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Abstract

I introduce and evaluate a new stochastic simulation method for dynamic economic

models. It is based on recent work in the operations research and engineering literatures (Van

Roy et. al, 1997; Powell, 2007; Bertsekas, 2011). The baseline method involves rewriting

the household’s dynamic program in terms of post-decision states. This makes it possible

to choose controls optimally without computing an expectation. I add a subroutine to the

original algorithm that updates the values of states not visited frequently on the simulation

path; and adopt a stochastic stepsize that efficiently weights information. Finally, I modify

the algorithm to exploit GPU computing.
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1 Introduction

In this paper, I introduce and evaluate a new stochastic simulation method. It is based

on dynamic programming, rather than the parameterization of expectational equations; and

is similar to value function iteration (VFI), but does not require agents to explicitly compute

an expectation over future state values when choosing controls. The baseline method, referred

to as approximate dynamic programming with post decision states (ADP-POST), originates in

the operations research and engineering literatures, and has been shown to substantially reduce

convergence times in high dimensional problems for a given level of accuracy. I use this method

to solve dynamic economic problems, focusing primarily on DSGE model applications. I start

by demonstrating how the algorithm can be modified to yield performance gains over common

global solution methods in representative agent models. I then show how these gains grow when

the approach is modified and used to solve a model with many heterogeneous agents.

The algorithms presented in this paper are built around a post-decision state version of the

Bellman equation, rather than the pre-decision state version. This approach makes it possible to

solve two classes of models that are typically computationally intractable: 1) models with many

continuous state variables; and 2) models with several correlated exogenous processes. However,

the formal tests will focus on the former, since the latter primarily presents a programming–and

not convergence time–challenge.

The baseline method used in this paper was introduced by Van Roy et. al (1997) in a

neuro-dynamic programming application. There, it was used to solve a retail inventory man-

agement problem with 33 state variables. Standard dynamic programming methods, such as

value function iteration (infinite horizon) and backwards recursion (finite horizon) could not

feasibly solve problems with such large state spaces. Even if all of the variables were discretized

into the coarsest possible grid, it would still contain 233 (8.59 billion) nodes. In comparison, the

neuro-dynamic programming algorithm they constructed around post-decision states was not

only solvable, but delivered decision rules that yielded a 10% cost reduction over the standard,

heuristic method.

This technique first entered the economics literature though Judd (1998), which explained

how to construct the post-decision state Bellman equation. However, Judd (1998) did not

exploit this method to explicitly construct solution algorithms. Similarly, Barto and Sutton

(1998) introduced the technique to the reinforcement learning literature, but did so originally

without any substantial applications. Rather, it was used primarily as a strategy for absorbing



the action space into the state space.1

Powell (2007) developed the method introduced by Van Roy et. al (1997) into a set of

solution algorithms for high dimensionality optimization problems. However, all of the algo-

rithms in Powell (2007) were designed for a partial equilibrium context in operations research;

and most focused on inventory management applications. In problems of this variety, an agent

faces random demands for a product and must choose how much inventory to hold. Using

a post-decision state version of the Bellman equation works particularly well for this class of

problems because the post-decision state is simply the inventory carried into the period, less the

realization of demand. Outside of portfolio allocation problems, dynamic programming prob-

lems in economics do not typically take this form, and subsequently will not be able to achieve

computational gains by collapsing the action space into the state space. For this reason, it is

difficult to generalize what has been found in other literatures about the performance of the

baseline algorithm to dynamic economic models.

Within operations research, Powell (2012) provides the most recent survey of work that

has been done using post-decision state dynamic programming algorithms. Papers such as

Maxwell (2011) and Simao et. al (2009) use the post-decision state formulation to solve very

high dimensional problems, such as ambulance deployment and large-scale fleet management.

Papers such as Powell and Ryzhov (2010) extend the initial algorithm by demonstrating how

Bayesian methods can be used to update the value function.

Within economics, techniques such as the Parameterized Expectations Approach (PEA),

developed by Sargent (1987), Marcet (1988), and Den Haan and Marcet (1990); and Projection

Methods (PM), introduced by Judd (1992) and McGrattan (1999), provide more commonly

used strategies for solving optimization problems with large state spaces. More recent work,

such as Maliar and Maliar (2005) and Judd, Maliar, and Maliar (2011), demonstrates how to

improve the stability and speed of such approaches.

In this paper, I use the post-decision state Bellman equation as a starting point for a larger

algorithm that is designed to solve dynamic economic models. The benefit of constructing the

dynamic programming problem around post-decision states is two-fold: first, it makes it possible

to avoid computing expectations explicitly2; and second, it permits agents to make decisions

1In many dynamic programming applications, the endogenous component of the state space is determined

by the realizations of the shock at the start of the period and the controls selected thereafter. In some of these

applications, the dimensionality of the problem can be reduced simply by eliminating the choice of controls; and

instead considering only the result of those choices (i.e. the end-of-period endogenous states).
2In fact, the expectation will be computed implicitly during the smoothing step, which adds no additional

computational time.
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based exclusively on information gained about the value of states visited on the simulation

path, which substantially reduces the dimensionality of the choice problem. In addition to this,

I make several modifications to the original algorithm in this paper to improve performance in

the context of dynamic economic models.

The first modification adds a Search-Then-Converge (STC) subroutine (Darken and Moody,

1992) to update the algorithm’s stepsize. However, instead of using the iteration count to update

the the stepsize, as in the original application, I use the ratio of the the number of times a state

has been visited on the simulation path to the iteration count. Since states in the interior of the

ergodic set are visited many times within an iteration, their step sizes rapidly decline, making

additional visits uninformative; however, states near the edges of the ergodic set will be able

to retain larger state-specific stepsizes, allowing new visits to remain informative. Note that

this modification is particularly important because the stepsize plays a dual role in algorithms

based on post-decision states: it not only fosters convergence, but also implicitly computes the

expectation over future states.

The second modification updates unvisited states and infrequently visited states near the

edges of the ergodic set. This approach first determines a subset of the ergodic set over which

the value function or decision rules are well-behaved. Information contained in this region is

then used to infer properties of the decision rules over the entire state space. I do this by

performing a weighted least squares regression of the decision-rule implied endogenous states

on lagged state variables. I use the relative frequencies with which states were visited in the

simulations as the weights. This captures the fact that infrequently visited regions of the state

space are likely to have noisy state value estimates; and should be assigned lower weights.

Finally, I outline a third modification that can be used with the baseline algorithm. This

modification involves placing structure on how information is shared across agents within the

model; and then exploiting that structure to parallelize the solution algorithm and solve parts

of it on separate GPU cores. Since the modification is not entirely specific to ADP-POST

(and, thus, could be applied to the competing algorithms, such as PEA), I do not incorporate

it into the accuracy tests in this paper. I do, however, discuss one application and some

associated results to demonstrate its effectiveness. Furthermore, I explain how the information-

sharing structure can be imposed in classes of models not tested explicitly in this paper, such

as incomplete markets models with aggregate uncertainty, as in Krusell and Smith (1998).

I find that the modified version of ADP-POST introduced in this paper (hereafter, MADP-

POST) is faster than both VFI and PM for a given level of accuracy. In some applications

in this paper, for instance, VFI’s run time is more than 600 times that of MADP-POST’s.
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Furthermore, as measured by static and dynamic Euler equation residuals, the modified version

of ADP-POST’s accuracy is generally of the same order of magnitude as VFI and PM. The only

algorithm that outperforms MADP-POST in some of this paper’s tests is PEA. However, unlike

MADP-POST, PEA is difficult to parameterize in sophisticated applications; and is prone to

instability in complex models (Judd, Maliar, and Maliar, 2011). Additionally, as is shown in

a heterogeneous agents model application, the case for MADP-POST improves further when it

is combined with the information sharing algorithm discussed above and GPU-computing. In

particular, the modified algorithm (MADP-IS-GPU) converges faster on a grid of 200,000 nodes

than either VFI, PEA, PM, or ADP-POST converges on a grid of 10,000 nodes. Furthermore,

it does so while remaining highly accurate and stable.

The paper will proceed as follows. In Section 2, I will describe the ADP-POST algorithm

and all relevant modifications made for this paper. In Section 3, I will provide brief overviews of

value function iteration (VFI), the parameterized expectations approach (PEA), and projection

methods (PM)–the three categories of solution method I will use for comparison. In Section 4,

I will explain how the accuracy of the different solution methods will be tested. In Section 5,

I will present benchmark models that will be solved using the aforementioned algorithms and

also discuss the results. And finally, in Section 6, I will conclude.

2 The Algorithm

2.1 The Pre-Decision State Bellman Equation

I will start by describing the formulation of the Bellman Equation with pre-decision state vari-

ables; and will then move on to the approach for post-decision state variables. This construction

of the Bellman Equation will focus on an infinitely-lived agent who faces a deterministic choice

problem, which requires her to choose a set of controls, ct. A set of states, st, summarizes all

information needed to make a choice at time t. Combined with ct, st pins down the future state

according to a transition function: st+1 = T (ct, st). Finally, a set of constraints, ct ∈ Γ(st),

limits the choice of controls. After applying the Principle of Optimality as described in Bellman

(1954), the value of being in the initial state can be written as follows:

V (s0) = max{ct}∞t=0

∞∑
t=0

βtu(ct)

s.t. st+1 = T (ct, st), ct ∈ Γ(st), ∀t = 0, 1, ...

(1)

That is, the value of being in the initial, pre-decision state (i.e. before controls are selected) is

the maximum, discounted lifetime utility that can be achieved through an infinite sequence of

4



control choices. Note that computing V (s0) is a difficult task because it depends on this infinite

sequence. However, Bellman (1954) showed that we could simplify the problem by rewriting

V (s0) as follows:

V (s0) = maxc0{u(c0) + [max{ct}∞t=1

∞∑
t=1

βtu(ct)]}

s.t. st+1 = T (ct, st), ct ∈ Γ(st), ∀t = 0, 1, ...

(2)

Now, notice that we can exploit the recursive property of this equation to rewrite it again:

V (s0) = maxc0{u(c0) + β [max{ct+1}∞t=0

∞∑
t=0

βtu(ct+1)]︸ ︷︷ ︸
V (s1)=V (T (s0,c0))

}

s.t. st+1 = T (ct, st), ct ∈ Γ(st), ∀t = 0, 1, ...

(3)

→ V (s0) = maxc0u(c0) + βV (s1) s.t. s1 = T (c0, s0), c0 ∈ Γ(s0) (4)

This equation–the Bellman equation–is much simpler in the sense that it permits us to break

a multi-period decision problem down into a series of smaller, tractable steps, where only one

set of controls must be selected at a time. However, it is more complicated in the sense that

it now requires knowledge of an unknown function, V. Analytical dynamic programming solves

this problem by recovering the algebraic expression for the value function, V, but is limited in

application. In contrast, numerical dynamic programming constructs an approximation of V

and is applied to a wide variety of multi-period choice problems.

Next, I will augment the household’s problem to incorporate exogenous processes, which are

denoted by xt+1 = f(xt, εt+1). The subscript t+1 indicates that the exogenous shocks arrive at

the start of period t+1 and before time t+1 controls are chosen. Note that the joint transition

function for states now captures the impact of exogenous shocks: st+1 = T (ct, st, xt−1, εt).
3

Furthermore, I assume that the feasible set of control choices also depends on the exogenous

process: ct ∈ Γ(st, xt). The value of being in the initial state may now be written as follows:

V (s0, x0) = max{ct}∞t=0

∞∑
t=0

βtE[u(ct)|s0, x0]

s.t. st+1 = T (ct, st, xt), ct ∈ Γ(st, xt), xt+1 = f(xt, εt+1), ∀t = 0, 1, ...

(5)

3This transition function is written as a joint process; however, it is important to note that st+1 depends on

xt and st, but xt+1 is independent of st and ct.
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Again, I will exploit the recursive nature of V (s0, x0) to rewrite it as follows:

V (s0, x0) = maxc0{u(c0) + β [max{ct+1}∞t=0

∞∑
t=0

βtE[u(ct+1)|s0, x0]]︸ ︷︷ ︸
E[V (s1,x1)]=E[V (T (c0,s0,x0))]

}

s.t. st+1 = T (ct, st, xt), ct ∈ Γ(st, xt), xt+1 = f(xt, εt+1) ∀t = 0, 1, ...

(6)

This yields the stochastic version of the Bellman equation:

V (s0, x0) = maxc0u(c0) + βE[V (s1, x1)]

s.t. s1 = T (c0, s0, x0), c1 ∈ Γ(s0, x0), x1 = f(x0, ε1)
(7)

More generally, the Bellman equation can be written as follows:

V (st, xt) = maxctu(ct) + βE[V (st+1, xt+1)]

s.t. st+1 = T (ct, st, xt), ct ∈ Γ(st, xt), xt+1 = f(xt, εt+1)
(8)

The derivations above yield both the deterministic and stochastic versions of the standard

Bellman Equation in terms of pre-decision state variables. In the next section, I will explain

how to rewrite the Bellman equation in terms of post-decision states. This mathematically

simple modification will afford a tremendous amount of modeling flexibility; and will render

otherwise intractable dynamic economic models solvable.

2.2 The Post-Decision State Bellman Equation

In this section, I will construct the Bellman equation in terms of post-decision state variables,

roughly following (but also expanding on) the treatment of this subject in Powell (2007) and

Bertsekas (2011). Additionally, I will focus on building an adaptation that is well-suited to the

timing conventions and model properties of dynamic economic models, rather than operations

research or engineering applications. This exposition will begin with a comparison of pre-

decision and post-decision states to make this distinction clear. A pre-decision state consists of

endogenous state variables determined at the end of the previous period, st, and realizations of

the exogenous process at the start of this period, xt. This state is “pre-decision” because it is

determined entirely before the time t controls, ct, are selected. In contrast, the post-decision

state consists of the endogenous state variables determined at the end of period t, st+1, and

exogenous processes realized at the start of period t, xt. Recall from the construction of the

Bellman equation in the previous section that st+1 = T (ct, st, xt). That is, near the start of

time t, st and xt are pinned down. Once ct is chosen, st+1 will be pinned down, too. This yields

the post-decision state–that is, the state immediately after we have selected controls. Figure 1

shows this relationship through the arrival of new information in discrete time model.
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t t+1 t+2

t t+1

St, Xt St+1, Xt St+1, Xt+1 St+2, Xt+1

Pre-Decision Post-Decision Pre-Decision Post-Decision

t+2

St+2, Xt+2 St+3, Xt+2

Pre-Decision Post-Decision

t+3

Figure 1: Timing conventions for the pre-decision and post-decision state variables.

Note that the value of a post-decision state is the maximum, expected, discounted utility

that the agent can achieve immediately after controls have been selected. Using this definition,

the post-decision state value function, V x(st, xt−1), can be written as follows:

V x(st, xt−1) = E{max{ct+s}∞s=0

∞∑
s=0

βsE[u(ct+s)|st, xt−1]}

s.t. st+s+1 = T (ct+s, st+s, xt+s), ct+s ∈ Γ(st+s, xt+s), xt+s+1 = f(xt+s, εt+s), ∀s = 0, 1, ...

(9)

We will now manipulate this equation to derive useful, related properties, as well as a final

expression for the post-decision state Bellman equation. We begin this process by recalling that

the agent will not choose ct until xt has been realized. For this reason, V x(st, xt−1) can also

be written as the expectation, conditional on the information set (st, xt−1), of the maximum,

expected, discounted utility that the agent will receive after xt arrives. This is equivalent to

the expected value of state (st, xt), conditional on the information set (st, xt−1):

V x(st, xt−1) = E[V (st, xt)|st, xt−1]

s.t. st+1 = T (ct, st, xt), ct ∈ Γ(st, xt), xt+1 = f(xt, εt+1), ∀t = 0, 1, ...
(10)

Stepping forward in time, we may write the value of being in post-decision state (st+1, xt)

as follows:

V x(st+1, xt) = E[V (st+1, xt+1)|st+1, xt]

s.t. st+2 = T (ct+1, st+1, xt+1), ct+1 ∈ Γ(st+1, xt+1), xt+2 = f(xt+1, εt+2), ∀t = 0, 1, ...
(11)

Finally, one additional relationship is needed. It can be shown that the following holds between

the pre-decision and post-decision state Bellman equations:

V (st, xt) = maxctu(ct) + βV x(st+1, xt)

s.t. st+1 = T (ct, st, xt), ct ∈ Γ(st, xt), xt+1 = f(xt, εt+1), ∀t = 0, 1, ...
(12)
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Short proofs are given in the appendix for the claims made by equations (10) and (12).4

These two equations, as well as equation (11), can be used to demonstrate useful relationships

between the pre-decision and post-decision state Bellman equations. For instance, if (10) is

substituted into (12), it yields the standard, pre-decision Bellman equation. On the other hand,

if (12) is substituted into (10), it yields the following post-decision state Bellman equation:

V x(st, xt−1) = E{maxctu(ct) + βV x(st+1, xt)|st, xt−1}

s.t. st+1 = T (ct, st, xt), ct = Γ(st, xt), xt+1 ∈ f(xt, εt+1), ∀t = 0, 1, ...
(13)

There are two important things to note. First, the expectations operator is outside of the

maximum operator. This differs from the standard, pre-decision state Bellman equation. And

second, the problem within the expectation is deterministic.

Van Roy et. al (1997), Judd (1998), and Barto and Sutton (1998) all separately identified

this alternative form of the Bellman equation. Powell (2007) and Bertsekas (2011) provided the

first general descriptions of how it could be used to construct solution algorithms for operations

research and engineering applications respectively. In particular, they demonstrated that it

was most valuable in high-dimensional dynamic programming problems, as well as problems

where the stochastic processes were complicated or unknown. Modern, computational textbook

approaches to solving dynamic, stochastic general equilibrium models, such as those in Heer

and Maussner (2009) and DeJong and Dave (2007), do not discuss either the post-decision state

Bellman equation or the associated algorithms.

2.3 The Post-Decision State Dynamic Programming Solution Algorithm

In the previous section, I demonstrated how to construct the post-decision state Bellman equa-

tion. Next, I will discuss two algorithms that take advantage of this alternative approach to

dynamic programming. Both of these solution methods fall into the family of approximate

dynamic programming algorithms that exploit post-decision states. The first approach is the

ADP-POST algorithm,5 modified for use in a dynamic economic model. The second approach is

a refinement that incorporates an information-sharing subroutine that exploits GPU-computing.

The algorithms described in this section will follow Powell (2007) and Bertsekas (2011).

Before we construct the algorithm, it is useful to recall the form of the post-decision state

4As far as this author is aware, this paper provides the first proofs for these three important properties, which

are referenced in Powell (2007).
5This is sometimes referred to as neuro-dynamic programming, reinforcement learning with post-decision

states, or forward dynamic programming with post-decision states.
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Bellman equation from the previous section:

V x(st, xt−1) = E{maxctu(ct) + βV x(st+1, xt)|st, xt−1}

s.t. st+1 = T (ct, st, xt), ct ∈ Γ(st, xt), xt+1 ∈ f(xt, εt+1), ∀t = 0, 1, ...
(14)

Notice again that the maximization step is inside of the expectation. This property of the

post-decision state Bellman equation initially appears to make things more complicated, but

actually makes it substantially easier to solve certain classes of models. In particular, it will

make it possible to construct algorithms that first perform the maximization step; and then

compute the expectation afterwards. This first step is then combined with draws from the

exogenous processes, which transition the agent to the next step; and then a smoothing step,

which implicitly computes the expectation outside of the maximization step while fostering

convergence. The baseline algorithm is outlined below and follows Powell (2007).

2.4 Algorithm 1.1: ADP-POST (Infinite Horizon, Representative Agent)

The ADP-POST algorithm will provide a foundation for all algorithms constructed in this paper.

The baseline version of the algorithm proceeds as follows:

• Step 0: Perform all initializations.

– i. Initialize the “look-up table” approximation of the value function in all states.

That is, for each state, (s ∈ s, x ∈ x), assign a starting value to V
0
(s, x), where the

superscript 0 indicates that this is an approximation taken at the 0th iteration.

– ii. Initialize the state, (s0 ∈ s, x0 ∈ x). For representative agent, infinite horizon

models, it may be natural to assume the the agent starts in the steady state.

– iii. Increment the iteration counter to n=n+1.

• Step 1: Choose a simulation period length, T. Generate a sample of the exogenous pro-

cesses, xt, for the simulation period: 1,...,T.

• Step 2 : For all periods, t=1,...T, perform the following three steps:

– i. Choose controls to maximize the expression inside of the expectation of V (st, xt−1)

for a particular realization of xt, given that ct ∈ (st, xt):

Ṽ n(st, xt−1) = maxctu(ct) + βV
n−1

(st+1, xt),

– ii. Compute the expectation by updating the value function approximation, V n−1:

V n(st, xt−1) = (1− αn−1)V̄ n−1(st, xt−1) + αn−1Ṽ
n(st, xt−1)

Note that α denotes the step size. We index it with n to indicate that it may change

with the iteration. It may also be stochastic.

9



– iii. Use the result from the maximization step, st, and the realization of the exogenous

processes, xt+1, to compute the next period’s pre-decision state.

• Step 3: Check convergence criterion. If satisfied, go to Step 4. If not satisfied, increment

n and go to Step 1.

• Step 4: Return the value function approximation, V (s, x)N , in the form of a look-up table.

Now that the basic algorithm has been described, it will be useful to examine Steps 1 and

2 in greater detail. In Step 1, a sample of the exogenous processes is drawn. In a standard

DSGE model with a representative agent, these processes might capture things like productivity

shocks. Usually, it is assumed that these exogenous variables follow a continuous process, which

can be approximated through discretization. Often, Tauchen (1986) is employed to construct

a Markov chain and transition matrix that approximate the continuous analog. Alternatively,

quadrature methods can be used to approximate the expectation.

One of the benefits of using Algorithm 1.1 is that it is possible to avoid explicitly computing

expectations using either of these approaches. That is, the household’s dynamic programming

problem can be solved without ever employing quadrature methods or transforming the as-

sumed continuous, exogenous processes into discrete Markov processes. To understand why

this is important, consider the two examples given below.

Example 1. Correlated Exogenous Processes. In a model with several sectors or several assets,

it is common to have two exogenous processes that comove empirically. Solving computational

models will often require the assumption that processes are orthogonal for the sake of sim-

plicity. Assuming this makes it possible to take expectations without explicitly accounting for

the dependence between the processes. That is, if z and q are the exogenous variables in the

household’s problem, then zt−1 will yield the pre-shock distribution of zt, and qt−1 will yield

the pre-shock distribution qt. However, if we assume that these processes are dependent, then

zt depends not only on zt−1, but also on qt. This not only requires us to use more technically

sophisticated quadrature methods or discretization techniques (i.e. conditional Markov pro-

cesses), but also requires us to use a higher dimensional approximation in order to capture the

dependence relationship accurately.

In contrast, if Algorithm 1.1 is employed, then it is not necessary to devise a strategy for

computing the expectation. Being able to simulate the exogenous process will be sufficient. This

could be done, for instance, by using a copula simulator to generate series for the exogenous

processes before the algorithm is even initiated. Step 2(ii) will then compute an approximation
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of the expectation that improves as the simulation length increases. This suggests that con-

structing and solving a model with many exogenous processes that depend on each other will be

no more difficult than constructing and solving a model with the same number of independent

processes.

Example 2. Exogenous Processes with Unknown Functional Form. Consider a model in which

a household may hold many classes of assets. Assume further that the returns to those assets

depend on exogenous processes; and that those processes exhibit dependence. Working with a

pre-decision state value function, it will be necessary to use technically sophisticated methods

(i.e. copula estimation or multiple conditional Markov processes); and then make functional

form assumptions about the joint distribution from which shocks are drawn. In contrast, using

post-decision state variables, it is possible to run simulations with the actual asset data without

ever performing the intermediate steps.

In short, examples 1 and 2 demonstrate the benefits of using the post-decision state value

function: it enables us to bypass difficult expectations without ever explicitly computing them.

Furthermore, in some cases, it makes it possible to avoid making any assumptions at all about

the exogenous processes in the model, which can both limit model error and eliminate the need

for highly sophisticated techniques.

I will now return to Step 2 in greater detail, which is the other major departure from pre-

decision state dynamic programming algorithms. In particular, in substep (i), controls were

selected to maximize a deterministic function, which is a substantial departure from what is

normally done in stochastic dynamic programming problems. This has the primary benefit of

reducing the dimensionality of the problem. Substep (ii) may also look unfamiliar, even though

it is similar to smoothing step often used in pre-decision dynamic programming algorithms.

Here, it not only plays the role of smoothing, but also implicitly computes the expected value of

being in state (st, xt−1). To understand why this is the case, notice that the maximum value of

Ṽ (st, xt−1) will depend on the realization of xt. Thus, arriving at (st, xt−1) for a second, third,

and fourth time, but with a different realization of xt will provide more information about

the value of being in state (st, xt−1). Furthermore, the frequency with which agents encounter

certain realizations of xt will provide information about the probabilities of realizations.
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2.5 Algorithm 1.2: ADP-POST with Information-Sharing (Infinite Hori-

zon, Heterogeneous

Agents)

One property of ADP-POST is that it simultaneously solves the choice problem and simu-

lates agent behavior. This differs from VFI and PM, which must first solve the problem and

then simulate agent behavior. The benefit of this property is that it allows us to solve the model

for many agents on different stochastic simulation paths simultaneously. Information can then

be shared across agents at some specified point in the algorithm. In the case of incomplete

markets models with aggregate uncertainty, the aggregation step–where the laws of motion are

estimated–provides a natural, unparallelizable point at which agents may share information

about the values of states visited. In the algorithm below, I demonstrate how this can be done

for ADP-POST. Note that S and X denote the sets of endogenous and exogenous aggregate

state variables, respectively. Furthermore, note that the algorithm is provided for the most

general case, where the model contains endogenous and exogenous state variables; however, for

simpler applications, S and X can be removed and the aggregation step can be eliminated.

• Step 0-Step2(ii): See Algorithm 1.1.

• Step 2(iii): Compute the agent-specific expectation by updating the value function ap-

proximations, V n−1
i , separately for each household: V n

i (St−1, Xt−1, sit, xit−1) =

(1− αn−1)V̄ n−1
i (St−1, Xt−1, sit, xit−1) + αn−1Ṽ

n
i (St−1, Xt−1, sit, xit−1)

Note that α denotes the step size. It is indexed with n to indicate that it may change

with the iteration. Households in are indexed by i.

iv. Average the value function approximations across households to share all available

information:

V n(St−1, Xt−1, sit, xit−1) =
∑

i∈I V̄
n
i (St−1,, Xt−1, sit, xit−1)µi

Note that I is the set of all households and µi is the mass of household i. For example, if

there are K agents of equal mass in the model, then µi = 1
K , for all i. Alternatively, the

distribution might be written as function of state variables.

• Step 2(iii) - Step 4 : See Algorithm 1.1.

It is important now to gain a full understanding of the merits of Algorithm 1.2. A good place

to start is by comparing it to an extension of Algorithm 1.1 with heterogeneous agents, but

without information-sharing. Here, households solve their decision problems simultaneously,

but do so without the benefit of what other agents have learned. If information-sharing is
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imposed in a model with 10,000 heterogeneous agents, then each agent gains information about

the value of 10,000 state-path trajectories after each iteration, rather than one.

Another possible approach to this problem would involve sharing information across agents

within iterations. In the limit, this approach might entail using the same value function ap-

proximation for all agents. This approach has two benefits: first, it provides agents with more

information about the values of states within iteration, leading to faster convergence if all other

things are equal; and second, in the limiting case (one value function approximation only),

it substantially reduces the amount of data that must be held in memory (down from 10,000

arrays to 1). However, there is another drawback to using this approach: it does not lend itself

to parallelization. That is, it is not possible to solve each household’s problem in isolation on a

separate CPU or GPU core if household i’s value function approximation depends on household

j’s approximation. For this reason, the algorithm above defers information-sharing and performs

it as an end-of-iteration task. This will not prevent further parallelization, since heterogeneous

agent models require aggregation and law of motion estimation at the end of each iteration,

regardless of how the household problem is solved.

I have now outlined the two primary algorithms that are the focus of this paper. The

first algorithm will be used to test ADP-POST relative to common global solution methods.

The second algorithm can be used in more complex applications, but will only be tested once

and on a large grid to demonstrate its effectiveness. I will then discuss two modifications I

make to the original ADP-POST algorithm to improve its accuracy and stability. I will also

discuss an extension of the ADP-POST algorithm in the appendix, which will be useful for

finite horizon models, including OLG macro models with many heterogeneous agents. After

those subsections, I review global solution methods that are common in the DSGE literature,

which will be used as performance benchmarks. In particular, I will focus on common methods

for infinite horizon models, including value function iteration, the parameterized expectations

approach, and projection methods.

2.5.1 Modified Search-Then-Converge (STC) Stepsize

Stepsize selection is an important component of pre-decision state dynamic programming

algorithms; however, it is an even more important choice for the ADP-POST family of algo-

rithms. This is because the stepsize not only fosters convergence, but also implicitly computes

the expectation over the values of future states. Poor stepsize selection can result in either

ignoring important information about states or assigning too much weight to the value of the

most recently visited state.
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In general, a well-constructed stepsize for ADP-POST should remain large during early

iterations, but decline sharply as more of the state space is visited on the simulation path,

making new observations less informative. A commonly used stepsize with such properties is

Darken and Moody’s (1992) Search-Then-Converge (STC) routine, which is updated as follows:

αn = α0

(
1 + β

α0

n
τ

1 + β
α0

n
τ + n2

τ

)
(15)

In the above equation, n is the outer iteration counter, αn is the stepsize at iteration n, and

β and τ are parameters that can be tuned to adjust the onset and duration of the “search”

and “converge” phases. It is important to note that the above equation implies that a uniform

stepsize should be applied to all value function updates within a given iteration. This suggests

that information about a state that has never been visited previously should be treated as if

it were exactly as informative as information about a state that has been visited thousands of

times on the simulation path. This is particularly problematic, since infrequently visited states

will tend to be reached in later iterations, where small stepsizes will be applied. This will tend

to bias the values of infrequently visited states towards their initializations.

I modify the STC algorithm by performing value function updates during the stochastic

simulation and by using state-specific stepsizes. I start by constructing an associated matrix,

Q, of state-visit counts. The element, qi,j ∈ Q, is the number of times state (i,j) has been visited

in all previous simulation steps, including simulations in earlier iterations. Next, I replace n in

equation (15) with qi,j/n. Note that this functional form normalizes the state-visit count by

the total number of outer iterations. This will create a stepsize that assimilates information

depending on the relative frequency with which states have been visited. States within a narrow

area around the steady state will be visited frequently and will quickly become uninformative;

however, state visits further away will still remain informative in later iterations.

It is important to note that increasing the size of the state space will impact how this

modified version of the STC stepsize algorithm works. As an example, consider the case where

the simulation length is T, the number of capital states is k̄, and the number of productivity

states is z̄. On average, qi,j will grow at rate T
k̄z̄

. Thus, if z̄ or k̄ is increased, but T is left

unchanged, then the onset of the the convergence phase will be delayed. Furthermore, if z̄k̄ > T ,

then the stepsize will tend to grow over time, preventing convergence; and, finally, if z̄k̄ is larger

than, but close to T, then nodes far away from the steady state will have a low qi,j , and may

have large stepsizes applied to them, even if frequently visited states do not.

Figure 2 provides a visual comparison of the modified and unmodified STC stepsize algo-

rithms for the first 15,000 periods of a simulation. The primary difference between the two
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Figure 2: Figure 2: STC and Modified STC

algorithms is that there is no variation in stepsize within the outer iteration of the unmodified

STC algorithm. To the contrary, the stepsize in modified STC is updated in every simulation

period and depends on qi,j . Notice that this allows for a substantial amount of flexibility within

an outer iteration: we can simultaneously apply small stepsizes to frequently visited states and

large stepsizes to infrequently visited states, which permits us to lower the average stepsize

quickly without ignoring important information. Finally, note that Figure 2 shows stepsizes for

the case where z̄k̄ is close to T, which illustrates the point from the previous paragraph: after

iteration 0, the modified STC stepsize decreases slowly across outer iterations.

2.5.2 Exploiting Well-Behaved Regions

This component of the MADP-POST algorithm consists of two steps. In the first step, a

well-behaved region of either the decision rules or the value function is identified. In the second

step, that well-behaved region is used to draw inferences about the shape of the decision rules

or value function outside of that region.

Step 1: Identify the Well-Behaved Region

The first step begins by identifying all relevant discontinuities in the decision rules. These

discontinuities will generally fall into one of two categories. The first category involves a binary

choice (e.g. default) or a constraint. This category of discontinuities generates no substantial

challenges for this step of the ADP-POST algorithm because they occur at known locations in
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the value function. The other group may arise from subtle modeling features that introduce a

discontinuity at an unknown location in the value function. This category of discontinuity can

introduce problems if it appears near the edges of the ergodic set and is infrequently visited

in simulations. For this reason, it is important to identify the plausible locations of such

discontinuities if they are present in a model; and to adjust the algorithm accordingly, so that

the region around the discontinuity is reached in simulations.

Next, if all discontinuities are determined to be of the first type–which will be true for many

classes of problems–then we may proceed by solving the model with the unmodified ADP-POST

algorithm. We can then extract the value function and implied decision rules; and use them

to define a well-behaved region. The following can be used to identify the boundaries of the

well-behaved region:

• The Q matrix.

• The monotonicity of the value function or decision rules in continuous arguments, such as

capital.

• The monotonicity of the value function or decision rules in discrete arguments, such as

income endowment shocks.

• The concavity of the value function in capital–and, more generally, real asset holdings.

• The slope of conditional decision rules for a state variable.

The Q matrix provides us with the frequency with which each state was visited on the

simulation path. Initially, using Q may seem to be an efficient way to determine the “well-

defined” region; however, this approach suffers from two problems. First, the decline in visit

frequency is likely to occur continuously over some dimension of a decision rule. This will make

it difficult to identify an exact threshold between areas that have been visited “too infrequently”

and areas that have been visited “enough.” For instance, using 0 state-visits as a threshold will

not yield accurate results. This is because regions with a small, but positive number of state-

visits will not only be highly inaccurate, but will be biased in the direction of the initialization.

Furthermore, this approach is problematic because different state-visits receive different weights,

depending on when they occurred. Thus, the Q matrix may provide some useful information

about identifying the boundaries, but it should not be used alone.

We will now consider the monotonicity of the value function or decision rules in continuous

arguments, such as capital. Often, if there are no discontinuities of the second type in a

model, we will know a priori that the value function is weakly monotonic in certain continuous
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arguments. In the case of capital, for instance, we know that entering a period with a higher

capital stock will always permit the agent to achieve a higher path of consumption streams.

This suggests that the value function should be monotonically increasing in capital, conditional

on all other states. This provides us with a simple test: if a violation of monotonicity occurs in

a region with no discontinuity, then this part of the value function is outside of the well-behaved

region. A similar test can be applied to the decision rules. It should be noted, however, that

such a test may be too weak, since it will not detect a boundary, but will instead identify that

a node is outside of that boundary.

A similar test can be performed for discrete arguments, such as unemployment shocks or

discretized income shocks. If, for instance, a model has 5 discrete income states, we might

expect the value function to be monotonic in those states. This is because a higher income

state will allow the agent to achieve a higher path of consumption streams, conditional on a

particular set of state variables. This suggests that we can check if the monotonicity relation

holds at each point in the state space; and rule out parts where it does not.

Another test we can perform relies on the concavity of the value function in certain argu-

ments, such as capital. In the absence of the second type of discontinuity, this concavity will

often arise from the shape of the utility function and discounting. To understand how this

works, consider an evenly-spaced capital grid with kn nodes: k ∈ [k1, ..., kkn]. If the value

function is concave in capital, then the value of k2 should be closer to k3 than it is to k1. This is

a stronger requirement than monotonicity and will be useful if we wish to conservatively define

the well-behaved region.

Finally, the slope of a conditional decision rule can provide useful information about whether

or not an area falls within the well-behaved region. In particular, if we compute the slope of k’,

plotted against k, for a given set of other states, we may find that it is implausible in certain

places, given the properties of the model. For instance, if the decision rule implies that an

increase in period t capital of 1 unit leads to an increase in period t+1 capital of 2 units, we

may rule this out as implausible. More generally, we may impose the following condition for a

given value of γ:

(k′(kj+1)− k′(kj)) < γ(kj+1 − kj) (16)

If this condition is violated, then we may state that the associated node is not within the well-

behaved region. We can then exclude that node from Step 2, as well as any nodes further away

from the steady state along that dimension.

Step 2: Update the Value Function or Decision Rules
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We have now defined a “well-behaved” region of either the decision rules or value function.

Next, we will exploit the properties of this region to update the values of states outside of it.

One simple way in which we can do this is to regress the values of states in the well-behaved

region on polynomial transformations of the the state variables. For simple problems, an expo-

nential polynomial of the natural log of states may be sufficient. For more complicated problems,

it may be necessary to use high order, orthogonal polynomial transformations to capture the

relevant nonlinearities. Note that these same techniques can alternatively be used to estimate

the decision rules, rather than the values of states.

The baseline method described above can be modified in two ways to yield better results.

The first modification entails using WLS, rather than OLS. Recall that the WLS estimator is

given as follows:

βWLS = (X ′Ω−1X)−1XΩ−1Y (17)

In the above equation, Ω−1 = P ′P , where P is a diagonal matrix of weights. Since the precision

of state value estimates will depend on the frequency with which those states were visited on the

simulation path, we may use a transformation of the Q matrix to construct weights for WLS.

In particular, we will let wi,j , the weight associated with state (i,j), be equal to the proportion

of total state visits in the (i,j) element of Q:

wi,j =
qi,j∑

r∈I
∑

s∈J qr,s
(18)

The second modification involves iterating over the estimation stage, rather than performing it

after unmodified ADP-POST converges. Here, it is recommended that you use a numerically

stable method of updating the parameters, such as a Tikhonov regularization:

βRLS−TV = (X ′X + ηIn)−1X ′Y (19)

Note that η is a small scalar. For an overview of the Tikhonov regularization, as well as other

numerically stable methods for updating parameter values, see Judd, Maliar, and Maliar (2011).

Moving forward, we will use the subroutines in this section to construct modified ADP-

POST (MADP-POST) algorithms. In general, the purpose of this class of algorithms is improve

the quality of the value functions and decision rules generated by the unmodified ADP-POST

algorithm.

3 Common Global Solution Methods

In this section, I will briefly review common global solution methods for dynamic economic

models, focusing primarily on those used most frequently to solve DSGE models. I will then
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evaluate the performance of some of these methods in the following sections; and will compare

the results to those of algorithms that make use of post-decision state variables. I will begin

the overview with a review of value function iteration.

3.1 Algorithm 2.1: Value Function Iteration

Value function iteration (VFI) is used to solve infinite horizon dynamic programming prob-

lems. It involves discretizing the state space, iterating over all states, and then updating the

value function approximation until some measure of convergence is achieved. It can be used as

a standalone solution method or it can serve as a first step for more advanced solution meth-

ods. The basic algorithm for VFI is presented below. Since it can easily be extended to the

heterogeneous agents case, I do not provide a separate solution algorithm.

The VFI algorithm proceeds as follows:

• Step 0 : Discretize the state space. For a representative agent model, choose a grid for

endogenous state variables, s = {s1, ..., sN}, where sh < sj if h < j. Use Tauchen’s

method (1986) to discretize the exogenous processes, x, into a K-state Markov chain with

an associated transition matrix, P , where element pk,l is the probability of transitioning

from state k to l. For heterogeneous agents models, do this for both aggregate and

individual-level state variables.

• Step 1 : Initialize the value function, V 0(si, xj), at all grid points, s x x.

• Step 2 : For each grid point, (i,j), compute the value of choosing all possible post-decision

values of s, sm: wm(si, xj) = u(si, xj , sm) + β
∑K

l=1 pj,lV
0(sm, xl).

• Step 3 : For each grid point, (i,j), identify the index associated with the choice of endoge-

nous state variables that maximizes wm(si, xj), m
∗. Construct V 1 as follows for all (i,j):

V 1(si, xj) = wm∗ .

• Step 4 : Check for convergence using the following metric: maxi=1,...N,j=1,...,K |V 1(si, xj)−

V 0(si, xj)| ≤ ε

If the convergence criterion is satisfied, stop the algorithm and compute the policy function. If

not, set V0 = V1 and return to Step 1.

3.2 Algorithm 2.2: Parameterized Expectations Approach (PEA)

The Parameterized Expectations Approach (PEA) differs from the solution methods we have

considered so far in that it does not involve the discretization of the state space. Instead, it
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requires us to construct continuous approximations of the expectational components of the first

order conditions. These approximations are created through the repetition of three steps. First,

a set of approximating functions is chosen and parameterized. Second, decisions are simulated

based on the chosen parameterization. And third, some convergence criterion is checked to

determine if the simulated decisions were sufficiently close to optimal.

One important thing to note about PEA is that it is not vulnerable to the curse of dimen-

sionality in the same sense that VFI and backwards recursion are. In solution methods that rely

on iteration over discretized states, adding more state variables–and, in particular, continuous

state variables–substantially increases the number of function evaluations that must be per-

formed to identify the maximum. In contrast, with PEA, adding another state variable adds no

such requirement. It does, however, make it more difficult to choose an initial parameterization

for the expectational terms.

The algorithm below constructs a general description of PEA, following Heer and Maussner

(2009) and Den Haan and Marcet (1990). While the algorithm is for the infinite horizon case,

it can easily be extended to capture finite horizon applications.

• Step 0 : Identify all model equations, including first order conditions, constraints, and

exogenous processes.

• Step 1 : Choose an initial functional form and parameterization for the expectational

components of the first order conditions. Here, we will represent this by Gh(sit, xit; θ
0
h),

where Gh is a function that approximates the hth expectational term and using pa-

rameters θ0
h. Typically, high order polynomials are used to construct G. Assume that

the realization of the expectational component at time t+1 is ψhit+1, which means that

ψhit+1 = Gh(sit, xit) + uit and uit ∼ iid.

• Step 2 : Using the expectational term approximations, the initial values, and T periods

worth of simulated exogenous processes, compute the values of the endogenous, individual-

level state variables in each period and for each agent. Increase the value of n, the

parameter value iteration counter.

• Step 3 : Discard observations for periods T̃ and lower to eliminate the bias introduced

by initial values. Use the data for all periods after T̃ , all agents, and all expectational

components to estimate the parameter values using the following objective function: θ̂n =

argminθn
∑

i∈I
∑T−1

t=T̃+1

∑
h∈H(ψhit+1 −Gh(sit, xit; θ

n)2

• Step 4 : Set θn = (1−αn)θn−1+αnθ̂n. Check the following convergence criterion: max(θ̂n−
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θn−1) < ε, where max() is performed element-wise. If the condition is satisfied, then stop.

Otherwise, return to Step 2.

It should be noted that the stochastic version of PEA–the one given in Algorithm 2.3–is most

closely related to the ADP-POST family of algorithms. Both fall into category of stochastic

simulation algorithms according to the taxonomy in Judd, Maliar, and Maliar (2011).

3.3 Algorithm 2.3: Projection Methods (PM)

Projection Methods (PM) are difficult to characterize because they cover a wide variety of

approaches to solving multi-period choice problems. Broadly, PM consists of many tools that

can be used to approximate common functions in choice problems (i.e. value functions, decision

rules, expectational equations, etc.). The PM approach is typically performed by choosing the

functional form for an approximation, computing the residual of that approximation, and then

using some method to minimize the residual. Below, we will consider a basic algorithm for PM,

which follows Heer and Maussner (2009) and Heer and Maussner (2008).

• Step 0 : Identify a set of optimality conditions or functional equations, ĝ(s, x; θ), that

have an associated residual. Choose a family of basis functions, ξ(s, x), and a degree

of approximation, ρ, where ĝ(s, x; θ) =
∑ρ

k=0 φkξk(s, x). Chebychev Polynomials are a

common choice in the literature; and have the benefit of being an orthogonal class of

polynomials, which reduces multicollinearity in Step 3.

• Step 1 : Define the residual function R(s, x; θ) = G(ĝ(s, x; θ)).

• Step 2 : Choose a projection function, χi, and a weighting function, w. Compute the inner

product for all of the H optimality conditions or functional equations, where i=1,...,H:

χi =
∫
s

∫
xw(s, x)R(s, x; θ)χidsdx

• Step 3 : Choose the value of θ that yields χi = 0 for i=1,...,H. Alternatively, find θ that

minimizes
∫
s

∫
xR(s, x; θ)2dsdx

• Step 4 : Check the accuracy of the solution, θ̂. If the measure of error is too large, then

increase ρ and return to Step 1. For heterogeneous agents models, nest Steps 1-4 within

an aggregation algorithm.

For Step 0, consider the Bellman equation for an infinite horizon choice problem. We know

that V (si, xj) = maxsmu(si, xj , sm) + β
∑K

l=1 pj,lV (sm, xl), which implies that R(si, xj ; θ) =
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maxSm [V (si, xj) − u(si, xj , sm) − β
∑K

l=1 pj,lV
0(sm, xl)]. Here, an ideal choice of g() might be

V(). However, we might think about choosing policy functions or Euler equations for g() instead.

In the next section, I will discuss the metrics that can be used to measure the accuracy of all

of the aforementioned solution methods; and make it possible to make meaningful comparisons

across alternatives.

4 Accuracy Measures

In many cases, it is possible to arbitrarily increase the accuracy of a solution method;

however, doing so will typically incur a run time increase. For instance, with VFI, increasing

the number of nodes in the state space grid will improve accuracy, but will also increase the

amount of time it takes to perform an iteration. Similarly, with PEA and PM, accuracy can be

improved by increasing the order of the polynomial transformations of state variables, but doing

so may indirectly increase run time by necessitating a smaller stepsize. For this reason, it is

often not meaningful to discuss “convergence time” and “accuracy” separately. Moving forward,

we will structure the analysis around the tradeoff between convergence time and accuracy.

The primary measures of accuracy we explore are as follows: 1) Euler equation residuals;

2) dynamic Euler equation residuals; 3) deviations from the analytical decision rules; and 4)

moments of cross-sectional distributions. Other popular measures of accuracy not considered

include time series moment comparisons and the DM statistic (Den Haan and Marcet, 1994).

Moment analysis of aggregate time series is omitted because it typically does not yield useful

comparisons of global solution methods (Heer and Maussner, 2008). The DM statistic is dropped

in favor of the dynamic Euler equation residual Den Haan (2010a), which fulfills the same role,

but is arguably easier to interpret.

4.1 Euler Equation Residuals

Heer and Maussner (2009) find that there are substantial differences in accuracy between global

and local solution methods when Euler equation residuals are used as the metric for accuracy.

The general strategy behind Euler equation residual tests is to determine the accuracy of the

decision rules by checking whether or not they are consistent with the model’s optimality con-

ditions. The Euler equation residual method is typically implemented by using some variation

of the following five steps:

• Step 1. Identify the model’s Euler equations and write them in terms of residual equations

that are equal to zero if the agent has made an optimal decision.
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• Step 2. Solve the model and recover the decision rules.

• Step 3. Plug the decision rules into the Euler equations.

• Step 4. Evaluate the residual equations over a discrete state space grid.

• Step 5. Compute descriptive statistics for the Euler equation residuals to use as a basis

for comparison.

For the sake of consistency, I will construct Euler equation residuals in the style of Den

Haan (2010a). In the simplest case, where capital is the only state and consumption is the only

control, the Euler equation residual can be written as follows:

∣∣∣c(k)− c̄(k)

c̄(k)

∣∣∣ (20)

In the equation above, c(k) is the consumption value implied by the decision rules and c̄(k)

is the value computed explicitly from the conditional expectation (in stochastic models) on the

right hand side of the Euler equation. The benefit of using this particular form of the Euler

equation residual is that scale is not arbitrary or difficult to interpret. The residual is simply

the percentage deviation of the consumption decision rule from optimality at a given node in

the state space.6 Note that residuals are typically computed at many points over the state

space grid; and are then summarized by two statistics: the maximum and the average. It is

also sometimes useful to identify the location of the maximum within the state space.

4.2 Dynamic Euler Equation Residuals

One limitation of the standard Euler equation residual is that it only captures “static inac-

curacies” – that is, one-off-optimization errors. In order to get a more complete understanding

of the accuracy of different solution methods, we must take an expanded view of errors that cap-

tures dynamics. In particular, it will be useful to measure the extent to which static inaccuracies

accumulate over time in dynamic setting.

The DM statistic (Den Haan and Marcet, 1994) is an alternative to using Euler equation

residuals that captures the accumulation of errors over time. It is difficult to interpret, however,

since the frequency of rejection rises with the size of the simulation length. For this reason, I

will consider the dynamic Euler equation residual, which fulfills the same role, but has a simpler

interpretation. Following Den Haan (2010a), we may compute it as follows:

6For another form of the Euler equation residual with a clear interpretation, see Christiano and Fischer

(2000).
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• Step 0. Set k̃0 = k0.

• Step 1. Create a temporary variable: k̂t+1 = k(k̃t, εt).

• Step 2. Compute the conditional expectation of the right hand side of the Euler equation

using k̂t+1, k(k̂t+1, εt+1), and the distribution of εt+1.

• Step 3. Calculate c̄t using the Euler equation, the budget constraint, and k̃t+1.

We can now use equation (20) to compare ct and c̄t. The important difference is that

errors are now generated on the simulation path, rather than at each grid point in a predefined

region within the state space. This accomplishes two things. First, it introduces dynamics

into the error measure by allowing mistakes made in previous periods to carry over into future

periods. And second, it only examines errors on the simulation path; and, therefore, eliminates

the requirement that algorithms be tested in regions of the state space that are outside of the

ergodic set.

5 Results

In this section, we will test the algorithms that were described earlier. This will proceed as

follows. First, the baseline model will be presented. Next, the model will be solved using the

aforementioned algorithms. Third, the results will be compared using the measures of accuracy

described above. I will start by outlining a standard business cycle model with no labor supply,

which will be used in the first set of tests. In the second set of tests, I will focus models with

many heterogeneous agents.

5.1 Neoclassical Model (Infinite Horizon, Representative Agent)

Households in the baseline model are assumed to maximize expected, discounted utility from

consumption, ct:

maxc0E0

∞∑
t=0

βt [log(ct)] (21)

It is assumed that β ∈ (0, 1). Additionally, the household faces the following budget constraint,

where kt is the household’s capital stock, and rt is the return to capital:

kt+1 = (1 + rt)kt − ct (22)

The firm produces output using aggregate capital, Kt with the following production function:

Yt = ZtK
α
t (23)
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Capital is assumed to depreciate at rate δ. Productivity, Zt is assumed to follow an AR(1)

process in logs:

lnZt = ρlnZt−1 + εt, εt ∼ N(0, σ) (24)

The firm maximizes profit, yielding the following factor price for capital:

rt = αZtK
α−1
t − δ (25)

The economy is subject to an aggregate resource constraint:

Yt = Kt+1 − (1− δ)Kt + Ct (26)

Additionally, we assume that all individual variables are equal to aggregate variables in equi-

librium: ct = Ct and kt = Kt. Combining the first order conditions for the household, the

equilibrium conditions, and the first order conditions for the firm, we get the following equa-

tions that characterize the model:

1

ct
= λt (27)

λt = βEtλt+1

[
αZt+1K

α−1
t+1 + (1− δ)

]
(28)

Kt+1 + Ct = ZtK
α
t + (1− δ)Kt (29)

Using the description above and the methods outlined earlier, it will now be possible to solve,

simulate, and test the accuracy of the model under each of the different candidate solution

methods. In particular, results will be presented for value function iteration, parameterized

expectations, projection methods, and two versions of the ADP-POST algorithm.

5.2 Full Depreciation Case

In the case where δ = 1, the model has a known, closed-form solution. In particular, the decision

rule for capital is given as follows:7

kt+1 = αβztk
α
t (30)

This special case provides a powerful tool for testing algorithms by making it possible to

compare numerical solutions to the the exact, analytical solution. I take advantage of this feature

by solving and simulating each algorithm for the neoclassical model with full depreciation. I

then perform a visual comparison of the analytical and numerical decision rules. This allows me

to identify where each algorithm’s decision rules deviate from the model’s analytical solution.

7See the appendix for a proof.
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5.3 International Business Cycle Model (Infinite Horizon, Autarky)

The second set of tests will expand on the representative agent model by incorporating many

heterogeneous countries. This is a simple extension of the original model, since all countries will

be assumed to be ex-ante identical and will exist in autarky. Differences across countries will

be generated by sequences of country-specific productivity shocks. The purpose of this exercise

will be to test the performance of ADP-POST in a setting with heterogeneity. The results of

this exercise can be interpreted as the amount of time it would take to compute the stationary

distribution of wealth in an incomplete markets model, such as the one described by (Aiyagari,

1994). Alternatively, this can be interpreted as the time needed to complete a single iteration

of the Krusell and Smith (1998) algorithm in a model with incomplete markets and aggregate

uncertainty.

Moving forward, we will solve a substantially simpler model for three reasons. First and

most importantly, doing so will limit the number of confounders. That is, the results will

primarily reflect the time needed to solve the household’s problem and simulate its behavior,

rather than the behavior of supplementary algorithms that would be needed to solve larger

models. Second, the simpler approach will make it possible to compare numerically-generated

distributional moments to the analytically-derived distributional moments. And third, all of

the solution methods tested–including the least stable and the slowest–will converge in a short

window of time, allowing for a valid comparison across algorithms.

Below, we will consider the model in detail. Each country is assumed to consist of a repre-

sentative agent who maximizes utility from consumption:

maxci0E0

∞∑
t=0

βt [log(cit)] (31)

Unlike the representative agent model, it will be assumed that the natural log of productivity

is independently and identically distributed across time and across countries:

lnZit = εit, εit ∼ N(0, σ) (32)

The firm in each country produces output using aggregate capital, Kit with the following pro-

duction function:

Yit = ZitK
α
it (33)

Each economy is subject to an aggregate resource constraint:

Yit = Kit+1 − (1− δ)Kit + Cit (34)
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Aggregate capital and consumption for the global economy are computed as follows, where µi

is the mass of country i:

Kt =

N∑
i=1

Kitµi (35)

Ct =

N∑
i=1

Citµi (36)

5.4 Representative Agent Model with Nonconvexities (Infinite Horizon)

Finally, we compare the stability of ADP-POST to PEA (the other stochastic simulation

algorithm considered). This is done by introducing a non convexity into the household’s decision

rules along the capital dimension. I generate this by assuming that a minimum level of capital

is needed to produce output. Otherwise, households engage in home production and receive Ȳ :

Yt =


ZtK

α
t , K > K̃

Ȳ , K ≤ K̃
(37)

This exercise will attempt to capture something that is elusive in the more formal accuracy

and run time tests: solution methods also differ in terms of stability and ease of parameteri-

zation. In particular, ADP-POST approaches the stability of methods such as VFI and does

not require a complicated parameterization. In contrast, other stochastic simulation methods

will often diverge when nonconvexities are introduced if an extensive reparameterization is not

performed.

5.5 Model Calibration

Both the representative agent model and the heterogeneous agents model were calibrated for an

annual time period, using the parameter values given in Table 6. The annual time period allows

me to use an autoregressive parameter for the productivity process that is further from unity.8

Additionally, the time period provides an additional benefit when back-propagation is used in

an infinite horizon model, as is described in Algorithm 3.3. in the appendix. In particular, it

substantially reduces the computational intensity of solving the model.

8Many discrete approximations to continuous processes perform poorly when the series is highly persistent.

In this case, I have used the Rouwenhorst (1995), which tends to perform better than other discretization methods

when series are persistent, but is still subject to the same problem.
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Parameter Description Value

β Discount Factor .95

α Capital’s Share in Production .33

σ Standard Deviation of Technology Shock 0.035

ρ Technology Level AR(1) Coefficient 0.8

δ Physical Capital Depreciation Rate .1

Table 1: Baseline Parameter Values

5.6 Algorithm Refinements and Details

In earlier sections, I presented general algorithms for all of the solution methods that will

be tested in the following section. However, for the purposes of this paper, I made several

algorithmic refinements to ensure convergence in all of the tests. In particular, the algorithm

for PEA was adjusted to incorporate dynamic bounds for the household-level capital grid. To

understand how this works, consider a grid for capital, k ∈ [k1, ..., kkn], which is centered

around its steady state value, kkn/2+1. When the algorithm is initiated, use the smaller grid,

k ∈ [kkn/2−j , ..., kkn/2+j ], which is more tightly centered around the steady state value of capital.

After each iteration, expand the grid by adding more nodes if any endpoint nodes were chosen

in the previous step. Without this refinement, the performance of PEA was substantially worse;

and divergence was more likely. For a full description of this method, see Maliar and Maliar

(2005), which incorporates this subroutine to foster stability.

In addition to the PEA refinement, I also incorporated my own refinements for the ADP

algorithms. In particular, for all ADP-POST and MADP-POST algorithms, I incorporated the

stepsize algorithm described in Section 3.2.1. Additionally, for all MADP-POST algorithms, I

included the refinement described in Section 3.2.2, which identifies and exploits the well-behaved

region.

Finally, it is important to note that the PM approach used in this paper approximates the

value function, rather than the Euler equations. The purpose behind this decision was to make

the PM algorithm sufficiently distinct from the PEA algorithm, rather than performing the

same set of tests twice. The algorithm works by first performing VFI on a small grid. The

resulting look-up table approximation is then combined with the fixed point condition implied

by the functional equations to perform the projection. In the heterogeneous agents model,

both the PM and PEA algorithms use third order Chebychev polynomials of the first type

to transform state variables in the approximation equations. Additionally, all continuous state
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variable transformations are interacted with the agent’s employment state. In the representative

agent model, a simple, exponential polynomial of state variables is used to parameterize PEA.

5.7 Simulation Results

We will now examine the results by comparing the solution methods using run time, accuracy,

and stability as criteria. Table 2 provides the run times for the version of the model with a

closed form solution. Visual representations of the analytically-derived decision rules, numerical

solution method-specific decision rules, and the error (the difference between the two) are given

in Figures 3, 4, 5, and 6. Tables 3 and 4 show the results for the standard, representative agent

business cycle model without labor. Table 5 shows the results for the international business

cycle model for all solution methods other than ADP-POST; and Table 6 shows the results for

the same model, but solved by MADP-IS-GPU on a grid with 200,000 nodes, rather than 10,000.

All simulations were performed using a quad-core 3.40 gigahertz processor. Additionally, the

MADP-IS-GPU algorithm performed all GPU operations on an NVIDIA GeForce GTX 560 Ti

(2GB) with 384 CUDA cores.

METHOD RT (nk=100) RT (nk=1000)

VFI 00:00:21:43 00:33:39:70

PEA 00:00:00:37 00:00:00:40

PM 00:00:07:17 00:08:27:98

ADP 00:00:11:08 00:03:29:37

MADP 00:00:11:04 00:03:29.91

Table 2: Full Depreciation Business Cycle Model

Note that nk in Table 2 refers to the number of capital gridpoints used. “MAX(S)” and

“MEAN(S)” in Tables 3 and 4 refer to the maximum and mean of the standard Euler equation

residuals, which were computed at each state space node; whereas, “MAX(D)” and “MEAN(D)”

refer to the dynamic Euler equation residuals, which were computed on a simulation path with

identical draws for the exogenous processes. RT stands for run time and has the following

format: hours:minutes:seconds:hundredths of a second. In the international business cycle

model results, “STD(C)” and “STD(K)” stand for the standard deviation of consumption and

the standard deviation capital, respectively.

Table 2 provides the results for the full depreciation business cycle model. Simulations in

the first run time column were performed on a 300-node grid: 100 individual capital nodes and

3 productivity nodes. Here, VFI converged the slowest; and was followed by the ADP family
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of algorithms, and then by projection methods. PEA was substantially faster than all other

algorithms, converging in less than one second. Next, the state space was expanded in size to

3000 nodes (1000 individual capital nodes and 3 productivity nodes). This caused VFI’s run

time to increase by a factor of 94. Similarly, the run time for projection methods increased by

a factor of 70, and was longer than the run time for the ADP algorithms. In contrast, the ADP

algorithms were less affected by the curse of dimensionality and only experienced a run time

increase by a factor of approximately 19. Since an increase in the number of capital nodes does

not change the way in which the PEA algorithm is executed, there was no change in its run

time; however, there were also no changes along other dimensions, such as accuracy.

Since the model used in this first set of tests has a closed form solution, we will analyze the

accuracy of the results initially by comparing them to the analytical decision rules. The plots in

column 1 of Figures 3 and 4 display the decision rules for capital that emerge from each of the

solution methods. In each of the panels, the following period’s capital stock is plotted against

the current capital stock and productivity. A change in the level of productivity changes the

relationship between k and k’, which yields the three separate conditional decision rules shown

in each panel. Based on the first column, VFI, PEA, PM, and MADP-POST appear to have

decision rules that are visually similar to the analytical decision rules that emerge from the

model’s closed form solution.
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Figure 3: Decision Rules and Errors for AD, VFI, and PEA (100 Capital Nodes, 3 Productivity

Nodes).

The second columns of Figures 3 and 4 display the difference between the solution method’s

implied k’ and the k’ that emerges from the analytical decision rules. From these plots, we can
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Figure 4: Decision Rules and Errors for PM, ADP-POST, Modified ADP-POST (100 Capital

Nodes, 3 Productivity Nodes).

see that VFI, PEA, PM, and MADP-POST all differ only slightly from the analytical decision

rules; however, the ways in which they differ are not identical across methods. For both VFI

and PM, error sizes are almost uniformly distributed across the state space. In contrast, for

PEA and MADP-POST–the stochastic simulation methods–errors are substantially smaller in

the places most frequently visited on the simulation path. Unmodified ADP-POST yields very

small errors within a subset of the ergodic set. However, it makes substantial errors in areas far

away from the steady state, which are only infrequently visited on the simulation path.

Figures 5 and 6 provide the same information, but for the case with 1000 individual capital

nodes and 3 productivity nodes. Comparing Figures 3 and 4 to 5 and 6, we can see that an

increase in the number of individual capital nodes reduced the jaggedness of the decision rules

for VFI, PM, ADP-POST, and MADP-POST; however, it did not change their general shapes.

Additionally, with the respect to accuracy, all solution methods other than PEA appear to have

improved by an order of magnitude with respect to their errors. In particular, the order of

magnitude of the error for MADP-POST is now identical to that of VFI, even though MADP-

POST converges in small fraction of the time it takes VFI to converge. Furthermore, the run

time gap appears to be growing while the accuracy gap shrinks, suggesting that MADP-POST

will be particularly useful for problems with very large state spaces.

Next, we will consider the other measures of performance. Table 3 provides the results

for the standard business cycle model without labor. All simulations were performed on a

300-node grid: 100 individual capital nodes and 3 productivity nodes. As expected, VFI is
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Figure 5: Decision Rules and Errors for AD, VFI, and PEA (1000 Capital Nodes, 3 Productivity

Nodes)
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Figure 6: Decision Rules and Errors for PM, ADP-POST, and Modified ADP-POST (1000

Capital Nodes, 3 Productivity Nodes)

the most accurate solution method for this grid size as measured by the max standard Euler

equation error, but is substantially slower than the alternatives. Additionally, VFI performs

worse along other dimensions dimensions of accuracy, such as the mean standard Euler equation

residual, and the mean and max dynamic Euler equation residual. In particular, MADP-POST

appears to perform as well as or better than other algorithms with respect to measures of mean

error. This is because MADP-POST achieves very low errors in places frequently visited on
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the simulation path, but still retains a high degree of accuracy in areas infrequently visited,

unlike the standard version of the ADP-POST algorithm. Not surprisingly, convergence times

are similar to the full depreciation case. Here, VFI takes 3.10 times longer to converge than

PM; and 2.05 times longer to converge than ADP. PEA is substantially faster than all other

algorithms, converging in less than one second.

METHOD MAX(S) MEAN(S) MAX(D) MEAN(D) RT

VFI 3.500E-3 1.500E-3 3.300E-3 1.300E-3 00:00:22:44

PEA 1.536E-1 5.280E-2 6.906E-4 3.585E-4 00:00:00:35

PM 3.700E-3 1.500E-3 3.300E-3 1.400E-3 00:00:07:23

ADP 2.847E-1 4.320E-2 3.300E-3 1.300E-3 00:00:10:94

MADP 6.900E-3 1.000E-3 9.555E-4 3.549E-4 00:00:10:94

Table 3: Standard Business Cycle Model (100 Individual Capital Nodes, 3 Productivity Nodes,

5000-Period Simulation Length)

Table 4 provides the results for the standard neoclassical model, but now with a 3000-

node grid: 1000 individual capital nodes, and 3 productivity nodes. The purpose behind this

simulation was to determine how relative performance changes as the size of the state space

grows. As the table shows, all solution methods other than unmodified ADP-POST and PEA

improved in accuracy by roughly one order of magnitude. The limited parameterization of

PEA (a simple, exponential polynomial) fostered stability and rapid convergence, but did not

allow for gains from increasing the size of the state space. Conversely, MADP-POST experienced

substantial accuracy gains, and at a low cost: its run time increased by a factor of approximately

19. In contrast, PM took more 71 times longer to converge; and VFI took 88 times longer to

converge. This suggests that MADP-POST will perform increasingly better than PM and VFI–

in terms of the accuracy-run time tradeoff–as the state space grows. Furthermore, without

an improved parameterization for PEA, it will be unable to generate the degree of accuracy

obtainable with PM, VFI, and MADP-POST. It may also be prone to instability in more

complex models.

Next, we’ll consider the results for the international business cycle model in Tables 5 and 6.

We will focus on comparing all solution methods to the version of the MADP-POST algorithm

developed in this paper and described in Algorithm 1.2. Table 5 contains the simulations for

everything other than Algorithm 1.2. All simulations were performed on a 10,000-node grid:

100 individual capital nodes and 100 productivity nodes. The results are displayed along three

dimensions: the combined solution and simulation run time, the mean of the individual level
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METHOD MAX(S) MEAN(S) MAX(D) MEAN(D) RT

VFI 3.578E-4 1.494E-4 3.293E-4 1.475E-4 00:33:11:20

PEA 1.542E-1 5.240E-2 6.598E-5 3.453E-5 00:00:00:36

PM 3.912E-4 1.491E-4 3.595E-4 1.526E-4 00:08:34:85

ADP 2.210E-1 3.810E-2 4.500E-3 1.545E-4 00:03:29:15

MADP 1.400E-3 1.751E-4 1.876E-4 4.530E-5 00:03:28:35

Table 4: Full Depreciation Business Cycle Model (1000 Capital Nodes, 3 Productivity Nodes,

5000-Period Simulation Length)

variables (capital and consumption), and the standard deviation of the individual level variables.

The method labelled “ADR” refers to results generated using the analytical decision rules.

METHOD MEAN(C) STD(C) MEAN(K) STD(K) RT

ADR 0.3880 0.0144 0.1771 0.0067 —

VFI 0.3880 0.0156 0.1771 0.0069 22:38:58:85

PEA 0.3880 0.0144 0.1772 0.0066 00:01:46:58

PM 0.3880 0.0148 0.1771 0.0074 00:12:03:61

Table 5: International Business Cycle Model (100 Capital Nodes, 100 Productivity Nodes,

5000-Period Simulation Length)

Table 5 suggests that PEA largely outperforms VFI and PM. It takes fewer than 2 minutes

to converge, and generates means and standard deviations that are close to those generated by

iterating over the analytical decision rules with an identical sequence of shocks. The differences

are particularly striking when compared to VFI, which takes more than 22 hours to converge

and does not yield any improvements in accuracy.

METHOD MEAN(C) STD(C) MEAN(K) STD(K) β̂α RT

MADP-IS-GPU 0.3881 0.0144 0.1787 0.0066 0.3153 00:00:58:48

Table 6: International Business Cycle Model (1000 Capital Nodes, 200 Productivity Nodes,

5000-Period Simulation Length)

In Table 6, we consider a solution to the same model, but with 200,000 gridpoints: 1000

capital nodes and 200 productivity nodes. The only solution method we consider is MADP,

augmented by the information-sharing algorithm (Algorithm 1.2) and GPU-computing. Here,

we can see that MADP-IS-GPU is faster than all other algorithms listed in Table 5, including
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PEA, even though the number of gridpoints has increased by a factor of 20. Furthermore, it

provides highly accurate approximations of the cross-sectional standard deviations of capital

and consumption. The means are also accurate, but are less accurate than those generated

by other methods. Additionally a regression of period t+1 capital values on period t output

yields a coefficient of 0.3153, which suggests that the numerical decision rule is very close to the

analytical decision rule, which implies a coefficient of .3135 (i.e. kt+1 = αβyt).

It is important to note, however, that Table 6 is not directly comparable to Table 5. PEA,

for instance, can be rewritten to exploit GPU-computing; and doing so would result in run

time reductions for a given grid size. The purpose of this exercise was to demonstrate that an

appropriately-parallelized version of the MADP-IS algorithm can exploit GPU-computing to

generate massive convergence time reductions when at least one of two conditions is present: 1)

the exogenous component of the state space is large; and 2) the post-decision state has a lower

dimension than the pre-decision state. Note that we generate the second condition by assuming

that zt is i.i.d., rather than an AR(1) process, which allows us to represent the post-decision

state by kt. This does not change the dimensionality of the decision space, but does lower the

dimension of the value function from k̄xz̄ to k̄.

Next, we consider a test that compares the stability of PEA and ADP-POST. Thus far,

all tests have been designed to ensure that each algorithm would converge with a parsimonious

parameterization. However, methods such as PEA can become unstable when problems become

more sophisticated. To demonstrate this, I modified the standard neoclassical model to gener-

ate a discontinuity in the decision rules, as described in Section 5.3. I then ran the programs

for both PEA and ADP-POST without changing anything other than the model. The grids,

parameterization, and starting values remained unchanged. PEA failed to capture the discon-

tinuity and diverged. ADP-POST with no modifications converged. Figure 7 below shows the

decision rule for consumption that emerged from ADP-POST.

This test described above is far from exhaustive, but demonstrates the usefulness of ADP-

POST: it not only yields substantial convergence time reductions for a given level of accuracy,

but is also able to capture any functional form–including one that incorporates nonconvexities–

without requiring a reparameterization. This suggests that we can use ADP-POST to identify

discontinuities within the ergodic set; and then apply a modified ADP-POST algorithm that

explicitly accounts for the discontinuities identified.

Finally, we demonstrate the value of using the WLS modification of the ADP-POST algo-

rithm described in Section 3.2.2. The purpose of this modification was to reduce the amount

of weight placed on noisy observations in parts of the state space that were infrequently (or
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never) visited on the simulation path. This reduces a natural bias towards the initial values

that is otherwise generated by ADP-POST algorithms. This test compares the coefficients

from the modified ADP-POST algorithm under two estimation schemes: OLS and WLS with

the weighting matrix described in Section 3.2.2. This comparison is done by performing the

following regression:

k′(k, z) = ζzkα + ε (38)

Note that the analytical decision rule for the full depreciation model suggests that ζ = βα.

Thus, we can use the estimate of ζ to check if the decision rules are accurate. Figure 8 plots

ζ̂ for 50 iterations of the algorithm. For WLS, ζ̂ = βα after 6 iterations. For OLS, this still

has not occurred when the test ends after 50 iterations. This is because large parts of the state

space are never explored, but continue to exert influence when all observations are given equal

weight.

6 Conclusion

The ADP-POST algorithm provides a promising alternative to currently-used global solution

methods for dynamic economic models. With the modifications introduced in this paper, it

converges faster than VFI and PM, but typically slower than the stochastic version of PEA.

Run time differences between the modified version of ADP-POST and VFI are exploding in the
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Capital Nodes, 100 Productivity Nodes, 5000-Period Simulation Length)

size of the state space; and become especially pronounced when the exogenous component of

the state space is large, since ADP-POST does not require expectations to be computed.

In addition to achieving fast convergence, the modified version of ADP-POST yields Euler

equation errors and dynamic Euler equation errors that are generally of the same order of

magnitude as those generated by VFI. Additionally, the standard Euler equation errors from

ADP-POST tend to be smaller than those generated by stochastic PEA in the tests performed.

However, the unmodified version of ADP-POST generated results that were typically 1-2 orders

of magnitude less accurate than the modified version introduced in this paper. Additionally,

unmodified ADP-POST revealed a clear bias towards its initialization in tests that compared

it to the analytical decision rules, but this was greatly mitigated by identifying and exploiting

the well-behaved region in the modified version.

The only solution method that outperformed MADP-POST along both the run time and

accuracy dimensions on certain tests was PEA. It is important to note, however, that PEA is

both sensitive to parameterization and the choice of parameterized equations.9 Furthermore,

it can become increasingly difficult to parameterize PEA in large models; and accuracy gains

beyond a certain magnitude will require the addition of higher order polynomial transformations

of the state variables. In contrast, ADP-POST is capable of replicating the functional form

of any decision rule, including decision rules that incorporate discontinuities. Additionally,

9Maliar and Maliar (2005) show that the choice of equation can lead to dramatic differences in convergence

speed.
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when combined with the information-sharing algorithm and GPU-computing in heterogeneous

agent model applications, the algorithm introduced in this paper (MADP-IS-GPU) was able to

converge faster and retain a high degree of accuracy, even though it was performed on a grid

20 times larger.

Finally, it is important to note that this paper does not fully showcase the set of tools that

ADP-POST algorithms offer. In several places in the paper, I have mentioned that ADP-POST

and MADP-POST are particularly well-suited to dealing with problems that have multiple,

correlated exogenous processes or exogenous processes for which empirical data on exogenous

processes is available. In the paper, I only provide algorithms for implementing these ideas–

and not test results to demonstrate their advantages. In cases where exogenous processes are

complicated and exhibit dependence, ADP-POST’s value goes well beyond the gains it provides

by reducing run times. It makes solving computational models more accessible; and permits

economists to solve increasingly sophisticated models by simplifying the programming task.

For this reason, formal test results for accuracy and run time may be less useful for these

applications.

A Proof: Pre and Post-Decision Bellman Equation Relation-

ships

In this subsection of the appendix, I will prove the relationships between the pre and post-

decision Bellman equations that were stated in equations (10) and (12). I will start with (10),

which makes the following claim:

V x(st, xt−1) = E[V (st, xt)|st, xt−1]

s.t. st+1 = T (ct, st, xt), ct ∈ Γ(st, xt), xt+1 = f(xt, εt+1), ∀t = 0, 1, ...
(39)

Now, recall equation (9), which states the value of being in post-decision state, (st, xt−1):

V x(st, xt−1) = E{max{ct+s}∞s=0

∞∑
s=0

βsE[u(ct+s)|st, xt−1]}

s.t. st+s+1 = T (ct+s, st+s, xt+s), ct+s ∈ Γ(st+s, xt+s), xt+s+1 = f(xt+s, εt+s), ∀s = 0, 1, ...

(40)

Notice that we may rewrite this equation using the Law of Iterated Expectations (LIE):
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V x(st, xt−1) = E{max{ct+s}∞s=0

∞∑
s=0

βsE[u(ct+s)|st, xt]|st, xt−1}

s.t. st+s+1 = T (ct+s, st+s, xt+s), ct+s ∈ Γ(st+s, xt+s), xt+s+1 = f(xt+s, εt+s), ∀s = 0, 1, ...

(41)

Next, use the definition of the value of state (st, xt):

V (st, xt) = max{ct+s}∞s=0

∞∑
s=0

βsE[u(ct+s)|st, xt] (42)

Substituting (A.4) into (A.3) yields (A.1), which was our original claim:

V x(st, xt−1) = E[V (st, xt)|st, xt−1]

s.t. st+1 = T (ct, st, xt), ct ∈ Γ(st, xt), xt+1 = f(xt, εt+1), ∀t = 0, 1, ...
(43)

We will now prove the claim from equation (12) that demonstrates the connection between the

pre-decision and post-decision Bellman equations:

V (st, xt) = maxctu(ct) + βV x(st+1, xt) (44)

Start by recalling the standard Bellman equation for a stochastic dynamic programming prob-

lem:

V (st, xt) = maxctu(ct) + βE[V (st+1, xt+1)|st, xt]

s.t. st+1 = T (ct, st, xt), ct ∈ Γ(st, xt), xt+1 ∈ f(xt, εt+1)
(45)

Next, note that (st, xt)–the pre-decision state–pins down ct, which then pins down st+1:

st+1 = T (Γ(st, xt), st, xt) (46)

This suggests that the information set can be written as (st+1, xt):

V (st, xt) = maxctu(ct) + βE[V (st+1, xt+1)|st+1, xt]

s.t. st+1 = T (ct, st, xt), ct ∈ Γ(st, xt), xt+1 ∈ f(xt, εt+1)
(47)

Recalling the relationship derived earlier in equation (A.5), we may rewrite this to yield (12),

which is what we wanted to prove:

V (st, xt) = maxctu(ct) + βV x(st+1, xt)

s.t. st+1 = T (ct, st, xt), ct ∈ Γ(st, xt), xt+1 ∈ f(xt, εt+1)
(48)
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B Proof: Closed-Form Solution for Full Depreciation Case

Assume that z is a Markov process. Additionally, let next period variables be denoted with

primes. That is, xt+1 = x′. Finally, assume that δ = 1 and recall the budget constraint and

Euler equation for capital from the representative agent model described earlier:

c = zkα − k′ (49)

1

c
= βE

{
αz′

c′

∣∣∣∣∣z
}

(50)

Now, assume that the decision rule for capital takes the following form:

Ξ(k, z) = g0 + g1zk
α (51)

Next, plug the budget constraint into the Euler equation for capital:

1

zkα − k′
= βE

{
αz′k′α−1

z′k′α − k′′

∣∣∣∣∣z
}

(52)

Now, add the assumed decision rule:

1

(1− g1)zkα − g0
= βE

{
αz′(g0 + g1zk

α)α−1

z′(g0 + g1zkα)α − g0 − g1z′(g0 + g1zkα)α

∣∣∣∣∣z
}

(53)

To simplify things, we will look for a solution where g0 = 0.10 This allows us to simplify the

above equation as follows:

1

(1− g1)zkα
= βE

{
αz′(g1zk

α)α−1

z′(g1zkα)α − g1z′(g1zkα)α

∣∣∣∣∣z
}

(54)

→ 1

(1− g1)zkα
= βE

{
α

(1− g1)g1zkα

∣∣∣∣∣z
}

(55)

→ g1 = αβ (56)

We can then substitute this into our initial guess for the decision rule, yielding the following:

k′ = αβzkα (57)

Note that we have demonstrated that the decision rule given above is compatible with the

model’s first order conditions.

10It can be shown that there will be no solution for the case when g0 6= 0.
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C Finite Horizon Algorithms and Extensions

The primary focus of this research is to test and extend the infinite-horizon, ADP-POST

framework as a solution method for dynamic economic models. However, several modified ver-

sions of this framework can be used to solve finite horizon models; and may provide useful tools

for OLG macro models with many heterogeneous agents. For this reason, I’ve included a brief

appendix section with an overview of such methods. The proceeding subsections are ordered as

follows. First, I provide a basic algorithm for solving finite horizon problems using pre-decision

state dynamic programming (backwards recursion). Next, I present the “double pass” version

of finite horizon dynamic programming using ADP-POST. This includes a subroutine called

back-propagation. Finally, I provide a brief explanation of how this “double pass” strategy

might be employed to solve infinite horizon problems as well.

C.1 Algorithm 3.1: Backwards Recursion

The basic algorithm for backwards recursion proceeds as follows:

• Step 0 : Discretize the state space. Choose a grid for endogenous, aggregate state variables,

s = {s1, ..., sN}, where sh < sj if h < j. Discretize the exogenous processes, x, into a

K-state Markov chain with an associated transition matrix, P , where element pk,l is the

probability of transitioning from state k to l. For heterogeneous agents models, do this

for both aggregate and individual-level state variables. Choose a maximum age, ā, where

A = 1, ..., ā.

• Step 1 : At ā, solve Vā(si, xj) = maxsmu(si, xj , sm), at all grid points, s x x.

• Step 2 : Using the value of each state at age ā determined in Step 1, compute the value of

choosing all possible post-decision state, sm, at age ā − 1: wā−1
m (si, xj) = u(si, xj , sm) +

β
∑K

l=1 pj,lV
ā(sm, xl).

• Step 3 : For each grid point, (i,j), identify the index associated with the choice of endoge-

nous state variables that maximizes wm(si, sj), m
∗. Construct V ā−1 as follows for all (i,j):

V amax−1(Si, Xj) = wm∗ .

• Step 4 : Repeat Steps 2-3 for ā− 2, ..., 1. Use the resulting age-specific value functions to

determine the age-specific policy functions. For heterogeneous agents models, nest Steps

1-4 within an aggregation algorithm, as described earlier.

Since VFI and backwards recursion both revolve around discretizing the state space, they also

both suffer from the curse of dimensionality when the household’s choice problem involves
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many continuous state variables. Similarly, improvements to both approaches rely on the same

family of techniques. In particular, linear and cubic interpolation are two common strategies

for overcoming the curse of dimensionality when such solution methods are applied.

C.2 Algorithm 3.2 Double-Pass ADP-POST (OLG)

The algorithm below is referred to as a “double-pass” version of ADP-POST because it

contains both the forward simulation component from the finite horizon analog of the ADP-

POST algorithm and a “back-propagation” step, described below.

The Double-Pass ADP-POST (OLG) Algorithm proceeds as follows:

• Step 0 : i. Perform all initializations.

– Initialize the “look-up table” approximation of the value function in all states. That

is, for each state, (s ∈ s, x ∈ x, a ∈ a, S ∈ S, X ∈ X), assign a starting value to

V
0
a(S,X, s, x), where the superscript 0 indicates that this is an approximation taken

at the 0th iteration and where a is the household’s age.11 Note that capital letters

represent aggregate variables.

– ii. Initialize the state, (s0 ∈ s, x0 ∈ x, a0 ∈ a, S0 ∈ S, X0 ∈ X). For overlapping

generations models, there may be natural initial states for idiosyncratic shocks and

endogenous, individual-specific state variables (i.e. a household may start with no

assets), but aggregate-level state variables will depend on period when the household

enters the model–and, thus, must be initialized separately for each agent.12

– iii. Initialize the aggregation method states using the Krusell and Smith (1998)

algorithm or the explicit aggregation method (Den Haan and Rendahl, 2010).

– iv. Increment the iteration counter to n=n+1.

• Step 1 : Choose a simulation period length, T. Generate a sample of the exogenous pro-

cesses, (Xt, xa,t), for the simulation period (1,...,T) and for all ages (1, ...ā), where xa,t

denotes the set of individual-specific state variables for the age a household at time t.

• Step 2 : For all periods, t=1,...T, and all ages, 1,...,ā, perform the following four steps:

11Recall that finite horizon dynamic programming problems require us to use different approximations of the

value function at each age, since the structure of the choice problem fundamentally changes over the lifecycle.

Additionally, note that we could also include a ∈ a as a deterministic state variable.
12For a more complete treatment of initializing state variables in OLG macro models, see Heer and Maussner

(2009).

42



– i. Perform the “forward pass” portion of the algorithm. Choose controls to max-

imize the expression inside of the expectation of Va(St−1, Xt−1, sa,t, xa−1,t−1) for a

particular realization of (Xt, xa,t):

Ṽ n
a (St−1, Xt−1, sa,t, xa−1,t−1) = maxCtu(Ct) + βV

n−1
a+1(St, Xt, sa+1,t+1, xa,t)

– ii. Perform back-propagation for each agent. This involves updating V n
a using infor-

mation gained about the values of states from future periods, but on the same state

trajectory. This can be accomplished by recursively computing Ṽa in each period

each agent is alive, starting in their respective terminal periods:

Ṽ n
a (St−1, Xt−1, sa−1,t−1, xa−1,t−1) = u(Ĉt) + βṼ n−1

a+1 (St, Xt, ˆsa+1,t+1, xa,t)

Note that carets are used to denote endogenous state variables that were selected on

the forward-pass step of the algorithm.

– iii. Compute the expectation by updating the value function approximation, V n−1
a :

V n
a (St−1, Xt−1, sa,t, xa−1,t−1) = (1− αn−1)V̄a

n−1
(St−1, Xt−1, sa,t, xa−1,t−1)

+ αn−1Ṽ
n
a (St−1, Xt−1, sa,t, xa−1,t−1)

– iv. Use the result from the maximization step, sa+1,t+1, the realization of the exoge-

nous processes, (Xt+1, xa+1,t+1), and the aggregate state, St+1, to compute the next

period’s pre-decision state.

• Step 3: Check convergence criterion. If satisfied, go to Step 4. If not satisfied, increment

n and go to Step 1.

• Step 4: Update the paths and laws of motion for the aggregate states. Check the aggregate

convergence criterion. If satisfied, go to Step 5. If not satisfied, go to Step 1.

• Step 5: Return the value function approximation, Va(S,X)N , in the form of a look-up

table.

The most important departure from ADP-POST can be found in Step 2(ii). Here, we

perform the back-propagation step, which permits us to construct an unbiased approximation of

the value function. When the “forward pass” portion of the algorithm is performed, it generates

a value function approximation that depends on two things: 1) utility function evaluations on the

simulation path; and 2) post-decision state value initializations. However, when Ṽ n
a+1 replaces

V̄ n−1
a+1 as an update to Ṽ n

a , the value function approximation incorporates information about the

utility derived in future states on this particular simulation trajectory.

Finally, we will consider an extension of the back-propagation mechanism to the infinite

horizon case.
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C.3 Algorithm 3.3: Double-Pass ADP-POST (Infinite Horizon)

Algorithm 3.3 differs from Algorithm 3.2 in two important ways. First, it covers the infinite

horizon case. And second, it only performs the back-propagation step on a subset of the

simulated data: 1, .., T̄ , where T > T̄ . The reason why only a subset of the data is used is

because ˜̃V n is recursively constructed, which means that it will be downward-biased in finite

sample approximations, since it will miss the value attributable to periods T+1, ...∞. Now, if an

agent is in period 10 and T is large, then the recursively computed value function approximation

in that period will not be substantially downward-biased, since T-10 is large, which means that

any value from T + 1, ...,∞ will be heavily discounted and therefore negligible. On the other

hand, if the agent is at T-1, then the future streams of utility from T+1, ...,∞ will be important,

which will yield a substantial downward-bias. For this reason, the algorithm only performs the

back-propagation step on 1, ..., T̄ . Furthermore, note that the larger T − T̄ is, the less biased

the value function approximations will be, but the longer it will take to achieve convergence,

since it will not be possible to fully exploit back-propagation.

• Step 0 : See Algorithm 3.2.

• Step 1 : Choose a simulation period length, T, and a cutoff length, T̄ , where T > T̄ .

Generate a sample of the exogenous processes, Xt, for the simulation period: 1,...,T.

• Step 2 : For periods, t=1,...,T, perform the following five steps:

– i. Choose controls to maximize the expression inside of the expectation of V (St−1, Xt−1)

for a particular realization ofXt: Ṽ
n(St−1, Xt−1, sit, xit−1) = maxctu(ct)+βV

n−1
(St, Xt, sit+1, xit)

– ii. Perform the back-propagation step. This involves updating V n using informa-

tion gained about the values of states from future periods, but on the same state

trajectory. This can be accomplished by recursively computing ˜̃V n in each period,

starting in period T: ˜̃V n(St−1, Xt−1, sit, xit−1) = u(ĉt)+βṼ n−1(St, Xt, ˆsit+1, xit) Note

that carets are used to denote household-level endogenous state variables that were

selected on the forward-pass step of the algorithm.

– iii. For 1,...,T̄ , set Ṽ n(St−1, Xt−1, sit, xit−1)= ˜̃V n(St−1, Xt−1, sit, xit−1).

– iv. Compute the expectation by updating the value function approximation, V n−1:

V n(St−1, Xt−1, sit, xit−1) = (1− αn−1)V̄ n−1(St−1, Xt−1, sit, xit−1) +

αn−1Ṽ
n(St−1, Xt−1, sit, xit−1)

– v. Use the result from the maximization step, sit+1, the realization of the exogenous

processes, Xt+1, xit+1, and the aggregate state, St+1, to compute the next period’s
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pre-decision state.

• Step 3: Check convergence criterion. If satisfied, go to Step 4. If not satisfied, increment

n and go to Step 1.

• Step 4: Return the value function approximation, V (s, x)N , in the form of a look-up table.

Finally, note that the information-sharing subroutine in Algorithm 1.2 can be applied to

Algorithms 3.2 and 3.3 to improve performance.

References

Aiyagari, S.R. 1994. “Uninsured Idiosyncratic Risk and Aggregate Saving.” Quarterly Journal

of Economics Vol. 109, 659-684.

Bellman, R. 1954. “The Theory of Dynamic Programming.” Bulletin of the American Mathe-

matical Society Vol 60, 503515.

Bertsekas, D. 2011. “Chapter 6: Approximate Dynamic Programming.” In Dynamic Program-

ming and Optimal Control. Vol. II, 3rd Edition. MIT. Draft.

Sutton, R., & Barto, A. 1998. Reinforcement Learning. Cambridge, Massachusetts: The MIT

Press.

Christiano, L. & Fisher, J. 2000. “Algorithms for Solving Dynamic Models with Occasionally

Binding Constraints.” Journal of Economic Dynamics and Control Vol. 24, 1179-1232.

Darken, C. & Moody, J. 1992. “Towards Faster Stochastic Gradient Search,” in J. Moody,

D.L. Hanson, & R.P. Lippmann, eds, Advances in Neural Information Processing Systems 4,

1009-1016.

DeJong, D., & Dave, C. 2007. Structural Macroeconometrics. Princeton, New Jersey: Princeton

University Press.

Den Haan, W.J. 2010. “Comparison of Solutions to the Incomplete Markets Model with Aggre-

gate Uncertainty.” Journal of Economic Dynamics and Control Vol. 34, 4-27.

Den Haan, W.J. 2010. “Assessing the Aggregate Law of Motion in Models with Heterogeneous

Agents.” Journal of Economic Dynamics and Control Vol. 34, 79-99.

Den Haan, W.J. & Marcet, A. 1994. “Accuracy in Simulations.” Review of Economic Statistics

Vol. 8, 31-34.

45



Den Haan, W.J. & Marcet, A. 1990. “Solving the Stochastic Growth Model by Parameterizing

Expectations.” Journal of Business and Economic Statistics, Vol. 8, 31-34.

Den Haan, W.J. & Rendahl, P. 2010. ”Solving the Incomplete Markets Model with Aggregate

Uncertainty Using Explicit Aggregation.” Journal of Economic Dynamics and Control Vol.

34(1), 69-78.

Duffy, J. & McNelis, P. 2001. “Approximating and Simulating the Stochastic Growth Model:

Parameterized Expectations, Neural Networks, and the Genetic Algorithm.” Journal of Eco-

nomic Dynamics and Control Vol. 25, 1273-1303.

Heer, B., & Maussner, A. 2008. “Computation of Business Cycle Models: A Comparison of

Numerical Methods.” Macroeconomic Dynamics Vol. 12, 641-663.

Heer, B., & Maussner, A. 2009. Dynamic General Equilibrium Modeling: Computational Meth-

ods and Applications. 2nd Edition. Berlin: Springer.

Judd, K. 1998. Numerical Methods in Economics. Cambridge, MA, London: MIT Press.

Judd, K. 1992. “Projection Methods for Solving Aggregate Growth Models.” Journal of Eco-

nomic Theory Vol. 58(2), 410-452.

Judd, K., Maliar, L., & Maliar, S. 2011. “Numerically Stable and Accurate Stochastic Simulation

Approaches for Solving Dynamic Economic Models.” Quantitative Economics Vol. 2(2), 173-

210.

Krusell, P. & Smith, A. 1998. “Income and Wealth Heterogeneity in the Macroeconomy.” Jour-

nal of Political Economy Vol. 106, 867-96.

Marcet, A. 1988. “Solving Nonlinear Models by Parameterizing Expectations.” Working Paper,

Carnegie-Mellon University.

McGrattan, E. 1999. “Application of Weighted Residual Methods to Dynamic Economic Mod-

els.” In Ramon Marimon and Andrew Scott, Computational Methods for the Study of Dynamic

Economies. Oxford and New York: Oxford University Press, 114-142.

Maliar, L. & Maliar, S. 2005. “Parameterized Expectations Algorithm: How to Solve for Labor

Easily.” Computational Economics, Society for Computational Economics Vol. 25(3), 269-274.

Maliar, L., Maliar, S., & Valli, F. 2010. “Solving the Incomplete Markets Model with Aggregate

Uncertainty Using the Krusell-Smith Algorithm.” Journal of Economic Dynamics and Control

Vol. 34(1), 42-49.

46



Maxwell, M. 2011. “Approximate Dynamic Programming Policies and Performance Bounds for

Ambulance Redeployment.” Dissertation, Graduate School of Cornell University.

Powell, W. 2007. Approximate Dynamic Programming: Solving the Curses of Dimensionality.

Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., Hoboken, New Jersey.

Powell, W. 2012. “Perspectives of Approximate Dynamic Programming,” Annals of Operations

Research, Springer, DOI 10.1007/s10479-012-1077-6.

Powell, W., & Ryzhov, I. 2010. “Approximate Dynamic Programming With Correlated Bayesian

Beliefs,” Proceedings of the 48th Allerton Conference on Communication, Control, and Com-

puting.

Rouwenhorst, K.G. 1995. “Asset Pricing Implications of Equilibrium Business Cycle Models.”

In: Cooley, T.F. (Ed.), Frontiers of Business Cycle Research. Princeton, NJ: Princeton Uni-

versity Press.

Sargent, T.J. 1987. Dynamic Macroeconomic Theory. Cambridge, MA: Harvard University

Press.

Simao, H., Day, J., Abraham, G., Gifford, T., Nienow, T., and Powell, W. (2009). An Ap-

proximate Dynamic Programming Algorithm for Large-Scale Fleet Management: A Case

Application. Transportation Science Vol. 43(2), 178-197.

Tauchen, G. 1986. “Finite State Markov-Chain Approximations to Univariate and Vector Au-

toregressions.” Economic letters Vol. 20, 177-181.

Van Roy, B., Bertsekas, D., Lee, Y., & Tsitsiklis, J.N. 1997. A Neurodynamic Programming

Approach to Retailer Inventory Management. In Proceedings of the 36th IEEE Conference

on Decision and Control Vol. 4, 4052-4057.

47



Earlier Working Papers: 
For a complete list of Working Papers published by Sveriges Riksbank, see www.riksbank.se 

 

Estimation of an Adaptive Stock Market Model with Heterogeneous Agents  
by Henrik Amilon 

2005:177 

Some Further Evidence on Interest-Rate Smoothing: The Role of Measurement Errors in the Output Gap  
by Mikael Apel and Per Jansson 

2005:178 

Bayesian Estimation of an Open Economy DSGE Model with Incomplete Pass-Through  
by Malin Adolfson, Stefan Laséen, Jesper Lindé and Mattias Villani 

2005:179 

Are Constant Interest Rate Forecasts Modest Interventions? Evidence from an Estimated Open Economy 
DSGE Model of the Euro Area  
by Malin Adolfson, Stefan Laséen, Jesper Lindé and Mattias Villani 

2005:180 

Inference in Vector Autoregressive Models with an Informative Prior on the Steady State 
by Mattias Villani 

2005:181 

Bank Mergers, Competition and Liquidity  
by Elena Carletti, Philipp Hartmann and Giancarlo Spagnolo 

2005:182 

Testing Near-Rationality using Detailed Survey Data  
by Michael F. Bryan and Stefan Palmqvist 

2005:183 

Exploring Interactions between Real Activity and the Financial Stance  
by Tor Jacobson, Jesper Lindé and Kasper Roszbach 

2005:184 

Two-Sided Network Effects, Bank Interchange Fees, and the Allocation of Fixed Costs  
by Mats A. Bergman 

2005:185 

Trade Deficits in the Baltic States: How Long Will the Party Last?  
by Rudolfs Bems and Kristian Jönsson 

2005:186 

Real Exchange Rate and Consumption Fluctuations follwing Trade Liberalization  
by Kristian Jönsson 

2005:187 

Modern Forecasting Models in Action: Improving Macroeconomic Analyses at Central Banks 
by Malin Adolfson, Michael K. Andersson, Jesper Lindé, Mattias Villani and Anders Vredin 

2005:188 

Bayesian Inference of General Linear Restrictions on the Cointegration Space  
by Mattias Villani 

2005:189 

Forecasting Performance of an Open Economy Dynamic Stochastic General Equilibrium Model 
by Malin Adolfson, Stefan Laséen, Jesper Lindé and Mattias Villani 

2005:190  

Forecast Combination and Model Averaging using Predictive Measures  
by Jana Eklund and Sune Karlsson 

2005:191 

Swedish Intervention and the Krona Float, 1993-2002  
by Owen F. Humpage and Javiera Ragnartz 

2006:192 

A Simultaneous Model of the Swedish Krona, the US Dollar and the Euro 
by Hans Lindblad and Peter Sellin 

2006:193 

Testing Theories of Job Creation: Does Supply Create Its Own Demand? 
by Mikael Carlsson, Stefan Eriksson and Nils Gottfries 

2006:194 

Down or Out: Assessing The Welfare Costs of Household Investment Mistakes 
by Laurent E. Calvet, John Y. Campbell and Paolo Sodini  

2006:195 

Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models 
by Paolo Giordani and Robert Kohn 

2006:196 

Derivation and Estimation of a New Keynesian Phillips Curve in a Small Open Economy 
by Karolina Holmberg 

2006:197 

Technology Shocks and the Labour-Input Response: Evidence from Firm-Level Data 
by Mikael Carlsson and Jon Smedsaas 

2006:198 

Monetary Policy and Staggered Wage Bargaining when Prices are Sticky 
by Mikael Carlsson and Andreas Westermark 

2006:199 

The Swedish External Position and the Krona  
by Philip R. Lane 

2006:200 



Price Setting Transactions and the Role of Denominating Currency in FX Markets 
by Richard Friberg and Fredrik Wilander 

2007:201  

The geography of asset holdings: Evidence from Sweden 
by Nicolas Coeurdacier and Philippe Martin 

2007:202 

Evaluating An Estimated New Keynesian Small Open Economy Model  
by Malin Adolfson, Stefan Laséen, Jesper Lindé and Mattias Villani 

2007:203 

The Use of Cash and the Size of the Shadow Economy in Sweden 
by Gabriela Guibourg and Björn Segendorf 

2007:204 

Bank supervision Russian style: Evidence of conflicts between micro- and macro-prudential concerns  
by Sophie Claeys and Koen Schoors  

2007:205 

Optimal Monetary Policy under Downward Nominal Wage Rigidity 
by Mikael Carlsson and Andreas Westermark 

2007:206 

Financial Structure, Managerial Compensation and Monitoring 
by Vittoria Cerasi and Sonja Daltung 

2007:207 

Financial Frictions, Investment and Tobin’s q  
by Guido Lorenzoni and Karl Walentin 

2007:208 

Sticky Information vs Sticky Prices: A Horse Race in a DSGE Framework 
by Mathias Trabandt 

2007:209 

Acquisition versus greenfield: The impact of the mode of foreign bank entry on information and bank 
lending rates  
by Sophie Claeys and Christa Hainz 

2007:210 

Nonparametric Regression Density Estimation Using Smoothly Varying Normal Mixtures 
by Mattias Villani, Robert Kohn and Paolo Giordani 

2007:211 

The Costs of Paying – Private and Social Costs of Cash and Card 
by Mats Bergman, Gabriella Guibourg and Björn Segendorf 

2007:212 

Using a New Open Economy Macroeconomics model to make real nominal exchange rate forecasts  
by Peter Sellin 

2007:213 

Introducing Financial Frictions and Unemployment into a Small Open Economy Model 
by Lawrence J. Christiano, Mathias Trabandt and Karl Walentin 

2007:214 

Earnings Inequality and the Equity Premium  
by Karl Walentin 

2007:215 

Bayesian forecast combination for VAR models  
by Michael K. Andersson and Sune Karlsson 

2007:216 

Do Central Banks React to House Prices? 
by Daria Finocchiaro and Virginia Queijo von Heideken 

2007:217 

The Riksbank’s Forecasting Performance 
by Michael K. Andersson, Gustav Karlsson and Josef Svensson 

2007:218 

Macroeconomic Impact on Expected Default Freqency 
by Per Åsberg and Hovick Shahnazarian 

2008:219 

Monetary Policy Regimes and the Volatility of Long-Term Interest Rates 
by Virginia Queijo von Heideken 

2008:220 

Governing the Governors: A Clinical Study of Central Banks 
by Lars Frisell, Kasper Roszbach and Giancarlo Spagnolo 

2008:221 

The Monetary Policy Decision-Making Process and the Term Structure of Interest Rates 
by Hans Dillén 

2008:222 

How Important are Financial Frictions in the U S and the Euro Area 
by Virginia Queijo von Heideken 

2008:223 

Block Kalman filtering for large-scale DSGE models  
by Ingvar Strid and Karl Walentin 

2008:224 

Optimal Monetary Policy in an Operational Medium-Sized DSGE Model 
by Malin Adolfson, Stefan Laséen, Jesper Lindé and Lars E. O. Svensson 

2008:225 

Firm Default and Aggregate Fluctuations  
by Tor Jacobson, Rikard Kindell, Jesper Lindé and Kasper Roszbach 

2008:226 



Re-Evaluating Swedish Membership in EMU: Evidence from an Estimated Model 
by Ulf Söderström 

2008:227 

The Effect of Cash Flow on Investment: An Empirical Test of the Balance Sheet Channel 
by Ola Melander 

2009:228 

Expectation Driven Business Cycles with Limited Enforcement 
by Karl Walentin 

2009:229 

Effects of Organizational Change on Firm Productivity 
by Christina Håkanson 

2009:230 

Evaluating Microfoundations for Aggregate Price Rigidities: Evidence from Matched Firm-Level Data on 
Product Prices and Unit Labor Cost  
by Mikael Carlsson and Oskar Nordström Skans 

2009:231 

Monetary Policy Trade-Offs in an Estimated Open-Economy DSGE Model 
by Malin Adolfson, Stefan Laséen, Jesper Lindé and Lars E. O. Svensson 

2009:232 

Flexible Modeling of Conditional Distributions Using Smooth Mixtures of Asymmetric 
Student T Densities  
by Feng Li, Mattias Villani and Robert Kohn 

2009:233 

Forecasting Macroeconomic Time Series with Locally Adaptive Signal Extraction 
by Paolo Giordani and Mattias Villani 

2009:234 

Evaluating Monetary Policy  
by Lars E. O. Svensson 

2009:235 

Risk Premiums and Macroeconomic Dynamics in a Heterogeneous Agent Model 
by Ferre De Graeve, Maarten Dossche, Marina Emiris, Henri Sneessens and Raf Wouters 

2010:236 

Picking the Brains of MPC Members  
by Mikael Apel, Carl Andreas Claussen and Petra Lennartsdotter 

2010:237 

Involuntary Unemployment and the Business Cycle  
by Lawrence J. Christiano, Mathias Trabandt and Karl Walentin 

2010:238 

Housing collateral and the monetary transmission mechanism  
by Karl Walentin and Peter Sellin 

2010:239 

The Discursive Dilemma in Monetary Policy  
by Carl Andreas Claussen and Øistein Røisland 

2010:240 

Monetary Regime Change and Business Cycles  
by Vasco Cúrdia and Daria Finocchiaro 

2010:241 

Bayesian Inference in Structural Second-Price common Value Auctions  
by Bertil Wegmann and Mattias Villani 

2010:242 

Equilibrium asset prices and the wealth distribution with inattentive consumers 
by Daria Finocchiaro 

2010:243 

Identifying VARs through Heterogeneity: An Application to Bank Runs 
by Ferre De Graeve and Alexei Karas 

2010:244 

Modeling Conditional Densities Using Finite Smooth Mixtures 
by Feng Li, Mattias Villani and Robert Kohn 

2010:245 

The Output Gap, the Labor Wedge, and the Dynamic Behavior of Hours 
by Luca Sala, Ulf Söderström and Antonella Trigari 

2010:246 

Density-Conditional Forecasts in Dynamic Multivariate Models 
by Michael K. Andersson, Stefan Palmqvist and Daniel F. Waggoner 

2010:247 

Anticipated Alternative Policy-Rate Paths in Policy Simulations 
by Stefan Laséen and Lars E. O. Svensson 

2010:248 

MOSES: Model of Swedish Economic Studies  
by Gunnar Bårdsen, Ard den Reijer, Patrik Jonasson and Ragnar Nymoen 

2011:249 

The Effects of Endogenuos Firm Exit on Business Cycle Dynamics and Optimal Fiscal Policy  
by Lauri Vilmi 

2011:250 

Parameter Identification in a Estimated New Keynesian Open Economy Model 
by Malin Adolfson and Jesper Lindé 

2011:251 

Up for count? Central bank words and financial stress  
by Marianna Blix Grimaldi 

2011:252 



Wage Adjustment and Productivity Shocks 
by Mikael Carlsson, Julián Messina and Oskar Nordström Skans 

2011:253 

Stylized (Arte) Facts on Sectoral Inflation  
by Ferre De Graeve and Karl Walentin 

2011:254 

Hedging Labor Income Risk 
by Sebastien Betermier, Thomas Jansson, Christine A. Parlour and Johan Walden 

2011:255 

Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios 
by Paolo Giordani, Tor Jacobson, Erik von Schedvin and Mattias Villani 

2011:256 

Collateralization, Bank Loan Rates and Monitoring: Evidence from a Natural Experiment 
by Geraldo Cerqueiro, Steven Ongena and Kasper Roszbach 

2012:257 

On the Non-Exclusivity of Loan Contracts: An Empirical Investigation 
by Hans Degryse, Vasso Ioannidou and Erik von Schedvin 

2012:258 

Labor-Market Frictions and Optimal Inflation  
by Mikael Carlsson and Andreas Westermark 

2012:259 

Output Gaps and Robust Monetary Policy Rules  
by Roberto M. Billi 

2012:260 

The Information Content of Central Bank Minutes 
by Mikael Apel and Marianna Blix Grimaldi 

2012:261 

The Cost of Consumer Payments in Sweden      2012:262 

by Björn Segendorf and Thomas Jansson  

Trade Credit and the Propagation of Corporate Failure: An Empirical Analysis    2012:263 

by Tor Jacobson and Erik von Schedvin  

Structural and Cyclical Forces in the Labor Market During the Great Recession: Cross-Country Evidence 2012:264 

by Luca Sala, Ulf Söderström and AntonellaTrigari  

Pension Wealth and Household Savings in Europe: Evidence from SHARELIFE   2013:265 

by Rob Alessie, Viola Angelini and Peter van Santen  

Long-Term Relationship Bargaining     2013:266 

by Andreas Westermark  

Using Financial Markets To Estimate the Macro Effects of Monetary Policy: An Impact-Identified FAVAR* 2013:267 

by Stefan Pitschner  

DYNAMIC MIXTURE-OF-EXPERTS MODELS FOR LONGITUDINAL AND DISCRETE-TIME SURVIVAL DATA 2013:268 

by Matias Quiroz and Mattias Villani  

Conditional euro area sovereign default risk     2013:269 

by André Lucas, Bernd Schwaab and Xin Zhang  

Nominal GDP Targeting and the Zero Lower Bound: Should We Abandon Inflation Targeting?*  2013:270 

by Roberto M. Billi  

Un-truncating VARs*       2013:271 

by Ferre De Graeve and Andreas Westermark  

Housing Choices and Labor Income Risk     2013:272 

by Thomas Jansson  

Identifying Fiscal Inflation*       2013:273 

by Ferre De Graeve and Virginia Queijo von Heideken  

On the Redistributive Effects of Inflation: an International Perspective*   2013:274 

by Paola Boel  

Business Cycle Implications of Mortgage Spreads*     2013:275 
by Karl Walentin 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

 

Sveriges Riksbank 
Visiting address: Brunkebergs torg 11 
Mail address: se-103 37 Stockholm 
 
Website: www.riksbank.se 
Telephone: +46 8 787 00 00, Fax: +46 8 21 05 31 
E-mail: registratorn@riksbank.se 


	Earlier Working Papers:

