank failure rate, receivership costs
- 5. Preferences: EZ utility with EIS 1
- ▶ All parameters

Quarterly calibration targeting sample 1991.Q1 - 2016.Q1

- 1. Demographics (pop., income) from 1998 SCF
- 2. Exogenous shocks
- 3. Mortgage debt: realistic calibration of prepayment and credit risk
- 4. Banks: match average FDIC bank failure rate, receivership costs
- 5. Preferences: EZ utility with EIS 1

All parameters

- Quarterly calibration targeting sample 1991.Q1 2016.Q1
 - 1. Demographics (pop., income) from 1998 SCF
 - 2. Exogenous shocks
 - 3. Mortgage debt: realistic calibration of prepayment and credit risk
 - 4. Banks: match average FDIC bank failure rate, receivership costs
 - 5. Preferences: EZ utility with EIS 1
 - $\beta_B = \beta_I = 0.95$: match borrower VTI
 - $\beta_S = 0.998$: mean r^f of 3% (ann.)
 - $\gamma = 5$: standard value
- ▶ All parameters

Financial Recession Experiment

Two sources of house price risk for lenders

- 1. Fall in aggregate house price p_t
- 2. Increase in cross-sectional dispersion ("uncertainty") $\sigma_{\omega,t}$

Financial Recession Experiment

- Two sources of house price risk for lenders
 - 1. Fall in aggregate house price p_t
 - 2. Increase in cross-sectional dispersion ("uncertainty") $\sigma_{\omega,t}$

Financial Recession Experiment

- Two sources of house price risk for lenders
 - 1. Fall in aggregate house price p_t
 - 2. Increase in cross-sectional dispersion ("uncertainty") $\sigma_{\omega,t}$

Financial Recession: Allocations

• Consumption shifts from $B, I \rightarrow D$ as financial sector contracts.

Financial Recession: Prices and Defaults

- Drop in house prices and short rate, spreads + defaults up.
- Sharp reduction in bank equity and spike in bank failures

Greenwald, Landvoigt, Van Nieuwerburgh

Financial Fragility with SAM?

Aggregate Indexation: Financial Fragility

- Comparison: baseline vs. full aggregate indexation $(\zeta_p = p'/p)$
- Foreclosures \downarrow (indiscriminate debt relief), bank failures $\uparrow\uparrow$.

Financial Fragility: Mechanism

- Capital requirements: bank losses \implies credit contraction.
- Feedback: larger losses \implies higher rates \implies lower house prices.
- Traditional mortgage: no forced delevering \implies much less feedback.

22/2

Aggregate Indexation: Financial Fragility

- Immediate financing of bailouts \implies sharp consumption drops.
- ▶ Would tax smoothing help? No! Gov't debt crowds out deposits.

Local Indexation: Financial Stability

- Comparison: baseline vs. full local indexation ($\zeta_{\omega} = \omega'_L / \omega_L$)
- Local share of variance (α): 25%.

Greenwald, Landvoigt, Van Nieuwerburgh

Financial Fragility with SAM?

Local Indexation: Financial Stability

- ► Foreclosures ↓↓ (targeted debt relief)
- ▶ Bank failures $\downarrow \downarrow$, financial fragility reduced

Greenwald, Landvoigt, Van Nieuwerburgh

Financial Fragility with SAM?

Regional model: indexation at aggregate and local levels.

	No Index	Aggregate	Local Only	Regional
Mortgage default rate	0.95%	0.92%	0.49%	0.47%
Bank equity ratio	7.09%	7.33%	7.13%	7.25%
Fraction leverage constr. binds	99.35%	90.16%	99.90%	90.92%
Bank failure rate	0.33%	0.84%	0.22%	0.50%
Mortgage rate	1.46%	1.54%	1.30%	1.35%
Credit spread	0.75%	0.87%	0.56%	0.60%
Mortgage excess return	0.34%	0.49%	0.35%	0.40%
House price	8.842	8.595	9.042	8.784
Mortgage debt	259.59%	252.53%	274.88%	267.74%
Deposits	2.454	2.381	2.599	2.526

Defaults: no indexation > agg. indexation >> local indexation.

	No Index	Aggregate	Local Only	Regional
Mortgage default rate	0.95%	0.92%	0.49%	0.47%
Bank equity ratio	7.09%	7.33%	7.13%	7.25%
Fraction leverage constr. binds	99.35%	90.16%	99.90%	90.92%
Bank failure rate	0.33%	0.84%	0.22%	0.50%
Mortgage rate	1.46%	1.54%	1.30%	1.35%
Credit spread	0.75%	0.87%	0.56%	0.60%
Mortgage excess return	0.34%	0.49%	0.35%	0.40%
House price	8.842	8.595	9.042	8.784
Mortgage debt	259.59%	252.53%	274.88%	267.74%
Deposits	2.454	2.381	2.599	2.526

Agg. indexation: extra capital insufficient against higher risk.

	No Index	Aggregate	Local Only	Regional
Mortgage default rate	0.95%	0.92%	0.49%	0.47%
Bank equity ratio	7.09%	7.33%	7.13%	7.25%
Fraction leverage constr. binds	99.35%	90.16%	99.90%	90.92%
Bank failure rate	0.33%	0.84%	0.22%	0.50%
Mortgage rate	1.46%	1.54%	1.30%	1.35%
Credit spread	0.75%	0.87%	0.56%	0.60%
Mortgage excess return	0.34%	0.49%	0.35%	0.40%
House price	8.842	8.595	9.042	8.784
Mortgage debt	259.59%	252.53%	274.88%	267.74%
Deposits	2.454	2.381	2.599	2.526

• Higher financial fragility \implies higher spreads, profits.

	No Index	Aggregate	Local Only	Regional
Mortgage default rate	0.95%	0.92%	0.49%	0.47%
Bank equity ratio	7.09%	7.33%	7.13%	7.25%
Fraction leverage constr. binds	99.35%	90.16%	99.90%	90.92%
Bank failure rate	0.33%	0.84%	0.22%	0.50%
Mortgage rate	1.46%	1.54%	1.30%	1.35%
Credit spread	0.75%	0.87%	0.56%	0.60%
Mortgage excess return	0.34%	0.49%	0.35%	0.40%
House price	8.842	8.595	9.042	8.784
Mortgage debt	259.59%	252.53%	274.88%	267.74%
Deposits	2.454	2.381	2.599	2.526

• Lower risk/rates \implies higher house prices \implies debt, deposits \uparrow .

	No Index	Aggregate	Local Only	Regional
Mortgage default rate	0.95%	0.92%	0.49%	0.47%
Bank equity ratio	7.09%	7.33%	7.13%	7.25%
Fraction leverage constr. binds	99.35%	90.16%	99.90%	90.92%
Bank failure rate	0.33%	0.84%	0.22%	0.50%
Mortgage rate	1.46%	1.54%	1.30%	1.35%
Credit spread	0.75%	0.87%	0.56%	0.60%
Mortgage excess return	0.34%	0.49%	0.35%	0.40%
House price	8.842	8.595	9.042	8.784
Mortgage debt	259.59%	252.53%	274.88%	267.74%
Deposits	2.454	2.381	2.599	2.526

Agg. indexation: borrowers lose, intermediaries gain!

	No Index	Aggregate	Local Only	Regional
Value function, B	0.379	-0.57%	+0.43%	+0.27%
Value function, D	0.374	-0.07%	+0.07%	+0.47%
Value function, I	0.068	+5.66%	-2.11%	-0.21%
Consumption, B	0.359	-0.3%	+0.3%	+0.1%
Consumption, D	0.372	-0.6%	+0.1%	+0.3%
Consumption, I	0.068	+6.1%	-2.9%	-0.4%
Consumption gr vol, B	0.42%	+351.3%	+15.9%	+189.0%
Consumption gr vol, D	1.11%	-10.4%	-26.5%	-15.4%
Consumption gr vol, I	4.47%	+392.9%	-54.1%	+282.5%
Wealth gr vol, I	0.035	+1366.8%	-1.8%	+679.3%
log (MU B / MU D) vol	0.025	-4.6%	-10.4%	-21.5%
log (MU B / MU I) vol	0.061	+145.7%	-36.8%	+101.8%

• Higher spreads, bailouts \implies higher intermediary consumption.

	No Index	Aggregate	Local Only	Regional
Value function, B	0.379	-0.57%	+0.43%	+0.27%
Value function, D	0.374	-0.07%	+0.07%	+0.47%
Value function, I	0.068	+5.66%	-2.11%	-0.21%
Consumption, B	0.359	-0.3%	+0.3%	+0.1%
Consumption, D	0.372	-0.6%	+0.1%	+0.3%
Consumption, I	0.068	+6.1%	-2.9%	-0.4%
Consumption gr vol, B	0.42%	+351.3%	+15.9%	+189.0%
Consumption gr vol, D	1.11%	-10.4%	-26.5%	-15.4%
Consumption gr vol, I	4.47%	+392.9%	-54.1%	+282.5%
Wealth gr vol, I	0.035	+1366.8%	-1.8%	+679.3%
log (MU B / MU D) vol	0.025	-4.6%	-10.4%	-21.5%
log (MU B / MU I) vol	0.061	+145.7%	-36.8%	+101.8%

▶ Agg. indexation sharply increases consumption vol for *B*, *I*.

	No Index	Aggregate	Local Only	Regional
Value function, B	0.379	-0.57%	+0.43%	+0.27%
Value function, D	0.374	-0.07%	+0.07%	+0.47%
Value function, I	0.068	+5.66%	-2.11%	-0.21%
Consumption, B	0.359	-0.3%	+0.3%	+0.1%
Consumption, D	0.372	-0.6%	+0.1%	+0.3%
Consumption, I	0.068	+6.1%	-2.9%	-0.4%
Consumption gr vol, B	0.42%	+351.3%	+15.9%	+189.0%
Consumption gr vol, D	1.11%	-10.4%	-26.5%	-15.4%
Consumption gr vol, I	4.47%	+392.9%	-54.1%	+282.5%
Wealth gr vol, I	0.035	+1366.8%	-1.8%	+679.3%
log (MU B / MU D) vol	0.025	-4.6%	-10.4%	-21.5%
log (MU B / MU I) vol	0.061	+145.7%	-36.8%	+101.8%

Improved risk sharing under local indexation.

	No Index	Aggregate	Local Only	Regional
Value function, B	0.379	-0.57%	+0.43%	+0.27%
Value function, D	0.374	-0.07%	+0.07%	+0.47%
Value function, I	0.068	+5.66%	-2.11%	-0.21%
Consumption, B	0.359	-0.3%	+0.3%	+0.1%
Consumption, D	0.372	-0.6%	+0.1%	+0.3%
Consumption, I	0.068	+6.1%	-2.9%	-0.4%
Consumption gr vol, B	0.42%	+351.3%	+15.9%	+189.0%
Consumption gr vol, D	1.11%	-10.4%	-26.5%	-15.4%
Consumption gr vol, I	4.47%	+392.9%	-54.1%	+282.5%
Wealth gr vol, I	0.035	+1366.8%	-1.8%	+679.3%
log (MU B / MU D) vol	0.025	-4.6%	-10.4%	-21.5%
log (MU B / MU I) vol	0.061	+145.7%	-36.8%	+101.8%

Comparison: Alternative Contracts

 Indexation of interest only ("IO"): effects much weaker since only last until next renewal.

	No Index	Regional	Reg. IO	Reg. Asym.
Deposits	2.454	2.526	2.484	2.196
House Price	8.842	8.784	8.806	8.488
Mortgage Debt	259.59%	267.74%	261.60%	231.85%
Mortgage Rate	1.46%	1.35%	1.41%	2.37%
Refi Rate	3.84%	3.74%	3.84%	4.42%
Default Rate	0.95%	0.47%	0.80%	0.12%
Bank Failure Rate	0.33%	0.50%	0.30%	0.94%
Value Function, B	0.379	+0.27%	+0.30%	+1.85%
Value Function, D	0.374	+0.47%	+0.25%	+0.07%
Value Function, I	0.068	-0.21%	-0.61%	-1.91%

Comparison: Alternative Contracts

Asymmetric indexation where payments can only fall ("Asym"): increases financial fragility, shrinks mortgage balances

	No Index	Regional	Reg. IO	Reg. Asym.
Deposits	2.454	2.526	2.484	2.196
House Price	8.842	8.784	8.806	8.488
Mortgage Debt	259.59%	267.74%	261.60%	231.85%
Mortgage Rate	1.46%	1.35%	1.41%	2.37%
Refi Rate	3.84%	3.74%	3.84%	4.42%
Default Rate	0.95%	0.47%	0.80%	0.12%
Bank Failure Rate	0.33%	0.50%	0.30%	0.94%
Value Function, B	0.379	+0.27%	+0.30%	+1.85%
Value Function, D	0.374	+0.47%	+0.25%	+0.07%
Value Function, I	0.068	-0.21%	-0.61%	-1.91%

Comparison: Alternative Contracts

Eliminates most foreclosures, but does so by shrinking leverage, not improving insurance => banks dislike.

	No Index	Regional	Reg. IO	Reg. Asym.
Deposits	2.454	2.526	2.484	2.196
House Price	8.842	8.784	8.806	8.488
Mortgage Debt	259.59%	267.74%	261.60%	231.85%
Mortgage Rate	1.46%	1.35%	1.41%	2.37%
Refi Rate	3.84%	3.74%	3.84%	4.42%
Default Rate	0.95%	0.47%	0.80%	0.12%
Bank Failure Rate	0.33%	0.50%	0.30%	0.94%
Value Function, B	0.379	+0.27%	+0.30%	+1.85%
Value Function, D	0.374	+0.47%	+0.25%	+0.07%
Value Function, I	0.068	-0.21%	-0.61%	-1.91%

Conclusion

- General equilibrium model of intermediated mortgage market allowing for indexed mortgage contracts.
- Effect depends on type of indexation:
 - Aggregate indexation: amplifies intermediary sector instability.
 - Local indexation: dampens intermediary sector instability.
- Costs of indexation partly born by taxpayer
- Nature of indexation matters for macro implications
 - Indexing principal more effective than interest.
 - Asymmetric indexation has potent effects, but largely through leverage.
 - Misalignment between bank, social incentives may be major obstacle.

Strategic vs. Liquidity Defaults

- Liquidity shocks only turn into defaults when borrower is underwater (double trigger).
- Reducing principal burden may be most effective way to prevent liquidity defaults.
- Extension including liquidity defaults yields very similar results.

Interest vs. Principal Indexation

 Comparison: regional indexation vs. regional interest-only indexation vs. regional principal-only indexation.

Asymmetric Indexation

Asymmetric indexation: cap upward indexation at 20% for each component.

Transition Comparison: Asymmetric Contracts

Black: response on impact. Blue: steady state response.

	No Index	Regional	Reg. Asym.	Reg. Asym. IO
Welfare	0.821	+0.61% (+0.32%)	+0.90% (+0.73%)	+0.28% (+0.25%)
V^B	0.379	+0.68% (+0.27%)	+1.76% (+1.85%)	+0.36% (+0.53%)
V^D	0.374	+0.54% (+0.47%)	+0.11% (+0.07%)	+0.47% (+0.37%)
V^{I}	0.068	+0.53% (-0.21%)	+0.51% (-1.91%)	-1.25% (-2.02%)
C^B	0.359	+0.50% (+0.08%)	-1.00% (+1.92%)	-0.18% (+0.51%)
C^D	0.372	+0.82% (+0.26%)	+0.47% (+0.05%)	+2.42% (+0.44%)
C^{I}	0.068	+4.63% (-0.40%)	+18.26% (-1.65%)	+0.35% (-2.88%)
Deposits	2.454	+5.98% (+2.90%)	-8.34% (-10.52%)	+3.79% (-3.31%)
р	8.842	+2.30% (-0.66%)	-2.11% (-4.01%)	+0.73% (-2.03%)
M^B	2.596	+4.76% (+3.14%)	+4.76% (-10.69%)	+4.76% (+0.25%)
<i>r</i> *	1.46%	-0.04pp (- <mark>0.11pp</mark>)	+0.80pp (+0.91pp)	+0.06pp (+0.09pp)
Refi Rate	3.84%	-0.00pp (-0.09pp)	-0.82pp (+0.59pp)	-0.15pp (-0.27pp)
Loss Rate	0.40%	-0.33pp (-0.20pp)	+0.42pp (+0.51pp)	-0.11pp (-0.05pp)
Failures	0.33%	-0.24pp (+0.16pp)	-0.29pp (+0.60pp)	-0.20pp (+0.01pp)

Greenwald, Landvoigt, Van Nieuwerburgh

Financial Fragility with SAM

Transition Comparison: Interest vs. Principal

Black: response on impact. Blue: steady state response.

	No Index	Regional	Regional IO	Regional PO
Welfare	0.821	+0.61% (+0.32%)	+0.36% (+0.20%)	+0.51% (+0.18%)
V^B	0.379	+0.68% (+0.27%)	+0.61% (+0.30%)	+0.83% (+0.33%)
V^D	0.374	+0.54% (+0.47%)	+0.34% (+0.25%)	+0.28% (+0.21%)
V^{I}	0.068	+0.53% (-0.21%)	-0.95% (-0.61%)	-0.03% (-0.75%)
C^B	0.359	+0.50% (+0.08%)	+0.78% (+0.11%)	+1.11% (+0.29%)
C^D	0.372	+0.82% (+0.26%)	+1.49% (+0.28%)	+0.32% (+0.17%)
C^{I}	0.068	+4.63% (-0.40%)	-1.09% (-1.07%)	+3.00% (-1.65%)
Deposits	2.454	+5.98% (+2.90%)	+5.84% (+1.20%)	+6.52% (+4.02%)
р	8.842	+2.30% (-0.66%)	+2.58% (-0.40%)	+3.55% (+0.66%)
M^B	2.596	+4.76% (+3.14%)	+4.76% (+0.77%)	+4.76% (+4.32%)
<i>r</i> *	1.46%	-0.04pp (- <mark>0.11pp</mark>)	-0.05pp (<mark>-0.05pp</mark>)	-0.07pp (<mark>-0.14pp</mark>)
Refi Rate	3.84%	-0.00pp (-0.09pp)	+0.07pp (+0.01pp)	+0.10pp (-0.08pp)
Loss Rate	0.40%	-0.33pp (-0.20pp)	-0.24pp (-0.08pp)	-0.33pp (-0.20pp)
Failures	0.33%	-0.24pp (+0.16pp)	-0.19pp (-0.03pp)	-0.21pp (-0.02pp)

Greenwald, Landvoigt, Van Nieuwerburgh

Financial Fragility with SAM

Borrower Complete Problem • Back

$$\max_{C_t^B, H_t^B, M_t^*, K_t^*, Z_{D,t}, Z_{R,t}} \quad V^B(K_t^B, A_t^B, M_t^B)$$

subject to

$$C_{t}^{B} = \underbrace{(1 - \tau_{t})Y_{t}^{B}}_{\text{income}} + \underbrace{Z_{R,t}\left((1 - Z_{D,t})M_{t}^{*} - \delta Z_{M,t}M_{t}^{B}\right)}_{\text{net new borrowing}} - \underbrace{(1 - \delta)Z_{M,t}M_{t}^{B}}_{\text{principal payment}} - \underbrace{(1 - \delta)Z_{M,t}M_{t}^{B}}_{\text{interest payment}} - \underbrace{p_{t}\left[Z_{R,t}(1 - Z_{D,t})K_{t}^{*} + \left(\nu^{K} - Z_{R,t}\right)Z_{K,t}K_{t}^{B}\right]}_{\text{owned housing}} - \underbrace{\rho_{t}\left(H_{t}^{B} - K_{t}^{B}\right)}_{\text{rental housing}} - \underbrace{\left(\Psi(Z_{R,t}) - \overline{\Psi}_{t}\right)(1 - Z_{D,t})M_{t}^{*}}_{\text{net transaction costs}} - \underbrace{T_{t}^{B}}_{\text{lump-sum taxes}}$$

and

$$\begin{split} M^B_{t+1} &= \bar{\pi}^{-1} \zeta_{p,t+1} \Big[Z_{R,t} (1 - Z_{D,t}) M^*_t + \delta (1 - Z_{R,t}) Z_{M,t} M^B_t \Big] \\ A^B_{t+1} &= \bar{\pi}^{-1} \zeta_{p,t+1} \Big[Z_{R,t} (1 - Z_{D,t}) r^*_t M^*_t + \delta (1 - Z_{R,t}) Z_{M,t} A^B_t \Big] \\ K^B_{t+1} &= Z_{R,t} (1 - Z_{D,t}) K^*_t + (1 - Z_{R,t}) Z_{K,t} K^B_t \\ M^*_t &\leq \phi^K p_t K^*_t \end{split}$$

Bank Complete Problem • Back

$$\begin{split} V^{I}(W^{I}_{t},\mathcal{S}^{I}_{t}) = & \max_{L^{*}_{t},\tilde{\mathcal{M}}^{I}_{t},\tilde{\mathcal{A}}^{I}_{t},\mathcal{B}^{I}_{t+1}} W^{I}_{t} - J^{I}_{t} \\ &+ \mathrm{E}_{t} \left[\Lambda^{I}_{t,t+1} F^{I}_{\epsilon} \left(V^{I}(W^{I}_{t+1},\mathcal{S}^{I}_{t+1}) \right) \left(V^{I}(W^{I}_{t+1},\mathcal{S}^{I}_{t+1}) - \epsilon^{I,-}_{t+1} \right) \right] \end{split}$$

subject to

$$\begin{split} B_{t+1}^{I} &\leq \phi^{I} \left(q_{t}^{A} \tilde{A}_{t}^{I} + q_{t}^{M} \tilde{M}_{t}^{I} \right) \\ J_{t}^{I} &= \underbrace{(1 - r_{t}^{*} q_{t}^{A} - q_{t}^{M}) L_{t}^{*}}_{\text{net new debt}} + \underbrace{q_{t}^{A} \tilde{A}_{t}^{I}}_{\text{IO strips}} + \underbrace{q_{t}^{M} \tilde{M}_{t}^{I}}_{\text{PO strips}} - \underbrace{q_{t}^{f} B_{t+1}^{I}}_{\text{new deposits}} \\ W_{t+1}^{I} &= \underbrace{\left[X_{t+1} + Z_{A,t+1} \left((1 - \delta) + \delta Z_{R,t+1} \right) \right] M_{t+1}^{I} + Z_{A,t+1} A_{t+1}^{I}}_{\text{payments on existing debt}} \\ &+ \underbrace{\delta(1 - Z_{R,t+1}) Z_{A,t+1} \left(q_{t+1}^{A} A_{t+1}^{I} + q_{t+1}^{M} M_{t+1}^{I} \right)}_{\text{sales of IO and PO strips}} - \underbrace{\pi_{t+1}^{-1} B_{t+1}^{I}}_{\text{deposit redemptions}} \end{split}$$
where $X_{t} = \frac{(1 - Z_{K,t}) K_{t}^{B} (p_{t}^{REO} - \nu^{REO} p_{t})}{M_{t}^{B}}$

Calibration: All Parameters • Back

Parameter	Name	Value	Target/Source
Agg. income persistence	ρ_{TFP}	0.977	Real per capita labor income BEA
Agg. income st. dev.	σ_{TFP}	0.008	Real per capita labor income BEA
Housing st. dev. (Normal)	$\bar{\sigma}_{\omega,L}$	0.200	Mortg. delinq. rate US banks, no crisis
Housing st. dev. (Crisis)	$\bar{\sigma}_{\omega,H}$	0.250	Mortg. delinq. rate US banks, crisis
Profit shock st. dev.	σ_{ϵ}	0.070	FDIC bank failure rate
Fraction of borrowers	χ_B	0.343	SCF 1998 population share LTV>.30
Fraction of intermediaries	χ_I	0.020	Stock market cap. share of finance sector
Borr. inc. and housing share	s_B	0.470	SCF 1998 income share LTV>.30
Intermediary inc. and housing share	s_I	0.067	Employment share in finance
Tax rate	τ	0.147	Personal tax rate BEA
Housing stock	Ē	1	Normalization
Inflation rate	$\bar{\pi}$	1.006	2.29% CPI inflation
Mortgage duration	δ	0.996	Duration of 30-yr FRM
Prepayment cost mean	μ_{κ}	0.370	Greenwald (2018)
Prepayment cost scale	S_K	0.152	Greenwald (2018)
LTV limit	ϕ^{K}	0.850	LTV at origination
Maint. cost (owner)	ν^{K}	0.006	BEA Fixed Asset Tables
Bank regulatory capital limit	ϕ^{I}	0.940	Financial sector leverage
Deadweight cost of bank failures	ζ	0.085	Bank receivership expense rate
Maint. cost (REO)	v^{REO}	0.024	REO discount: $p_{ss}^{REO}/p_{ss} = 0.725$
REO sale rate	S^{REO}	0.167	Length of foreclosure crisis
Borr. discount factor	β_B	0.950	Borrower debt/value, SCF
Intermediary discount factor	β_I	0.950	Equal to β_B
Depositor discount factor	β_D	0.998	2% real rate
Risk aversion	γ	5.000	Standard value
EIS	ψ	1.000	Standard value
Housing preference	ξ	0.220	Borrower value/income, SCF