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21. Introdu
tionThis paper is 
on
erned with estimating the 
onditional predi
tive distribution p(y|x), where
y is a univariate 
ontinuous response variable and x is a possibly high-dimensional ve
tor of
ovariates. Our approa
h is an exer
ise in nonparametri
 regression density estimation sin
e
p(y|x) is modeled �exibly both for any given x but also a
ross di�erent 
ovariate values.Villani, Kohn and Giordani (2008) propose the Smooth Adaptive Gaussian Mixture (SAGM)model as �exible model for regression density estimation. Their model is a �nite mixtureof Gaussian densities with the mixing probabilities, the 
omponent means and 
omponentvarian
es modeled as fun
tions of the 
ovariates x, with Bayesian variable sele
tion in allthree sets of 
ovariates. See Früewirth-S
hnatter (2006) for a 
omprehensive introdu
tion tomixture models.Villani et al. (2008) argues in favor of a 
omplex-and-few modeling philosophy where enough�exibility is used within the mixture 
omponents so that the number of 
omponents 
an bekept to a minimum; see also Wood, Jiang and Tanner (2003). This is in sharp 
ontrastto the simple-and-many approa
h used in the ma
hine learning literature (in parti
ular themixture-of-experts model introdu
ed in Ja
obs, Jordan, Nowlan and Hinton (1991), and Jordanand Ja
obs (1994)) where the 
omponents are often linear homos
edasti
 regressions, or even
onstant fun
tions. Villani et al. (2008) show that a single 
omplex 
omponent 
an often give abetter and numeri
ally more stable �t in substantially less 
omputing time than a model withmany simpler 
omponents. Moreover, simulations and real appli
ations in Villani et al. (2008)show that a simple-and-many approa
h 
an fail to �t heteros
edasti
 data even with a verylarge number of 
omponents, espe
ially in situations with more than one or two 
ovariates.Having heteros
edasti
 
omponents in the mixture is therefore 
ru
ial for a

urately modelingheteros
edasti
 data.In one of their appli
ations, Villani et al. (2008) model the distribution of daily sto
kmarket returns as a fun
tion of lagged returns and smooth measures of re
ent volatility. Thebest model uses one 
omponent to �t the strong heteros
edasti
ity in the data and the othertwo or three 
omponents to 
apture the additional kurtosis and/or skewness. The 
urrentpaper 
ontinues the 
omplex-and-few approa
h and extends the SAGM model by generalizingthe Gaussian 
omponents to asymmetri
 student-t densities, thereby making it possible to
apture skewness and ex
ess kurtosis within the 
omponents. Ea
h 
omponent density has fourparameters: lo
ation, s
ale, degrees of freedom and skewness, and ea
h of these four parametersare modeled as fun
tion of 
ovariates. This makes it possible to have e.g. the degrees offreedom smoothly varying over 
ovariate spa
e in a way di
tated by the data. An e�
ientMarkov Chain Monte Carlo (MCMC) simulation method is proposed that allows for Bayesianvariable sele
tion in all four parameters of the asymmetri
 t density, and in the mixture weights.The variable sele
tion makes it possible to handle a large number of 
ovariates. Redu
ing thenumber of e�e
tive parameters by variable sele
tion mitigates problems with over-�tting andis also bene�
ial for the 
onvergen
e of the MCMC algorithm. The methodology is appliedto modeling the distribution of daily returns from the S&P500 sto
k market index. It isshown that a smooth mixture of asymmetri
 student t 
omponents outperforms SAGM and



3other 
ommonly used models for �nan
ial data in an out-of-sample evaluation of the predi
tivedensity during the �nan
ial turmoil in the end of year 2008 and beginning of 2009.2. The model and prior2.1. Smooth mixtures. Our model is a �nite mixture density with weights that are smoothfun
tions of the 
ovariates,(2.1) p(y|x) =

K∑

k=1

ωk(x)pk(y|x),where pk(y|x) is the kth 
omponent density with weight ωk(x). The 
omponent densities areasymmetri
 student t densities des
ribed in detail in the next se
tion. The weights are modeledby a multinomial logit fun
tion(2.2) ωk(x) =
exp(x′γk)∑K
r=1 exp(x′γr)

,with γ1 = 0 for identi�
ation. The 
ovariates in the 
omponents 
an in general be di�erentfrom the 
ovariates in the mixture weights. Jiang and Tanner (1999a,b) show that smoothmixtures with su�
iently many 
omponents 
an approximate a wide 
lass of densities.To simplify the MCMC simulation, we express the mixture model in terms of latent variablesas in Diebolt and Robert (1994) and Es
obar and West (1995). Let s1, ..., sn be unobservedindi
ator variables for the observations in the sample su
h that si = k means that the ithobservation belongs to the kth 
omponent, pk(y|x). The model in (2.1) and (2.2) 
an then bewritten Pr(si = k|xi, γ) = ωk(xi)

yi|(si = k, xi) ∼ pk(yi|xi).Conditional on s = (s1, ..., sn)′, the mixture model de
omposes into K separate 
omponentmodels p1(y|x), ..., pK(y|x), with ea
h data observation being allo
ated to one and only one
omponent.2.2. The 
omponent models. The 
omponent densities in SAGM are Gaussian with boththe mean and varian
e fun
tions of 
ovariates. Our arti
le extends this model so the 
omponentdensities belong to an asymmetri
 student t family. More spe
i�
ally, the 
omponent modelsare split-t densities (Geweke, 1989) a

ording to the following de�nition.De�nition 1. The random variable y follows a split-t distribution with ν degrees of freedom,
y ∼ t(µ, φ, λ, ν), if its density fun
tion is of the form

c · κ(µ, φ, ν)I(y ≤ µ) + c · κ(µ, λφ, ν)I(y > µ),where
κ(µ, φ, ν) =


 ν

ν + (y−µ)2

φ2




(ν+1)/2

,



4is the kernel of a student t density with varian
e φ2ν/(ν−2) and c = 2[(1+λ)φ
√
νBeta(ν

2 ,
1
2)]−1is the normalization 
onstant. The lo
ation parameter is µ, φ > 0 is the s
ale parameter, and

λ > 0 is the skewness parameter. When λ < 1 the distribution is skewed to the left, when
λ > 1 it is skewed to the right, and when λ = 1 it redu
es to the usual symmetri
 student-tdensity.The (one-
omponent) split-t is similar to the ARCD model of Hansen (1994) whi
h heestimates by maximum likelihood to model the 
onditional density of the U.S. Dollar / SwissFran
 ex
hange rate.The next lemma gives the �rst four 
entral moments of the split-t density. We use thefollowing de�nition of skewness and ex
ess kurtosis

S(y) =
E [y − E(y)]3

V (y)3/2

K(y) =
E [y − E(y)]4

V (y)2
− 3,where V (y) denotes the varian
e. The following lemma, whi
h 
an be proved by straightfor-ward algebra, gives some basi
 properties of the split-t distribution.Lemma 2. If y ∼ t(µ, φ, λ, ν) then

E(y) = µ+ h

V (y) =
1 + λ3

1 + λ

ν

ν − 2
φ2 − h2

E [y − E(y)]3 =
6λ(λ2 − 1) − 2(λ4 − 1)

(1 + λ) (ν − 1) (ν − 3)Beta
(

ν
2 ,

1
2

)ν 3

2φ3 + 2h3

E [y − E(y)]4 =
3ν2φ4

(
1 + λ5

)

(1 + λ) (ν − 2) (ν − 4)
− 3h4 + 6h2

(
1 + λ3

)
ν

(1 + λ) (ν − 2)
φ2

−16h
(λ− 1)

(
λ2 + 1

)
ν

3

2φ4

(ν − 1) (ν − 3)φBeta
(

ν
2 ,

1
2

) ,where
h =

2
√
νφ (λ− 1)

(ν − 1)Beta
(

ν
2 ,

1
2

) ,and moment of order r exists exists if ν > r.The CDF of a split t distribution is of the form
1

1 + λ
+
a · Sign (y − µ)

1 + λ

(
1 −

Beta
(
t; ν

2 ,
1
2

)

Beta
(

ν
2 ,

1
2

)
)where

t =
νa2φ2

νa2φ2 + (y − µ)2
,and a = λ if y > µ and a = 1 otherwise, and Beta (t; ν

2 ,
1
2

) is the in
omplete beta fun
tion(Abramowitz and Stegun, 1972).



5Ea
h of the four parameters µ, φ, λ and ν are 
onne
ted to 
ovariates as
µ = βµ0 + x′tβµ

lnφ = βφ0 + x′tβφ

lnλ = βλ0 + x′tβλ

ln ν = βν0 + x′tβν(2.3)but any smooth link fun
tion 
an equally well be used in the MCMC methodology. Additional�exibility 
an be obtained by letting a subset of the 
ovariates be a non-linear basis expansions,e.g. additive splines or splines surfa
es (Ruppert, Wand and Carroll, 2003) as in Villani et al.(2008), but this is not pursued here. A strength of our approa
h is that the four regression
oe�
ient ve
tors: βµ, βφ, βν and βλ are all treated in a uni�ed way in the MCMC algorithm.Whenever we refer to a regression 
oe�
ient ve
tor without subs
ript, β, the argument appliesto all of the split-t parameters in (2.3).This split-t model will often be �exible enough to �t the data, but there are datasets thatrequire a smooth mixture model, for example when the data are multimodal for some 
ovariatesvalues. A se
ond example o

urs when the wrong link fun
tion is used in one of the split-tparameters, where the mixture 
an then 
orre
t for this erroneous 
hoi
e. A third example iswhen there are outliers in the data that 
annot be a

ommodated by a student t density.A smooth mixture of split-t densities is a model with a large number of parameters, however,and is therefore likely to over-�t the data unless model 
omplexity is 
ontrolled e�e
tively. Weuse Bayesian variable sele
tion in all four split-t parameters, and in the mixing fun
tion. This
an lead to important simpli�
ations of the split-t 
omponents. Not only does this 
ontrol
omplexity for a given number of 
omponents, but it also simpli�es the existing 
omponentsif an additional 
omponent is added to the model (the LIDAR example in Villani, Kohn andGiordani (2007) illustrates this well). In
reasing the number of 
omponents 
an therefore evenredu
e the number of e�e
tive parameters in the model.A more extreme, but often empiri
ally relevant, simpli�
ation of the model is to assumethat one or more split-t parameters are 
ommon to the 
omponents, that is, only the inter-
epts in (2.3) are allowed to be di�erent a
ross 
omponents. The unrestri
ted model wherethe regression 
oe�
ients are allowed to di�er a
ross 
omponents is said to have separate
omponents.2.3. The prior. Although the MCMC methodology (see Se
tion 3.2) allows any prior dis-tribution, we shall now present an easily spe
i�ed prior that depends only on a few hyper-parameters. First, we standardize the 
ovariates by subtra
ting the mean and dividing bythe standard deviation. This allows us to assume prior independen
e between the inter
eptand the remaining regression 
oe�
ients, and the inter
epts have the interpretation of beingthe (possibly transformed) split-t parameters at the mean of the original 
ovariates. Sin
ethere 
an be a large number of 
ovariates in the model, our strategy is to in
orporate availableprior information via the inter
epts, and to treat the remaining regression 
oe�
ients moreinformally. Assuming a normal prior for µ implies a normal prior on βµ0. The other three



6split-t parameters φ, λ and ν are assumed to follow independent log-normal priors with means
m∗ and s∗, where m∗ and s∗ are di�erent for the di�erent split-t parameters. This translatesinto a normal prior on the inter
ept with mean

m0 = lnm∗ − 1

2
ln

[(
s∗

m∗

)2

+ 1

]and varian
e
s20 = ln

[(
s∗

m∗

)2

+ 1

]
.The regression 
oe�
ients βµ, βφ, βν and βλ are assumed to be independent a priori. Weallow for Bayesian variable sele
tion by augmenting ea
h parameter ve
tor β by a ve
tor ofbinary 
ovariate sele
tion indi
ators I = (i1, ..., ip) su
h that βj = 0 if ij = 0. Let βI denotethe subset of β sele
ted by I. We assume the following prior for ea
h β ve
tor

βI |I ∼ N(0, τ2
βI)and βI
 |Ic is identi
ally zero, where I
 is the 
omplement of I. Alternatively, one 
an use a

g-prior (Zellner, 1986) β ∼ N
[
0, τ2

β (X ′X)−1
] and then 
ondition on the restri
tions imposedby I; Denison, Holmes, Malli
k and Smith (2002, p. 80-81) dis
usses the advantages anddisadvantages of these two di�erent priors. The g-prior is less appealing in a mixture 
ontextsin
e (X ′X)−1 may be a bad representation of the 
ovarian
e between parameters in thesmaller 
omponents, see Villani et al. (2008) for a dis
ussion, and we will therefore use theidentity matrix here. We use τβ = 10 as the default value. Given that the 
ovariates havebeen standardized to zero mean and unit varian
e, these priors are vague. We investigate thesensitivity of the posterior inferen
es and model 
omparison with respe
t to τβ in Se
tion 4.The variable sele
tion indi
ators are assumed to be independent Bernoulli with probability

ωβ a priori, but more 
ompli
ated distributions are easily a

ommodated, see e.g. the extensionin Villani et al. (2008) for splines in a mixture 
ontext or a prior whi
h is uniform on the variablesele
tion indi
ators for a given model size in Denison, Holmes, Malli
k and Smith (2002). Itis also possible to estimate ωβ as proposed in Kohn, Smith and Chan (2001) with an extraGibbs sampling step. Note that ωβ may be di�erent for ea
h split-t parameter. Our defaultprior has ωβ = 0.5.The prior on the mixing fun
tion de
omposes as
p(γ,Z, s) = p(s|γ,Z)p(γ|Z)p(Z),where Z is the p × (K − 1) matrix with variable sele
tion indi
ators for the p 
ovariates inthe mixing fun
tion (re
all that γ1 = 0 for identi�
ation). The variable indi
ators in Z areassumed to be iid Bernoulli(ωγ). The prior on γ = (γ′2, ..., γ

′
m)′ is assumed to be of the form

γZ |Z ∼ N(0, τ2
γ I),and γZc = 0 with probability one. We use τ2

γ = 10 as default value. Finally, p(s|γ,Z) is givenby the multinomial logit model in (2.2). To redu
e the number of parameters and to speed upthe MCMC algorithm we restri
t the 
olumns of Z to be identi
al, i.e. make the assumption



7that a 
ovariate is either present in the mixing fun
tion in all 
omponents, or does not appearat all, but the extension to general Z is straightforward, see Villani et al. (2008).3. Inferen
e methodology3.1. The general MCMC s
heme. We use MCMC methods to sample from the joint poste-rior distribution, and draw the parameters and variable sele
tion indi
ators in blo
ks. Villaniet al. (2008) experimented with several di�erent algorithms in a related setting and the algo-rithm outlined below is similar to their preferred algorithm. The details of the algorithm aregiven in Appendix A. The method used to sele
t the number of 
omponents is dis
ussed inSe
tion 3.3.The algorithm is a Metropolis-within-Gibbs sampler that draws parameters using the fol-lowing six blo
ks:(1) {(β(k)
µ ,I(k)

µ )}k=1,...,K(2) {(β(k)
φ ,I(k)

φ )}k=1,...,K(3) {(β(k)
λ ,I(k)

λ )}k=1,...,K(4) {(β(k)
ν ,I(k)

ν )}k=1,...,K(5) s = (s1, ..., sn)(6) γ and IZThe parameters in the di�erent 
omponents are independent 
onditional on s. This means thatea
h of the �rst four blo
ks split up into K independent updating steps. Ea
h updating step inthe �rst four blo
ks is sampled using highly e�
ient tailored MH proposals following a generalapproa
h des
ribed in the next se
tion. The latent 
omponent indi
ators in s are independent
onditional on the model parameters and are drawn jointly from their full 
onditional posterior.Conditional on s, Step 6 is a multinomial logisti
 regression with variable sele
tion, and γ and
IZ are drawn jointly using a generalization of the method used to draw blo
ks 1-4, see Villaniet al. (2008) for details.Mixture models have well known identi�
ation problems, the most serious one being theso 
alled label swit
hing problem, whi
h means that the likelihood is invariant with respe
tto permutations of the 
omponents in the mixture see e.g. Celeux, Hurn and Robert (2000),Jasra, Holmes and Stephens (2005) and Früewirth-S
hnatter (2006). The aim of our arti
le isto estimate the predi
tive density, so that label swit
hing is neither a numeri
al nor 
on
eptualproblem (Geweke, 2007). If an interpretation of the mixture 
omponents is required, then itis ne
essary to impose some identi�
ation restri
tions on some of the model parameters, e.g.an ordering 
onstraint (Jasra, Holmes and Stephens, 2005).3.2. Updating (β,I) using variable-dimension �nite-step Newton proposals. Nottand Leonte (2004) extend Gamerman's (1997) method for generating MH proposals in a gen-eralized linear model (GLM) to the variable sele
tion 
ase. Villani et al. (2008) extend thealgorithm to a general setting not restri
ted to the exponential family. We �rst treat theproblem without variable sele
tion. The algorithm in Villani et al. (2008) only requires that



8the posterior density 
an be written as(3.1) p(β|y) ∝ p(y|β)p(β) =

n∏

i=1

p(yi|ϕi)p(β),where ϕi = x′iβ and xi is a 
ovariate ve
tor for the ith observation. Note that p(β|y) may bea 
onditional posterior density and the algorithm 
an then be used as a step in a Metropolis-within-Gibbs algorithm. The full 
onditional posteriors for blo
ks 1-4 in Se
tion 3.1 are 
learlyall of the form in (3.1). Newton's method 
an be used to iterate R steps from the 
urrent point
βc in the MCMC sampling toward the mode of p(β|y), to obtain β̂ and the Hessian at β̂. Notethat β̂ may not be the mode but is typi
ally 
lose to it already after a few Newton iterations,so setting R = 1, 2 or 3 is usually su�
ient. This makes the algorithm fast, espe
ially whenthe gradient and Hessian are available in 
losed form, whi
h is the 
ase here, see Appendix A.Having obtained good approximations of the posterior mode and 
ovarian
e matrix fromthe Newton iterations, the proposal βp is now drawn from the multivariate t-distribution with
g > 2 degrees of freedom:

βp|βc ∼ t


β̂, −

(
∂2 ln p(β|y)
∂β∂β′

)−1
∣∣∣∣∣
β=β̂

, g


 ,where the se
ond argument of the density is the 
ovarian
e matrix.In the variable sele
tion 
ase we propose β and I simultaneously using the de
omposition

g(βp,Ip|βc,Ic) = g1(βp|Ip, βc)g2(Ip|βc,Ic),where g2 is the proposal distribution for I and g1 is the proposal density for β 
onditional on
Ip. The Metropolis-Hasting a

eptan
e probability is

a[(βc,Ic) → (βp,Ip)] = min

(
1,
p(y|βp,Ip)p(βp|Ip)p(Ip)g1(βc|Ic, βp)g2(Ic|βp,Ip)

p(y|βc,Ic)p(βc|Ic)p(Ic)g1(βp|Ip, βc)g2(Ip|βc,Ic)

)
.The proposal density at the 
urrent point g1(βc|Ic, βp) is a multivariate t-density with mode

β̃ and 
ovarian
e matrix equal to the negative inverse Hessian evaluated at β̃, where β̃ is thepoint obtained by iterating R steps with the Newton algorithm, this time starting from βp. Asimple way to propose Ip is to randomly sele
t a small subset of Ic and then always proposea 
hange of the sele
ted indi
ators. This proposal 
an be re�ned in many ways, using e.g. theadaptive s
heme in Nott and Kohn (2005), where the history of I-draws is used to adaptivelybuild up a proposal for ea
h indi
ator. It is important to note that βc and βp may now beof di�erent dimensions, so the original Newton iterations no longer apply. We will insteadgenerate βp using the following generalization of Newton's method. The idea is that whenthe parameter ve
tor β 
hanges dimensions, the dimension of the fun
tionals ϕc = x′βc and
ϕp = x′βp stay the same, and the two fun
tionals are expe
ted to be quite 
lose. A generalizedNewton update is(3.2) βr+1 = A−1

r (Brβr − gr), (r = 0, ..., R − 1),where β0 = βc, and the dimension of βr+1 equals the dimension of βp, and
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gr = X ′

r+1d+
∂ ln p(β)

∂β

Ar = X ′
r+1DXr+1 +

∂2 ln p(β)

∂β∂β′

Br = X ′
r+1DXr +

∂2 ln p(β)

∂β∂β′
,(3.3)where d is an n-dimensional ve
tor with gradients ∂ ln p(yi|ϕi)/∂ϕi for ea
h observation 
ur-rently allo
ated to the 
omponent being updated. Similarly, D is a diagonal matrix withHessian elements

∂2 ln p(yi|ϕi)

∂ϕi∂ϕ′
i

,

Xr is the matrix with the 
ovariates that have non-zero 
oe�
ients in βr, and all expressionsare evaluated at β = βr. For the prior gradient this means that ∂ ln p(β)/∂β is evaluated at βr,in
luding all zero parameters, and that the sub-ve
tor 
onformable with βr+1 is extra
ted fromthe result. The same applies to the prior Hessian (whi
h does not depend on β however, if theprior is Gaussian). Note that we only need to 
ompute the s
alar derivatives ∂ ln p(yi|φi)/∂φiand ∂2 ln p(yi|φi)/∂φ
2
i .After the �rst Newton iteration the parameter ve
tor no longer 
hanges dimension, and thegeneralized Newton algorithm in (3.2) redu
es to the original Newton algorithm. The proposaldensity g1(βp|Ip, βc) is again taken to be the multivariate t-density in exa
tly the same wayas in the 
ase without 
ovariate sele
tion. On
e the simultaneous update of the (β,I)-pairis 
ompleted, we make a �nal update of the non-zero parameters in β, 
onditional on thepreviously a

epted I, using the �xed dimension Newton algorithm.When a parameter is restri
ted to be proportional a
ross 
omponents (i.e. only the inter
eptdi�ers between 
omponents), the 
ommon regression ve
tor β appears in all K 
omponents.The updating step for the 
ommon β is of the same form as above, but d andD now 
ontain thegradients and Hessians for all n observations, where ea
h observation's gradient and Hessianis with respe
t to the 
omponent density that the observation is 
urrently allo
ated to.3.3. Model 
omparison. The key quantity in Bayesian model 
omparison is the marginallikelihood. The marginal likelihood is sensitive to the 
hoi
e of prior, however, and thisis espe
ially true when the prior is not very informative, see e.g. Kass (1993) for a generaldis
ussion and Ri
hardson and Green (1997) in the 
ontext of density estimation. By sa
ri�
inga subset of the observations to update/train the vague prior we remove mu
h of the dependen
eon the prior, and obtain a better assessment of the predi
tive performan
e that 
an be expe
tedfor future observations. To deal with the arbitrary 
hoi
e of whi
h observations to use forestimation and model evaluation, one 
an use B-fold 
ross-validation of the log predi
tivedensity s
ore (LPDS):

B−1
B∑

b=1

ln p(ỹb|ỹ−b, x),where ỹb is an nb-dimensional ve
tor 
ontaining the nb observations in the bth test sample and
ỹ−b denotes the remaining observations used for estimation. If we assume that the observations



10are independent 
onditional on θ, then
p(ỹb|ỹ−b, x) =

∫ ∏

i∈Tb

p(yi|θ, xi)p(θ|ỹ−b)dθ,where Tb is the index set for the observations in ỹb, and the LPDS is easily 
omputed byaveraging ∏i∈Tb
p(yi|θ, xi) over the posterior draws from p(θ|ỹ−b). This requires samplingfrom ea
h of the B posteriors p(θ|ỹ−b) for b = 1, ..., B, but these MCMC runs 
an all be runin isolation from ea
h other and are therefore ideal for parallel 
omputing on widely availablemulti-
ore pro
essors.Cross-validation is less appealing in a time series setting, and a more natural approa
h isto use the most re
ent observations in a single test sample. Moreover, for time series data itis typi
ally false that the observations are independent 
onditional on the model parameters,so that the above estimation approa
h 
annot be used. An MCMC estimate of the LPDS ofa time series 
an instead be based on the de
omposition

p(yT+1, .., yT+T ∗ |y1, .., yT ) = p(yT+1|y1, .., yT ) · · · p(yT+T ∗ |y1, .., yT+T ∗−1),with ea
h term in the de
omposition
p(yt|y1, .., yt−1) =

∫
p(yt|y1, .., yt−1, θ)p(θ|y1, .., yt−1)dθ,estimated from a posterior sample of θ's based on data up to time t − 1. The problem isthat this requires T ∗ − T 
omplete runs with the MCMC algorithm, one for ea
h term in thede
omposition, whi
h is typi
ally very time-
onsuming (although 
omputer parallelism 
anagain be exploited). In situations where T is fairly large 
ompared to T ∗, we 
an approximatethe LPDS by 
omputing ea
h term p(yt|y1, .., yt−1) using the same posterior sample based ondata up to time T . We evaluate the a

ura
y of this approximation in the empiri
al appli
ationin the next se
tion.4. Modeling the distribution of daily sto
k market returns4.1. S&P500 data and priors. Modeling the volatility/variability in �nan
ial data has beenan highly a
tive resear
h area sin
e Engle's (1982) seminal paper introdu
ed the ARCH model(see e.g. Baillie (2006) for a survey of the �eld), and there are large �nan
ial markets forvolatility-based instruments. Finan
ial data, su
h as sto
k market returns, are typi
ally heavytailed and subje
t to volatility 
lustering, i.e. a time-varying varian
e that evolves in a verypersistent fashion. We here model the entire distribution of daily returns from the S&P500sto
k market index, p(yt|xt), where yt = 100 ln(pt/pt−1) is the daily return at time t, pt isthe 
losing S&P500 index on day t, and xt 
ontains the 
ovariate observations at time t.By fo
using on the whole distribution of returns we are able to 
ompute e.g. the posteriordistribution of the Value-at-Risk (VaR), i.e. the 1% quantile of the return distribution, whi
his of fundamental interest to �nan
ial analysts.We estimate the models using data from 4646 trading days between Jan 1, 1990 and May

29, 2008. The models are then evaluated out-of-sample on the subsequent 199 trading daysfrom May 30, 2008 to Mar
h 13, 2009. The data are plotted in the upper left sub-graph of
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µ φ ν λ

m∗ 0
√

(m∗
ν − 2)/m∗

ν 10 1
s∗ 10 1 7 1Table 1. The prior mean and standard deviation on the split-t parameters forthe S&P500 sto
k return data. The prior mean of φ is a fun
tion of the priormean of ν su
h that the varian
e of returns is unity as in Villani et al. (2008).Figure 4.1, with the evaluation period marked out in red. To make the results 
omparable toGeweke and Keane (2007) and Villani et al. (2008), we standardize the 
ovariates to lie in theinterval [−1, 1], rather than making them mean zero with unit varian
e.Table 1 displays the prior hyper-parameters for the split-t parameters. The prior on ν and

λ are fairly vague and and the prior on µ and φ have been 
hosen to mat
h the mean andvarian
e in Villani et al. (2008) as 
losely as possible.4.2. Models. Geweke and Keane (2007) show that a smooth mixture of homos
edasti
 Gauss-ian regressions (the so 
alled Smoothly Mixing Regression, SMR) with two 
ovariates outper-forms the typi
ally hard-to-beat t-GARCH(1,1) model (Bollerslev, 1987) in an out-of-sampleevaluation based on the LPDS (see Se
tion 3.3). The two 
ovariates are the return yesterday
yt−1 (LastDay) and CloseAbs95, a geometri
ally de
aying average of past absolute returns

(1 − ρ)
∞∑

s=0

ρs |yt−2−s| ,where ρ = 0.95 is the dis
ount fa
tor. Following Geweke and Keane (2007) we assume themean of ea
h 
omponent to be 
onstant sin
e the level of the sto
k market returns are notexpe
ted to be predi
table.Villani et al. (2008) demonstrate that the SAGM model with its heteros
edasti
 
omponentsoutperforms the SMR in Geweke and Keane (2007). Villani et al. (2008) also introdu
e sevenadditional 
ovariates and show that they substantially improve the out-of-sample performan
eof the SAGM. We will 
on
entrate on this nine-variable model. The seven additional 
ovariatesare: LastWeek and LastMonth, a moving average of the returns from the previous �ve and 20trading days, respe
tively. The variable CloseAbs80, the same variable as CloseAbs95 but with
ρ = 0.80, is also added to the 
ovariate set, and so is the square root of (1− ρ)

∑
∞

s=0 ρ
sy2

t−2−s,for ρ = 0.80 and 0.95 (CloseSqr80 and CloseSqr95). Finally, Villani et al. (2008) in
lude ameasure of volatility that has been popular in the �nan
e literature: (1−ρ)
∑

∞
s=0ρ

s(ln p
(h)
t−1−s−

ln p
(l)
t−1−s), where p(h)

t and p(l)
t are the highest and lowest values of the S&P500 index at day

t. This measure has been shown both theoreti
ally and empiri
ally to 
arry more informationon the volatility than 
hanges in 
losing quotes (Alizadeh, Brandt and Diebold, 2002). We
onsider both ρ = 0.8 (MaxMin80) and ρ = 0.95 (MaxMin95). As in Villani et al. (2008), allvariables ex
ept LastDay, LastWeek and LastMonth enter the model in logarithmi
 form.4.3. Results. We generated 30, 000 draws from the posterior, and used the last 25, 000 drawsfor inferen
e. This is more than su�
ient for 
onvergen
e of the parameter estimates, the
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les) and May 30, 2008 to Mar
h 13, 2009 (redlines and 
rosses). The subgraph in the upper left position is a time series plotof Return, the other subgraphs are s
atter plots of Return against a 
ovariate.



13Model K = 1 K = 2 K = 3 K = 4 K = 5 Max n.s.e.SMR −1044.78 −638.89 −505.74 −487.11 −489.19 0.98 (3)+ Skew −540.91 −525.07 −513.85 −506.68 −506.13 0.82 (2)+ DF −544.00 −518.71 −498.93 −500.14 −494.29 0.89 (1)+ Skew + DF −530.86 −504.63 −498.03 −498.83 −496.87 0.88 (5)SAGM Common −477.73 −473.10 −473.12 −470.30 −472.86 0.26 (2)+ Skew −474.18 −467.29 −468.75 −467.93 −467.22 0.35 (4)+ DF −474.74 −472.92 −470.51 −469.40 −468.87 0.34 (4)+ Skew + DF −472.37 −468.92 −469.30 −466.21 −465.86 0.53 (4)SAGM Separate −469.21 −469.50 −470.53 −471.02 0.49 (3)+ Skew −468.48 −466.93 −467.48 −468.02 0.58 (4)+ DF −469.08 −469.24 −462.03 −467.78 0.72 (5)+ Skew + DF −466.84 −462.56 −462.47 −474.58 0.74 (5)GARCH(1,1) −479.03
t-GARCH(1,1) −477.39Table 2. Evaluating the out-of-sample log predi
tive density s
ore (LPDS)on the 199 daily returns in the period May 30, 2008 - Mar
h 13, 2009. Theposterior distribution is 
omputed using data until May 29, 2008, and notupdated thereafter, ex
ept for the two GARCH models whi
h are based on
ontinuously updated maximum likelihood estimates. The LPDS of the bestmodel for a given number of 
omponents is in bold font. The last 
olumn givesthe maximal numeri
al standard error of the LPDS for ea
h model with thenumber of 
omponents for whi
h the maximum was obtained in parenthesis.The notation for the models is su
h that e.g. + Skew means that 
ovariate-dependent skewness is added to the model.posterior in
lusion probabilities and the LPDS; see also Villani et al. (2008) for details regard-ing 
onvergen
e in the SAGM model. Three Newton steps were used for all parameters, butexperiments with a single Newton step gave essentially the same numeri
al e�
ien
y. Thenumeri
al e�
ien
y of the algorithm is do
umented in some detail below.Table 2 presents the LPDS evaluated on the 199 trading days from May 30, 2008 to Mar
h

13, 2009, a period 
overing the �nan
ial 
risis with an unpre
edented volatility. Figure 4.1shows that predi
tion in the evaluation period is a tough test of the models be
ause it ex-trapolates outside the sample used for estimation. The posterior distributions of the modelsare not updated during the evaluation period (see Se
tion 3.3). With the ex
eption of someof the more poorly �tting models, this approximation of the LPDS is quite a

urate. This isdo
umented in Villani et al. (2008) and additional eviden
e on this issue is provided below.We observe from Table 2 that the SMR model does poorly, even with a large number of
omponents, and is outperformed by the GARCH(1, 1) and t-GARCH(1, 1) models. A smooth



14Model K = 1 K = 2 K = 3 K = 4 K = 5SMR −982.02 −597.47 −498.87 −484.42 −495.66SAGM −477.50 −472.94 −471.28 −471.53 −469.72Table 3. Evaluating the out-of-sample log predi
tive density s
ore (LPDS) onthe 199 daily returns in the period May 30, 2008 - Mar
h 13, 2009. The poste-rior distribution is updated every 10th observation throughout the evaluationsample.mixture of homos
edasti
 
omponents 
an generate some heteros
edasti
ity in-sample, butwill ne
essarily fail in extrapolating heteros
edasti
 data outside the estimation sample. Thesubsequent rows of Table 2 show that adding 
ovariate-dependent skewness and/or student
t 
omponents (with degrees of freedom a fun
tion of 
ovariates) to the SMR improves theLPDS substantially when the number of mixture 
omponents is small, but the SMR performsbetter in its standard form with Gaussian 
omponents when K is large. This reinfor
es the
on
lusion stressed in Villani et al. (2008) that having heteros
edasti
 
omponents is 
ru
ialfor modeling heteros
edasti
 data.Table 2 also shows that SAGM is on par with the popular t-GARCH(1, 1) already with asingle 
omponent, outperforms it when K ≥ 2, and is more than 7 LPDS units better than
t-GARCH(1,1) at its maximum when K = 4. This is a substantial in
rease in LPDS sin
e weare only using 199 observation in the evaluation sample.To ensure that our short 
ut of keeping the posterior distribution �xed as we go throughthe evaluation sample does not invalidate the 
on
lusions from the LPDS, we re-
omputed theLPDS for the SMR and the SAGM with a 
ommon varian
e fun
tion, this time updating theposterior at every tenth observation. The results are given in Table 3. A 
omparison of Table2 and 3 shows that there are fairly large di�eren
es for the most poorly �tting versions ofSMR, but that the LPDS values for SAGM do not 
hange mu
h when the posterior is updated
ontinuously.Table 2 shows that for the one 
omponent models, adding either 
ovariate-dependent skew-ness or degrees of freedom to the SAGM model in
reases the LPDS by roughly 3 points,and adding them both in
reases the LPDs by a further 2 points. The split-t with 
ovari-ate dependent s
ale, skewness and degrees of freedom is the best one 
omponent model, andits performan
e is 
lose to that of the best SAGM model with four 
omponents. The one-
omponent split-t (SAGM + Skew + DF) is similar to the ARCD model of Hansen (1994)whi
h he uses to model the 
onditional density of the U.S. Dollar / Swiss Fran
 ex
hange rate.If we restri
t the s
ale, skewness and degrees of freedom to be 
ommon a
ross 
omponents(up to a proportionality 
onstant) we see that adding 
omponents to the split-tmodel improvesits fore
asting performan
e. However, we 
an get an even better LPDS by using separate 
om-ponents. Note that adding 
omponents in this 
ase introdu
es as mu
h as 41 new parametersto the model for every newly added 
omponent, and still we do not seem to over-�t even when



15the number of 
omponents is fairly large. This is be
ause of the self-adjustment me
hanismemphasized in Villani et al. (2008): when an additional 
omponent is added to the mixture,the variable sele
tion simpli�es not only the new 
omponent but also the already existing
omponents. The number of e�e
tive parameter 
an therefore even de
rease as 
omponentsare added. But there is a limit to what variable sele
tion 
an do, and there are 
lear signs ofover-�tting when K = 5. Also, the MCMC algorithm struggles when we use K > 3 separate
omponents in the split-t model, with lower a

eptable probabilities and higher risk of gettingstu
k in a lo
al mode. Moreover, the split-t model with separate 
omponents has one dominant
omponent whi
h is very similar to the one-
omponent model, ex
ept for the �ve-
omponentmodel whi
h seems to pi
k up a more 
ompli
ated stru
ture. We will des
ribe the estimationresults for the one-
omponent model in detail below.Figure 4.2 displays normalized residuals in the evaluation sample for some sele
ted models.A normalized residual is de�ned as Φ−1 [F (yt)] , where F (·) is the 
umulative predi
tive distri-bution, where the parameter have been integrated out with respe
t to the posterior distributionbased on the estimation sample, so the residuals in Figure 4.2 are therefore out-of-sample. Ifthe model is 
orre
t, the normalized residuals should be iid N(0, 1). It is 
lear from Figure4.2 that even the SMR with largest LPDS produ
es mu
h to large residuals during the mostvolatile period. As indi
ated in the graph, 19.5% of the normalized residuals from the SMR(4)lie outside a 95% probability interval a

ording to the N(0, 1) referen
e distribution. TheSAGM(1) does better than the SMR, but this model also generates to many outliers: 3.5%of the residuals are outside the 99% referen
e interval. The remaining four models in Figure4.2 have rather similar seemingly homos
edasti
 and independent residuals, and they all have
lose to the right 
overage. The one-
omponent split-t model is doing remarkably well duringthis very di�
ult time period.We now take a more detailed look at the inferen
es from the one-
omponent split-t model.Table 4 presents summaries of the posterior distribution. The results from the variable sele
-tion in the s
ale parameter is very similar to the results for the varian
e fun
tion in Villaniet al. (2008): the 
ovariates MaxMin95, LastWeek and LastMonth have a posterior in
lusionprobability 
lose to one, and all other 
ovariates are essentially ex
luded from the s
ale param-eter. There is support for some small skewness in the model, but no 
ovariates enter λ. Thedegrees of freedom at the posterior mean is exp(2.482) = 11.96, (assuming all other 
ovariatesat their mean) whi
h is not very heavy tailed, but LastWeek enters the model with probability
0.638 and with a large negative 
oe�
ient, so the degrees of freedom is very small for thelargest values of LastWeek (re
all that LastWeek∈ [−1, 1]). The last 
olumn of Table 4 givesthe ine�
ien
y fa
tor (IF) for all parameters with in
lusion probabilities larger than 0.02. Itis 
lear that the MCMC algorithm is very e�
ient, almost all parameters have IFs smallerthan 10. The MH a

eptan
e probabilities for the regression 
oe�
ients in µ, φ, ν and λ areas high as 95%, 81%, 75% and 94%, respe
tively.To explore the sensitivity to variations in the rather arbitrarily set prior parameter τ2

β(see Se
tion 2.3), we 
ompute the LPDS for the one-
omponent split-t model using τ2
β =

1, 10 and 100 (the default), obtaining an LPDS of−472.89, −472.61 and −472.37, respe
tively.Sin
e the LPDS is based on the posterior distribution from a large sample (unlike the marginal
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17Parameters Mean Stdev Post.In
l. IFLo
ation µConst 0.084 0.019 � 9.919S
ale φConst 0.402 0.035 � 7.125LastDay -0.190 0.120 0.036 0.903LastWeek -0.738 0.193 0.985 18.519LastMonth -0.444 0.086 0.999 4.133CloseAbs95 0.194 0.233 0.035 1.445CloseSqr95 0.107 0.226 0.023 2.715MaxMin95 1.124 0.086 1.000 6.012CloseAbs80 0.097 0.153 0.013 �CloseSqr80 0.143 0.143 0.021 �MaxMin80 -0.022 0.200 0.017 �Degrees of freedom νConst 2.482 0.238 � 5.708LastDay 0.504 0.997 0.112 2.899LastWeek -2.158 0.926 0.638 5.463LastMonth 0.307 0.833 0.089 5.560CloseAbs95 0.718 1.437 0.229 3.020CloseSqr95 1.350 1.280 0.279 2.758MaxMin95 1.130 1.488 0.222 6.564CloseAbs80 0.035 1.205 0.101 2.789CloseSqr80 0.363 1.211 0.112 3.330MaxMin80 -1.672 1.172 0.254 4.178Skewness λConst -0.104 0.033 � 10.423LastDay -0.159 0.140 0.027 1.170LastWeek -0.341 0.170 0.135 8.909LastMonth -0.076 0.112 0.016 �CloseAbs95 -0.021 0.096 0.008 �CloseSqr95 -0.003 0.108 0.006 �MaxMin95 0.016 0.075 0.008 �CloseAbs80 0.060 0.115 0.009 �CloseSqr80 0.059 0.111 0.010 �MaxMin80 0.093 0.096 0.013 �Table 4. Posterior summary of the one-
omponent split-t model. The poste-rior mean, standard deviation and ine�
ien
y fa
tors (IF) are 
omputed 
on-ditional on a 
ovariate being in the model. The IFs are not 
omputed forparameters with posterior probabilities smaller than 0.02.
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Figure 4.3. Time series plot of the posterior median and 95% probabilityintervals for some moments of the return distribution. The time series of returnsand two of the key 
ovariates are also plotted. The posterior distribution isbased on the full sample up to Mar
h 13, 2009. The distribution of the standarddeviation and the skewness are 
onditioned on ν > 2 and ν > 3, respe
tively.likelihood whi
h is based on the prior), this insensitivity to the prior is reassuring but notsurprising. We also 
ompare the posterior inferen
e on the regression 
oe�
ients for thesame three values of τ2
β . The posterior means and standard deviations are very insensitive to
hanges in τ2

β while the posterior in
lusion probabilities generally de
rease with τ2
β , but not tothe extent of overturning the results about the importan
e of individual 
ovariates. The e�e
tof the prior on the in
lusion probabilities is smaller for the 
ovariates that almost 
ertainlyenter the model. As an example, the posterior in
lusion probabilities for LastDay in φ is 0.290,

0.110 and 0.036 for τ2
β = 1, 10 and 100, respe
tively, while for MaxMin95 they are 1.000, 0.999and 1.000 for the same three priors. Interestingly, the only signi�
ant 
ovariate in the degreesof freedom fun
tion, LastWeek, has posterior in
lusion probabilities of 0.66, 0.76 and 0.64 in

ν for the three di�erent values of τ2
β .Finally, Figure 4.3 presents some posterior moments, su
h as the standard deviation andskewness, for the one-
omponent split-t model over the latter part of the sample (in
ludingthe evaluation sample). The model is estimated on all available data up Mar
h 13, 2009.Figure 4.3 shows that the median of the degrees of freedom a
tually in
reased during the most



19volatile part of the �nan
ial 
risis (but at the same time the s
ale parameter rose dramati
allyto bring about a very large boost in standard deviation of returns), but, during some spells,the posterior distribution of ν also has a long left tail with substantial probability mass onvery small values of ν. 5. Con
lusionsA general model is presented for estimating the distribution of a 
ontinuous variable 
on-ditional on a set of 
ovariates. The model is a mixture of asymmetri
 student t densities withthe mixture weights and all four 
omponent parameters, lo
ation, s
ale, degrees of freedomand skewness, being fun
tions of 
ovariates. We take a Bayesian approa
h to inferen
e andestimate the model by an e�
ient MCMC simulation method. Bayesian variable sele
tion is
arried out to obtain model parsimony and guard against over�tting. The model is appliedto analyse the distribution of daily sto
k market returns 
onditional on nine 
ovariates andoutperforms widely used GARCH models and other re
ently proposed mixture models in anout-of-sample evaluation of returns during the re
ent �nan
ial 
risis.



206. Appendix - MCMC implementationTo implement the MCMC algorithm we need the gradient and Hessian matrix of the 
on-ditional posteriors for ea
h of the four split-t parameters. Sin
e the priors on the regression
oe�
ients in ea
h split-t parameter is a multivariate normal density, the prior gradient andHessian matrix are
∂ ln p(β)

∂β
= −Σ−1

β (β − µβ) and ∂2 ln p(β)

∂β∂β′
= −Σ−1

β .To derive the gradient and Hessian matrix with respe
t to the likelihood, we write the likelihoodas
p(y|x, µ, φ, ν, λ) =

∏

S1

t(y|µ, φ, ν)
∏

S2

t(y|µ, λφ, ν),where t(y|µ, φ, ν) denotes the student-t density
Γ(ν+1

2 )√
νπΓ(ν

2 )


 ν

ν + (y−µ)2

φ2




(ν+1)/2

,

S1 is the set of observations su
h that y ≤ µ and S2 denotes the observations y > µ. It is
onvenient to de�ne the indi
ator fun
tion
Iµ =

{
1 if y > µ

0 if y ≤ µ
,and a = λIµ .The following subse
tions present the gradient and the Hessian for ea
h split-t parameter.Gradient and Hessian wrt µ

∂

∂µ
ln p (y|µ, v, φ, λ) =

(1 + ν) (y − µ)

νa2φ2 + (y − µ)2

∂2

∂µ2
ln p (y|µ, v, φ, λ) =

(1 + v)
[
(y − µ)2 − a2φ2ν

]

[
(y − µ)2 + a2φ2ν

]2 .Gradient and Hessian wrt φ
∂

∂φ
ln p (y|µ, v, φ, λ) =

ν
[
(y − µ)2 − a2φ2

]

φ
[
(y − µ)2 + νa2φ2

]

∂2

∂φ2
ln p (y|µ, v, φ, λ) =

2ν2a2
[
(y − µ)2 − a2φ2

]

[
(y − µ)2 + νa2φ2

] +
3va2 − ν

φ2 (y − µ)2

(y − µ)2 + νa2φ2Gradient and Hessian wrt ν



21
∂

∂ν
ln p (y|µ, v, φ, λ) =

(y − µ)2 − vφ2a

2
[
(y − µ)2 + vφ2a

] +
1

2
ln


 ν

v + (y−µ)2

φ2a




+
1

2

[
ψ
(ν

2
+ 1
)
− ψ

(ν
2

)]

∂2

∂ν2
ln p(y|µ, v, φ, λ) =

(y − µ)4 + νφ4a

2ν
(
(y − µ)2 + νφ2a

)2 +
1

4

[
ψ1

(ν
2

+ 1
)
− ψ1

(ν
2

)]where ψ(·) is the digamma fun
tion and ψ1(·) is the trigamma fun
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