# Exploring relationships between Firms' Balance Sheets and the Macro Economy

Kenneth Carling

Tor Jacobson

Jesper Lindé

Kasper Roszbach

Research Department, Sveriges Riksbank

August 2004

#### Motivation

- Today, typical institutional set-up is an "independent" central bank assigned two tasks:
  - Price stability
  - Financial stability
- The analysis on these issues are typically separated
- Standard models used in monetary policy analysis often contain no financial frictions, representative agent approach
- In this paper, we offer a simple empirical model to analyze these issues in a joint framework, using both macro and micro data
  - Involves testing for links between the "real" and "financial" side of the economy (both directions)

#### What we do

- 1. Use reduced form methods (VARs) to examine if various financial indicators affect the real economy
- 2. Estimate a default-risk model at the firm level
  - Panel data, sample period 1990Q1 1999Q2. All 'active' Swedish firms limited by shares,  $\approx 8.000.000$  observations
  - Using both firm-specific and macro variables as regressors
- 3. Estimate a dynamic panel VAR for balance sheet ratios
  - Include macro variables to test the relative importance of idiosyncratic/aggregate shocks
- 4. Once equipped with the empirical model, do some policy experiments

#### What we find

- 1. The real economy is not exogenous w.r.t. to the financial variable that we study. Our preferred financial indicator is statistically and quantitatively important
  - Using average default frequency as measure of financial stance
  - Other variables, e.g. average balance sheets ratios, term-structure, stock prices and bank lending do not seem to have predictive power for the real economy (conditional on the other variables in the VAR)
  - However, housing prices do have predictive power, in addition to the default frequency

- 2. The firm-level default-risk (logit) model can replicate the high/low default risk in the beginning/end of the 1990s
  - Firm-specific variables does a good job in ranking the firms, but cannot explain the absolute level of default risk
  - Macroeconomic variables are important for determining the absolute default risk at the firm level
  - Estimation of the default risk model using aggregate data is not informative
  - The so called "banking-crisis" episode in Sweden is not an unique event that cannot be explained with a model

- 3. The balance sheet ratios that we consider are surprisingly non-cyclical, most of the variation appear to be due to idiosyncratic shocks
  - In part, this reflects data problem, i.e. defaulted firms often do not report accounting data
- 4. Impulse response functions to a given aggregate shock are highly statedependent
  - Non-linearities introduced by the Logit-model for default risk are quantitatively important
  - The macroeconomic stance appear more important than the distribution of firms balance sheet variables
- 5. In particular, the aggregate VAR model suggest that there is a trade-off for monetary policy between stabilizing inflation and the default frequency, whereas in the micro-macro model that trade-off is state-dependent, i.e. in "good" / "bad" times the trade-off appears to be low/high

### Rest of the presentation

- 1. Measuring the financial stance of the economy
- 2. Testing for dependency of the macroeconomy on financial variables.
- 3. The default-risk model
- 4. Dynamic panel VAR for balance sheets variables
- 5. Putting it all together
- 6. The impulse response functions to an identified monetary policy shock
- 7. Predicting the "banking crisis" in Sweden using the micro-macro model and an aggregate VAR
- 8. Future work

## 1. Measuring the financial stance of the economy

• Default frequency highly correlated with credit-loss ratio, in particular at the lower frequencies. No clear lead-lag relationship.

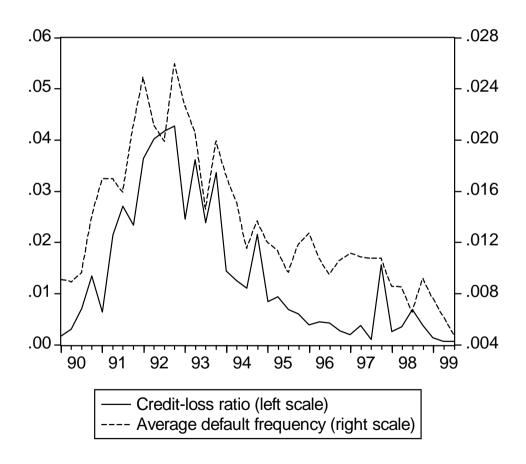



Figure: Average default frequency over time in the panel and credit losses by non-financial firms relative to loan stock.

## 2. Testing for dependency of the macroeconomy on financial variables

• Adopted the VAR estimated by Lindé (2002)

$$X_{t} = C + \delta_{1}D_{923} + \delta_{2}D_{931013} + \tau T_{t} + \sum_{i=0}^{2} \Upsilon_{i}Z_{t-i} + \sum_{i=1}^{2} \Gamma_{i}X_{t-i} + u_{t}^{d}$$

where

$$X_t = \left[egin{array}{cccc} y_t^d & \pi_t^d & R_t^d & q_t \end{array}
ight]'$$
 and  $Z_t = \left[egin{array}{cccc} y_t^f & \pi_t^f & R_t^f \end{array}
ight]'.$ 

- Sample period: 1986Q3 2002Q4.
- Data used in VAR depicted in Figure.

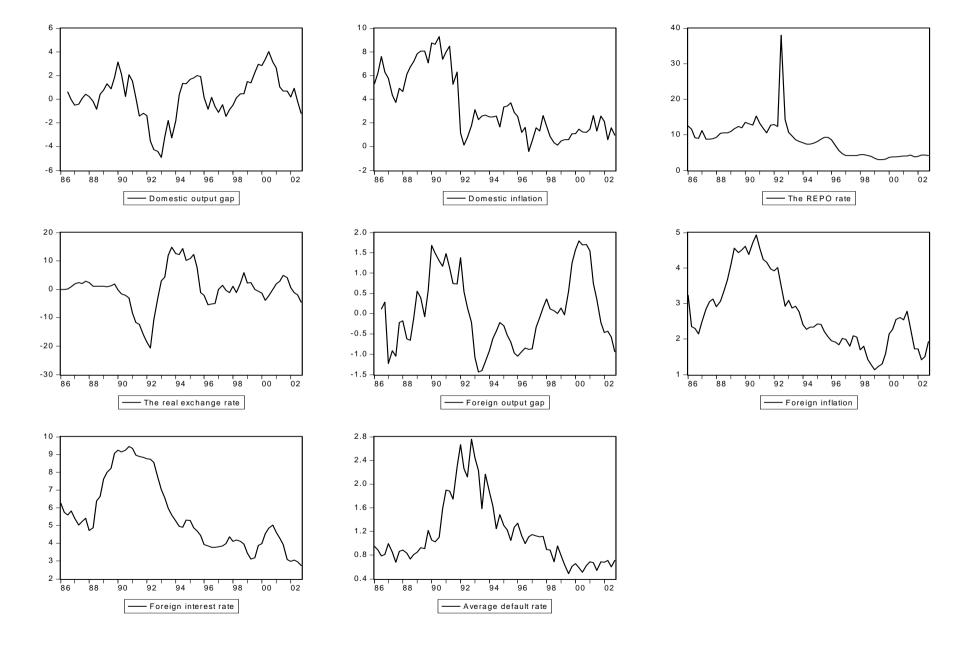
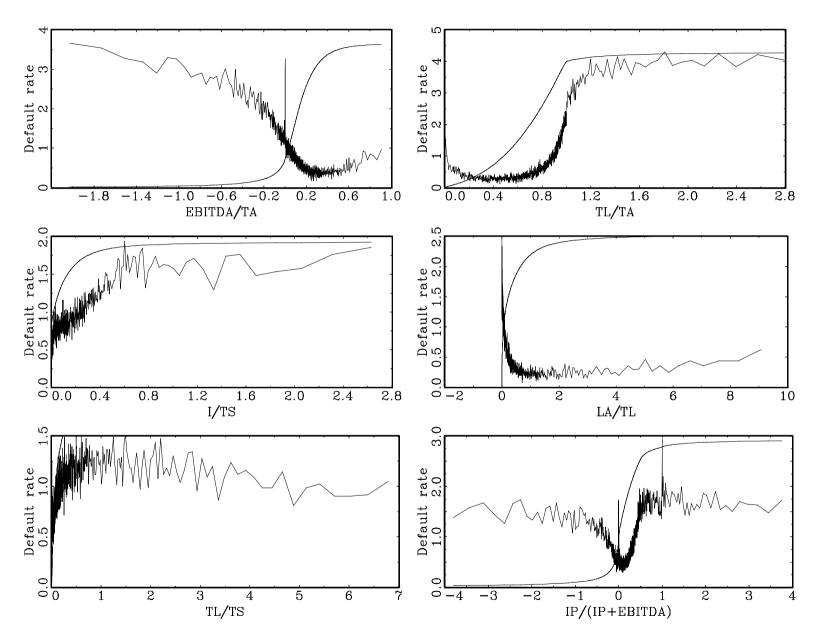




Figure: Variables used in the VARs.

- Augment the VAR with lags of the default frequency  $(df_t)$ , use a Block-exogeneity test (multivariate Granger causality test) to find that  $df_t$  enter significantly, p-value 0.001.
- Also, shocks in  $df_t$  quantitatively important, account for 20 percent of the fluctuations in output.
- Balance sheet variables, stock prices, bank-lending to Swedish public, term-structure (r5m-r3m) do not carry significant information for the macroeconomy.
- But house prices do contain signficant information, interesting link to examine further.
- Conclusion:  $df_t$  seems to be an important link between the real and financial sector.

#### 3. The default-risk model

- Estimate a simple logit default-risk model on firm level data, 1990Q1 1999Q2. Use both firm-specific and macro variables in the model.
- Population: Firms limited by shares (Aktiebolag) that have delivered a financial statement and defaulted firms.
- Apply leading Swedish credit risk bureau (UC) definition of default. Typically, a firm only default once (It could in principle default more than once if it gets healthy in between.).
- Around 200,000 firms every 38 quarter  $\Rightarrow$  8,000,000 observations in the panel.
- Selection of balance sheet variables by graphing different balance sheet variables against default rates. Default rates and variable values are calculated as averages over an interval of  $\pm$ 000 sorted observations. See figure.



Default rates and the cumulative distribution functions for the accounting data.

- Use two additional firm specific variables, remarks (type 8, 11, 16, 25, 31 collected in a single variable) and lack of financial statement (dummies).
- Truncate the balance sheet variables prior to estimation (upper and lower 1 percent of obs.).
- Replace missing values for balance sheets variables for defaulting/non-defaulting obs with mean for defaulting/non-defaulting firms. Have experimented with other methods as well (linear projection and bootstrapping), results not sensitive to how this is done.
- Report statistics for the firm specific variables in Table 1.
- Estimation results for the logit models reported in Table 2.

Table 1: Descriptive statistics for the micro data.

| Part B: Truncated data |         |       |          |       |       |      |       |       |  |  |  |  |
|------------------------|---------|-------|----------|-------|-------|------|-------|-------|--|--|--|--|
|                        |         |       |          | Stati | stic  |      |       |       |  |  |  |  |
| Firm type              | N       | $\mu$ | $\sigma$ | min   | 1%    | 50%  | 99%   | max   |  |  |  |  |
| Non-defaulted          | 7549041 |       |          |       |       |      |       |       |  |  |  |  |
| EBITDA/TA              | 7471212 | 0.11  | 0.25     | -1.05 | -1.03 | 0.11 | 0.84  | 0.84  |  |  |  |  |
| TL/TA                  | 7474248 | 0.71  | 0.35     | 0.03  | 0.03  | 0.73 | 2.42  | 2.46  |  |  |  |  |
| LA/TL                  | 7451325 | 0.53  | 1.12     | 0     | 0     | 0.13 | 7.81  | 7.81  |  |  |  |  |
| I/TS                   | 7355762 | 0.12  | 0.29     | 0     | 0     | 0.01 | 2.13  | 2.13  |  |  |  |  |
| TL/TS                  | 7474248 | 0.58  | 2.08     | 0     | 0     | 0.08 | 14.74 | 18.61 |  |  |  |  |
| IP/(IP+EBITDA)         | 7457030 | 0.15  | 0.76     | -3.55 | -3.55 | 0.10 | 3.91  | 3.91  |  |  |  |  |
| PAYDIV (%)             | 7549041 | 13.15 | 33.80    | 0     |       |      |       | 1     |  |  |  |  |
| REMARK1 (%)            | 7549041 | 0.33  | 5.77     | 0     |       |      |       | 1     |  |  |  |  |
| REMARK2 (%)            | 7549041 | 3.06  | 17.21    | 0     |       |      |       | 1     |  |  |  |  |
| TTLFS (%)              | 7549041 | 1.54  | 12.30    | 0     |       |      |       | 1     |  |  |  |  |
|                        |         |       |          |       |       |      |       |       |  |  |  |  |
| Defaulted              | 103568  |       |          |       |       |      |       |       |  |  |  |  |
| EBITDA/TA              | 67093   | -0.03 | 0.35     | -1.05 | -1.05 | 0.03 | 0.84  | 0.84  |  |  |  |  |
| TL/TA                  | 67110   | 1.00  | 0.50     | 0.03  | 0.03  | 0.94 | 2.46  | 2.46  |  |  |  |  |
| LA/TL                  | 66729   | 0.21  | 0.82     | 0     | 0     | 0.02 | 4.87  | 7.81  |  |  |  |  |
| I/TS                   | 63138   | 0.18  | 0.38     | 0     | 0     | 0.03 | 2.13  | 2.13  |  |  |  |  |
| TL/TS                  | 67110   | 0.57  | 1.75     | 0     | 0     | 0.12 | 9.52  | 18.61 |  |  |  |  |
| IP/(IP+EBITDA)         | 66670   | 0.24  | 0.99     | -3.55 | -3.55 | 0.23 | 3.91  | 3.91  |  |  |  |  |
| PAYDIV (%)             | 103568  | 0.70  | 8.31     | 0     |       |      |       | 1     |  |  |  |  |
| REMARK1 (%)            | 103568  | 14.90 | 35.61    | 0     |       |      |       | 1     |  |  |  |  |
| REMARK2 (%)            |         | 40.60 | 49.11    | 0     |       |      |       | 1     |  |  |  |  |
| TTLFS (%)              | 103568  | 33.42 | 47.17    | 0     |       |      |       | 1     |  |  |  |  |

 Table 2: Logit estimation results of the default-risk model.

|             | el I                                                               | Mode                                                                                                                                                                                             | 21 11                                                | Mode                                                 | el III                                               |  |
|-------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--|
| Coefficient | Std error                                                          | Coefficient                                                                                                                                                                                      | Std error                                            | Coefficient                                          | Std error                                            |  |
| -4.76       | 0.018                                                              | -5.22                                                                                                                                                                                            | 0.025                                                | -5.88                                                | 0.053                                                |  |
|             |                                                                    |                                                                                                                                                                                                  |                                                      |                                                      |                                                      |  |
| -1.07       | 0.022                                                              | -1.10                                                                                                                                                                                            | 0.028                                                | -1.09                                                | 0.041                                                |  |
| 1.07        | 0.015                                                              | 0.54                                                                                                                                                                                             | 0.020                                                | 0.52                                                 | 0.029                                                |  |
| -0.10       | 0.014                                                              | -0.15                                                                                                                                                                                            | 0.017                                                | -0.16                                                | 0.025                                                |  |
| 0.27        | 0.016                                                              | 0.20                                                                                                                                                                                             | 0.021                                                | 0.21                                                 | 0.031                                                |  |
| 0.19        | 0.004                                                              | 0.23                                                                                                                                                                                             | 0.005                                                | 0.22                                                 | 0.007                                                |  |
| 0.09        | 0.007                                                              | 0.07                                                                                                                                                                                             | 0.009                                                | 0.08                                                 | 0.013                                                |  |
|             |                                                                    | -1.91                                                                                                                                                                                            | 0.080                                                | -1.85                                                | 0.123                                                |  |
|             |                                                                    | 1.73                                                                                                                                                                                             | 0.032                                                | 1.89                                                 | 0.046                                                |  |
|             |                                                                    | 2.66                                                                                                                                                                                             | 0.020                                                | 2.74                                                 | 0.030                                                |  |
|             |                                                                    | 3.32                                                                                                                                                                                             | 0.019                                                | 3.27                                                 | 0.028                                                |  |
|             |                                                                    |                                                                                                                                                                                                  |                                                      |                                                      |                                                      |  |
|             |                                                                    |                                                                                                                                                                                                  |                                                      | -0.110                                               | 0.007                                                |  |
|             |                                                                    |                                                                                                                                                                                                  |                                                      | -0.005                                               | 0.008                                                |  |
|             |                                                                    |                                                                                                                                                                                                  |                                                      | 0.072                                                | 0.005                                                |  |
|             |                                                                    |                                                                                                                                                                                                  |                                                      | -0.006                                               | 0.002                                                |  |
|             |                                                                    |                                                                                                                                                                                                  |                                                      |                                                      |                                                      |  |
| -0.0669     |                                                                    | -0.0                                                                                                                                                                                             | 491                                                  | -0.0484                                              |                                                      |  |
| 0.16        |                                                                    | 0.37                                                                                                                                                                                             |                                                      | 0.39                                                 |                                                      |  |
|             |                                                                    | 0.3                                                                                                                                                                                              | 86                                                   | 0.94                                                 |                                                      |  |
|             | 2,066,206                                                          |                                                                                                                                                                                                  |                                                      | 1,836,625                                            |                                                      |  |
|             | -1.07 $1.07$ $-0.10$ $0.27$ $0.19$ $0.09$ $-0.0$ $0.1$ $0.1$ $0.2$ | $\begin{array}{cccc} -1.07 & 0.022 \\ 1.07 & 0.015 \\ -0.10 & 0.014 \\ 0.27 & 0.016 \\ 0.19 & 0.004 \\ 0.09 & 0.007 \\ \end{array}$ $\begin{array}{cccc} -0.0669 \\ 0.16 \\ 0.26 \\ \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |  |

- Cross-section identifies accounting variables well, the time-dimension identifies the macro variables.
- OLS estimations on aggregate data produce very misleading estimates for accounting data

$$df_{t} = -0.23 - 0.23 \left(\frac{\text{EBITDA}}{\text{TA}}\right)_{t} + 0.30 \left(\frac{\text{TL}}{\text{TA}}\right)_{t} + 0.09 \left(\frac{\text{LA}}{\text{TL}}\right)_{t} \dots$$

$$-0.94 \left(\frac{\text{I}}{\text{TS}}\right)_{t} + 0.19 \left(\frac{\text{TL}}{\text{TS}}\right)_{t} - 0.02 \left(\frac{\text{IP}}{\text{IP+EBITDA}}\right)_{t} \dots$$

$$-0.05 y_{d,t} - 0.05 \pi_{d,t} + 0.12 R_{d,t} + 0.002 q_{t} + \hat{u}_{df,t}, \tag{0.1}$$

 $R^2 = 0.93$ , DW = 2.10, Sample: 1990Q1 - 1999Q2 (T = 38)

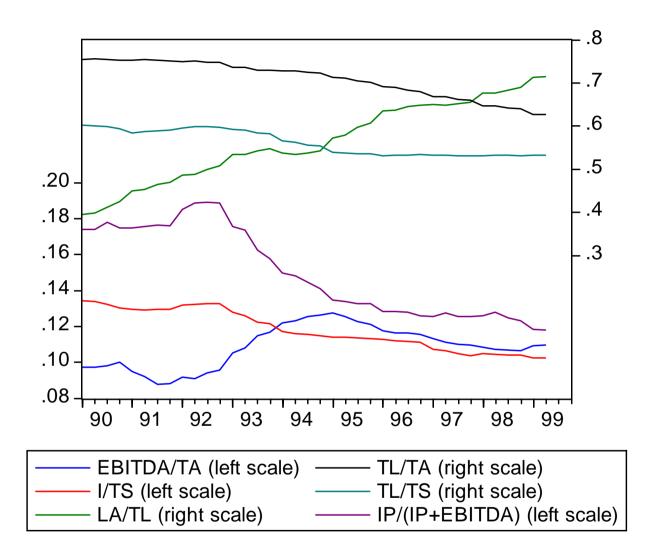



Figure: Quarterly average balance sheet variables over time (lagged one year as in the default risk model).

• Models able to reproduce aggregate default rate when macro variables are included. See figures.

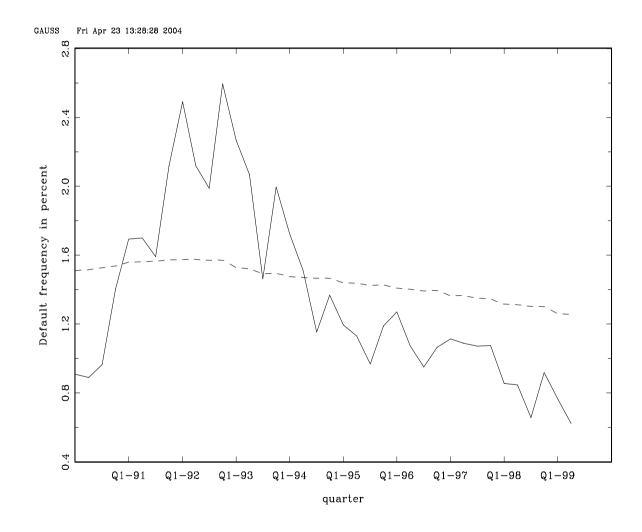



Figure: Actual and projected default rates at the aggregate level: Only idiosyncratic information included (Model II).

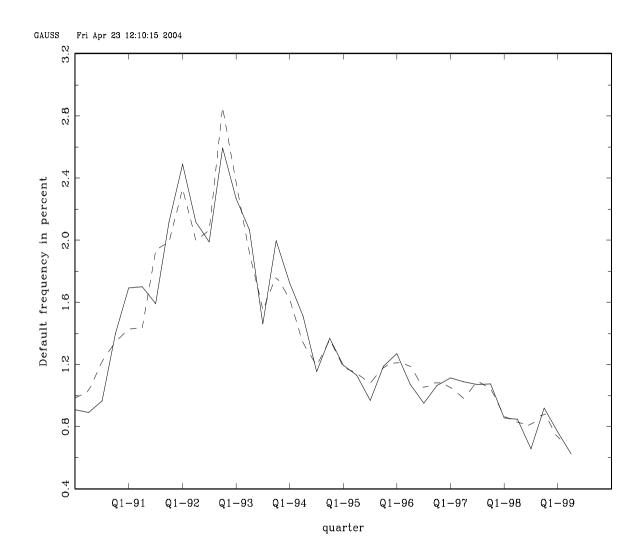



Figure: Actual and projected default rates at the aggregate level: Both idiosyncratic and aggregate information included (Model III).

## 4. Dynamic panel VAR for balance sheets variables

- Let  $Y_{i,t} = \left[ \mathsf{EBITDA/TA}_{i,t} \; \mathsf{TL/TA}_{i,t} \; \mathsf{I/TS}_{i,t} \; \mathsf{LA/TL}_{i,t} \right]'$  denote a  $4 \times 1$  vector with the financial ratios for firm i.
- Let  $Y_t = [Y_{1,t} . . . Y_{N_t,t}]'$  denote a  $4 \times N_t$  matrix where  $N_t$  is the number of firms in the panel in quarter t.
- VAR model for the financial ratios

$$Y_t = \Theta_Y Y_{t-1} + \Theta_X X_{t-1} + u_t^y, \text{ var } (u_t^y) = \Sigma_Y$$
 (0.2)

where  $X_t$  is defined as  $\left[\begin{array}{cc} y_t^d & \pi_t^d & R_t^d & q_t \end{array}\right]'$ .

• Estimate (0.2) equation by equation with GMM (Arrelano and Bond, 1991).

- Find that essentially all the variation in the balance sheet ratios are due to idiosyncratic shocks, small role for aggregate shocks.
- By running the regressions

$$Y_{i,t} = \beta_0 X_t + \beta_1 X_{t-1} + \dots + \beta_p X_{t-p} + \varepsilon_t,$$

we obtain maximum  $R^2 < 0.02$ 

• Figure below show average and fitted value of the regressions above

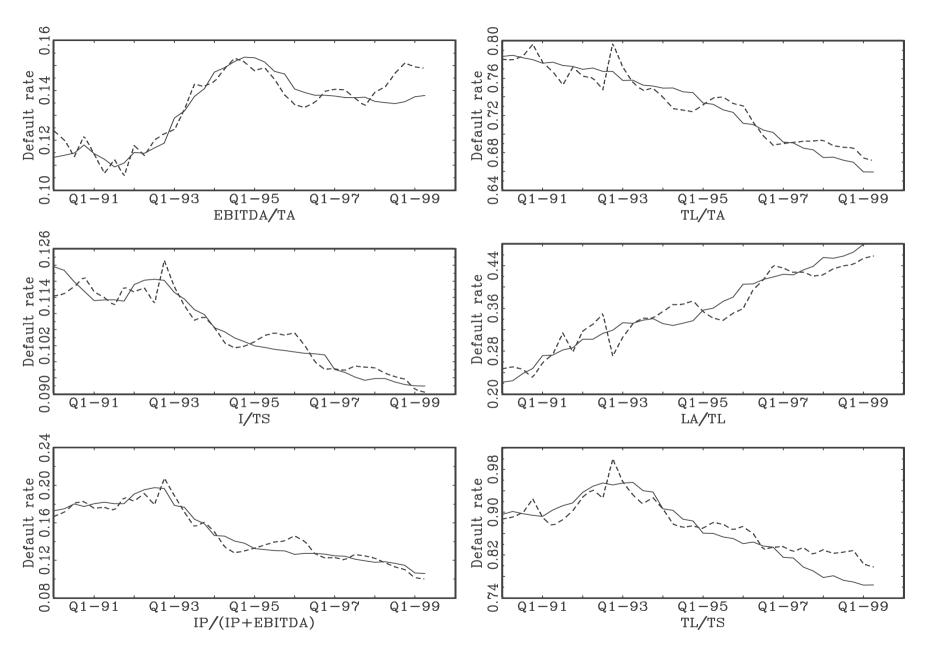



Figure: Actual (solid) and projected (dotted) balance sheet variables at the aggregate level explained by aggregate shocks.

### 5. Putting it all together

VAR model for the foreign variables (exogenous w.r.t. to domestic variables)

$$Z_t = C_f + \tau_f T_t + \sum_{i=1}^2 B_i Z_{t-i} + u_t^f$$
(0.3)

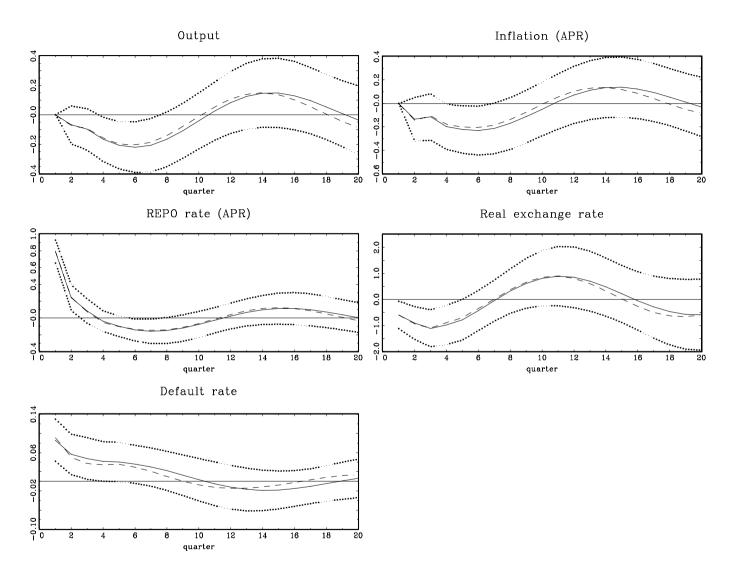
VAR model for domestic variables

$$X_{t} = C + \delta_{1} D_{923} + \delta_{2} D_{931013} + \tau T_{t} + \sum_{i=0}^{2} \Upsilon_{i} Z_{t-i} + \sum_{i=1}^{2} \Gamma_{i} X_{t-i} + \sum_{i=1}^{2} \Lambda_{i} df_{t-i} + u_{t}^{d}$$

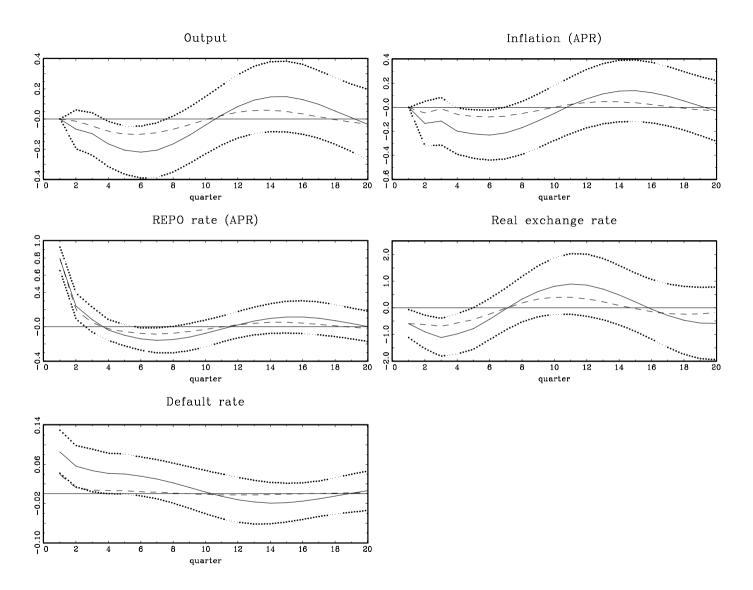
$$(0.4)$$

Logit model

$$df_{i,t} = \frac{1}{1 + \exp(\beta_0 + \beta_F F_{i,t} + \beta_Y Y_{i,t} + \beta_X X_t)}$$


where  $F_{i,t}$  fixed firm-specific information (Remark and delayed financial report dummies).

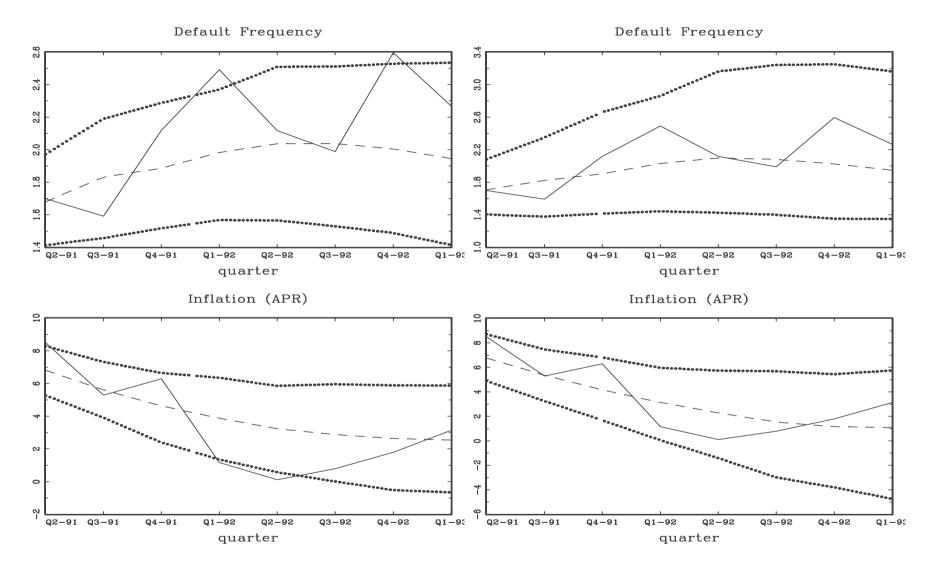
## • Panel VAR for accounting variables


$$Y_t = \Theta_Y Y_{t-1} + \Theta_X X_{t-1} + u_t^y, \ \ \mathsf{var}\left(u_t^y\right) = \Sigma_Y$$
 where  $Y_t = \left[ \ Y_{1,t} \ \dots \ Y_{N_t,t} \ \right]'.$ 

## 6. The impulse response functions to an identified monetary policy shock

- Study the trade-off between for policy makers to stabilize inflation and the default frequency.
- Adopt the following assumption; first goods markets clear, then interest rate is set, finally financial markets clear.
- First figure below reports the impulse response functions in the aggregate VAR (solid point estimates, and dotted lines indicate 95% CI) where the aggregate default frequency is endogenous. Dashed line shows the impulse response in the micro-macro model using the macroeconomic stance and firm portfolio 1991Q1.
- Last figure below reports same thing but using the macroeconomic conditions and firm portfolio 1998Q1 instead. Results very different, both for real variables and the default frequency in the micro-macro model.




Impulse response functions in the estimated VAR model with the default rate endogenous (point estimates - solid line, dotted lines shows 95 percent confidence interval) and in the micro-macro model (dashed line) for 1991Q1.



Impulse response functions in the estimated VAR model with the default rate endogenous (point estimates – solid line, dotted lines shows 95 percent confidence interval) and in the micro-macro model (dashed line) for 1998Q1.

## 7. Predicting the "banking crisis" in Sweden using the micro-macro model and an aggregate VAR

- Does the micro-macro model perform differently in forecasting the than the aggregate VAR where the default rate is endogenous?
- Examine how the two models could predict (in sample) the "banking crisis" 1991-1992. Dynamic forecast 1991Q1-1993Q1
- Results reported in figure, left panel is aggregate VAR where average default frequency is included as an endogenous variable, right panel is the micromacro model
- We see that point estimates similar, but uncertainty band more accurate for the micro-macro model



Forecasting the banking crisis 1991-1993. Solid line actual outcome, dashed line median forecast and dotted lines represent 95% CI given by the forecast percentiles. Left panel shows outcome in aggregate VAR, right panel outcome in micro-macro model.

#### 8. Future work

- Try to explain more of the variation in the default frequency with accounting variables
- Estimate different models for different branches/firm size
  - Different branches seem to display different degree of cyclical default risk variation
  - Portfolio composition effects might be important
- The model offer a simple framework for stress testing and consistent forecasting environment