Discussion of Stavrakeva and Tang, "The Dollar During the Great Recession: US Monetary Policy Signaling and the Flight to Safety"

Eric T. Swanson University of California, Irvine

CEBRA IFM Conference Sveriges Riksbank (online) October 1, 2020

Summary of Paper

- Empirical fact: puzzling exchange rate behavior from 2008:Q4 2012:Q2
- Signaling ("Fed Information Effect") model explains the empirical puzzle

Preview of My Comments:

- Question the empirical fact:
 - Only present in low-frequency regressions
 - "Great Recession" sample is somewhat arbitrary
- Provide an alternate explanation:
 - "Fed Response to News" channel (Bauer and Swanson, 2020)

Comment #1: Empirical Fact Only Present at Low Frequency

S-T regression specification is for *quarterly* exchange rate changes:

 $\Delta s_{t+1} = \alpha_n^s + \beta_n^{\Delta s_{t+1}} \Delta \tilde{f}_{t+1}^n + error_{t+1},$

results:

Figure 1: Panel Response of Exchange Rate Changes to US Monetary Policy Surprises for All Currencies (2SLS)

Comment #1: Empirical Fact Only Present at Low Frequency

High-frequency regression results from Swanson (2020):

TABLE 5: ESTIMATED EFFECTS OF CHANGES IN THE FEDERAL FUNDS RATE, FORWARD GUIDANCE, AND LSAPS ON STOCK PRICES AND EXCHANGE RATES

	S&P500	$^{\rm ouro}$	\$/yen	
(B) pre-ZLB sample, Jul. 1991–Dec. 2008 (157 observations)				
change in federal funds rate	-0.39***	-0.11***	-0.14^{***}	
(std. err. $)$	(.042)	(.038)	(.039)	
[t-stat.]	[-9.29]	[-2.95]	[-3.58]	
change in forward guidance	-0.09^{**}	-0.15^{***}	-0.13^{***}	
(std. err. $)$	(.044)	(.052)	(.047)	
[<i>t</i> -stat.]	[-2.13]	[-2.92]	[-2.68]	
(C) ZLB sample, Jan. 2009–Nov. 2015 (55 o	bservations)			
change in forward guidance	-0.25^{**}	-0.36^{***}	-0.24^{***}	
(std. err.)	(.101)	(.103)	(.075)	
[t-stat.]	[-2.50]	[-3.45]	[-3.18]	
change in LSAPs	0.10	0.19^{***}	0.28^{***}	
(std. err.)	(.080)	(.065)	(.071)	
[t-stat.]	[1.27]	[2.96]	[3.87]	
(D) post-ZLB sample, Dec. 2015–Jun. 2019	(29 observations)			
change in federal funds rate	-0.37	-0.46^{**}	-0.33^{**}	
(std. err.)	(.261)	(.197)	(.154)	
[t-stat.]	[-1.41]	[-2.35]	[-2.12]	
change in forward guidance	-0.15^{**}	-0.39^{***}	-0.40^{***}	
(std. err.)	(.071)	(.107)	(.109)	
[t-stat.]	[-2.13]	[-3.61]	[-3.67]	
change in LSAPs	-0.19	0.08	0.34^{***}	
(std. err.)	(.185)	(.138)	(.124)	
[t-stat.]	[-1.04]	[0.56]	[2.78]	

Comment #1: Empirical Fact Only Present at Low Frequency *High-frequency* scatter plot for FOMC announcements, 2008Q4 – 2012Q2:

Effect of Forward Guidance on \$/euro Exchange Rate

Comment #2: "Great Recession" Sample Is Somewhat Arbitrary

In Stavrakeva-Tang, "Great Recession" sample is 2008:Q4 – 2012:Q2

• Chosen to maximize fit (e.g., Bai-Perron, 1998)

But:

- NBER: Dec. 2007 June 2009
- ZLB period: Jan. 2009 Nov. 2015

S-T sample choice is not necessarily wrong, but keep in mind:

- the sample maximizes the empirical puzzle, by construction
- the empirical puzzle does not exist in high-frequency data

Instead of a "Fed Information Effect",

Bauer-Swanson (2020) present evidence of "Fed Response to News" channel

Figure 2: Illustration of the "Fed Response to News" Channel

Fed sets interest rates according to policy rule:

 $i_t = f(X_t) + \varepsilon_t,$

If financial markets don't know Fed's policy rule f, then economic news will be correlated with interest rate surprises, *even high-frequency surprises*

High-frequency monetary policy surprises can be due to:

- monetary policy shock $\boldsymbol{\epsilon}$
- information about X
- information about f

In fact, economic news predicts high-frequency monetary policy surprises:

Monetary policy	Economic news measure:			
surprise measure	(1) Nonfarm payrolls	(2) BBK index	(3) $\Delta \log S\&P500$	
A) Replication sample: 1/199	90–6/2007 for Campbel	l et al., 1/1995–3/20	014 for NS $(N = 129, 12)$	
fed funds target factor	$.158^{***}$ (.050)	$.033^{***}$ $(.011)$.179 (.128)	
fwd guidance path factor	.032 (.038)	$.017^{**}$ (.0085)	$.235^{***}$ (.088)	
NS MP surprise	.041* (.022)	$.013^{**}$ (.0059)	$.096^{*}$ (.051)	
B) Full sample: 1/1990–6/20	19, including unschedu	led announcements	(N = 217)	
fed funds target factor	$.095^{***}$ $(.035)$	$.017^{**}$ (.0067)	$.217^{***}$ (.084)	
fwd guidance path factor	.024 (.024)	$.013^{***}$ (.0046)	$.187^{***}$ (.058)	
NS MP surprise	.058*** (.020)	$.014^{***}$ (.0039)	$.188^{***}$ $(.048)$	
C) Full sample: 1/1990–6/20	19, excluding unschedu	led announcements	(N = 206)	
fed funds target factor	.045** (.020)	$.007^{*}$ (.0039)	$.065 \\ (.051)$	
fwd guidance path factor	.027 (.024)	$.017^{***}$ (.0045)	$.254^{***}$ (.057)	
NS MP surprise	$.035^{**}$	$.011^{***}$	$.148^{***}$	

Table 3: Economic News Predicts High-Frequency Monetary Policy Surprises

source: Bauer-Swanson (2020), but see also Miranda-Agrippino (2017), Cieslak (2018), Miranda-Agrippino-Ricco (2020), Karnaukh (2019).

Economic news predicts high-frequency monetary policy surprises:

- Then IV approach in Stavrakeva-Tang is invalid:
 - instruments are correlated with economic news each quarter
 - economic news causes *both* the monetary policy surprise and exchange rate change
- Miranda-Agrippino-Ricco (2020): economic data needs to be projected out of high-frequency monetary policy surprises

- See Bauer-Swanson (2020) for extensive evidence against Fed Information Effect and in favor of Fed Response to News channel:
 - Including omitted economic news in standard Fed Information Effect regressions drives out the Fed Information Effect
 - Direct survey of Blue Chip forecasters contradicts Fed Information Effect
 - High-frequency stock market responses to FOMC announcements are strongly negative
 - Blue Chip and Fed Greenbook forecasts of economy are very similar
 - Extensive discussion and a model of Fed Response to News channel

Figure 1: Panel Response of Exchange Rate Changes to US Monetary Policy Surprises for All Currencies (2SLS)

Fed Response to News explanation:

- A *lot* of economic news in 2008:Q4 2012:Q2
- Fed and exchange rates both responded strongly to that news

Figure 2: Pair-Specific Response of Exchange Rate Changes to US Monetary Policy Surprises versus Hedging Properties of the Dollar (2SLS)

Fed Response to News explanation:

Economic news in U.S. has opposite effects on hedging vs. non-hedging currencies

Summary of My Comments

- Question the empirical fact:
 - Only present in low-frequency regressions
 - "Great Recession" sample is somewhat arbitrary
- Provide an alternate explanation:
 - "Fed response to news channel" (Bauer and Swanson, 2020)