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1. INTRODUCTION

This paper is concerned with estimating the conditional predictive distribution p(y|z), where
y is a univariate continuous response variable and z is a possibly high-dimensional vector of
covariates. Our approach is an exercise in nonparametric regression density estimation since
p(y|x) is modeled flexibly both for any given x but also across different covariate values.

Villani, Kohn and Giordani (2008) propose the Smooth Adaptive Gaussian Mixture (SAGM)
model as flexible model for regression density estimation. Their model is a finite mixture
of Gaussian densities with the mixing probabilities, the component means and component
variances modeled as functions of the covariates x, with Bayesian variable selection in all
three sets of covariates. See Friiewirth-Schnatter (2006) for a comprehensive introduction to
mixture models.

Villani et al. (2008) argues in favor of a complez-and-few modeling philosophy where enough
flexibility is used within the mixture components so that the number of components can be
kept to a minimum; see also Wood, Jiang and Tanner (2003). This is in sharp contrast
to the simple-and-many approach used in the machine learning literature (in particular the
mixture-of-experts model introduced in Jacobs, Jordan, Nowlan and Hinton (1991), and Jordan
and Jacobs (1994)) where the components are often linear homoscedastic regressions, or even
constant functions. Villani et al. (2008) show that a single complex component can often give a
better and numerically more stable fit in substantially less computing time than a model with
many simpler components. Moreover, simulations and real applications in Villani et al. (2008)
show that a simple-and-many approach can fail to fit heteroscedastic data even with a very
large number of components, especially in situations with more than one or two covariates.
Having heteroscedastic components in the mixture is therefore crucial for accurately modeling
heteroscedastic data.

In one of their applications, Villani et al. (2008) model the distribution of daily stock
market returns as a function of lagged returns and smooth measures of recent volatility. The
best model uses one component to fit the strong heteroscedasticity in the data and the other
two or three components to capture the additional kurtosis and/or skewness. The current
paper continues the complex-and-few approach and extends the SAGM model by generalizing
the Gaussian components to asymmetric student-¢ densities, thereby making it possible to
capture skewness and excess kurtosis within the components. Each component density has four
parameters: location, scale, degrees of freedom and skewness, and each of these four parameters
are modeled as function of covariates. This makes it possible to have e.g. the degrees of
freedom smoothly varying over covariate space in a way dictated by the data. An efficient
Markov Chain Monte Carlo (MCMC) simulation method is proposed that allows for Bayesian
variable selection in all four parameters of the asymmetric ¢ density, and in the mixture weights.
The variable selection makes it possible to handle a large number of covariates. Reducing the
number of effective parameters by variable selection mitigates problems with over-fitting and
is also beneficial for the convergence of the MCMC algorithm. The methodology is applied
to modeling the distribution of daily returns from the S&P500 stock market index. It is

shown that a smooth mixture of asymmetric student ¢ components outperforms SAGM and
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other commonly used models for financial data in an out-of-sample evaluation of the predictive
density during the financial turmoil in the end of year 2008 and beginning of 2009.

2. THE MODEL AND PRIOR

2.1. Smooth mixtures. Our model is a finite mixture density with weights that are smooth
functions of the covariates,

K

(2.1) p(ylr) = wr(@)p(yle),

k=1
where pg(y|x) is the kth component density with weight wg(x). The component densities are
asymmetric student ¢ densities described in detail in the next section. The weights are modeled
by a multinomial logit function
exp(2/vk)
K Y
2 r=1 exp(2'yr)

with v; = 0 for identification. The covariates in the components can in general be different

(2.2) wy(z) =

from the covariates in the mixture weights. Jiang and Tanner (1999a,b) show that smooth
mixtures with sufficiently many components can approximate a wide class of densities.

To simplify the MCMC simulation, we express the mixture model in terms of latent variables
as in Diebolt and Robert (1994) and Escobar and West (1995). Let sq, ..., s, be unobserved
indicator variables for the observations in the sample such that s; = k& means that the ith
observation belongs to the kth component, px(y|z). The model in (2.1) and (2.2) can then be

written
Pr(s; = klx,y) = wi(w)
yil(si = k,zi) ~ pr(yilzi).

Conditional on s = (s1,...,$,)’, the mixture model decomposes into K separate component
models p;(y|x),...,px (y|z), with each data observation being allocated to one and only one

component.

2.2. The component models. The component densities in SAGM are Gaussian with both
the mean and variance functions of covariates. Our article extends this model so the component
densities belong to an asymmetric student ¢ family. More specifically, the component models
are split-t densities (Geweke, 1989) according to the following definition.

Definition 1. The random variable y follows a split-t distribution with v degrees of freedom,

y ~ t(p, o, \,v), if its density function is of the form

¢ K, o) (y < p) + ¢ mlp, A, v)I(y > p),

where
(v+1)/2

1%

t(p, d,v) =

BT
v+ (y¢ét)
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is the kernel of a student ¢ density with variance ¢?v/(v—2) and ¢ = 2[(1+\)¢y/vBeta(%, 3)]
is the normalization constant. The location parameter is u, ¢ > 0 is the scale parameter, and
A > 0 is the skewness parameter. When A < 1 the distribution is skewed to the left, when
A > 1 it is skewed to the right, and when A = 1 it reduces to the usual symmetric student-¢

density.

The (one-component) split-¢ is similar to the ARCD model of Hansen (1994) which he
estimates by maximum likelihood to model the conditional density of the U.S. Dollar / Swiss
Franc exchange rate.

The next lemma gives the first four central moments of the split-¢ density. We use the
following definition of skewness and excess kurtosis

Ely— E®)?

Ely- E(y)]*
K(y) = ———~

V(y)?
where V (y) denotes the variance. The following lemma, which can be proved by straightfor-
ward algebra, gives some basic properties of the split-¢ distribution.

_3,

Lemma 2. If y ~ t(u, ¢, \,v) then

E(ly) = p+h
14+ v
Viy) = ——¢* — h?

_ 6A(N2 —1) —2(\* = 1) s
Ely—E(@y)]® = T30 1) (v 8 Beta 2. 1)" &3 + 213

3t (14 09) (1+X%) v
Ely-E@y)]* = 1+N(v—2) (v—4) _3h4+6h2m
(A—1) (A2 + 1) vigt
(v —1) (v —3) ¢Beta (%,3)’

¢2

—16h

where

2yvp(A—1)
(v — 1) Beta (%, %) ’
and moment of order r exists exists if v > r.

The CDF of a split ¢ distribution is of the form

1 N a - Sign (y — p) (1_ Beta ( ;%,l)>
14+ 14+
where
va2¢?
va2¢? + (y — p)*’
and a = A if y > p and a = 1 otherwise, and Beta (t; 5, %) is the incomplete beta function
(Abramowitz and Stegun, 1972).




Each of the four parameters u, ¢, A and v are connected to covariates as

o= Buo+ 8,

Ing = By + x106s

InX = [+ zi6n

(2.3) v = Byo+8,

but any smooth link function can equally well be used in the MCMC methodology. Additional
flexibility can be obtained by letting a subset of the covariates be a non-linear basis expansions,
e.g. additive splines or splines surfaces (Ruppert, Wand and Carroll, 2003) as in Villani et al.
(2008), but this is not pursued here. A strength of our approach is that the four regression
coefficient vectors: 3, B4, 5, and 3 are all treated in a unified way in the MCMC algorithm.
Whenever we refer to a regression coefficient vector without subscript, 3, the argument applies
to all of the split-t parameters in (2.3).

This split-t model will often be flexible enough to fit the data, but there are datasets that
require a smooth mixture model, for example when the data are multimodal for some covariates
values. A second example occurs when the wrong link function is used in one of the split-¢
parameters, where the mixture can then correct for this erroneous choice. A third example is
when there are outliers in the data that cannot be accommodated by a student ¢ density.

A smooth mixture of split-t densities is a model with a large number of parameters, however,
and is therefore likely to over-fit the data unless model complexity is controlled effectively. We
use Bayesian variable selection in all four split-¢t parameters, and in the mixing function. This
can lead to important simplifications of the split-t components. Not only does this control
complexity for a given number of components, but it also simplifies the existing components
if an additional component is added to the model (the LIDAR example in Villani, Kohn and
Giordani (2007) illustrates this well). Increasing the number of components can therefore even
reduce the number of effective parameters in the model.

A more extreme, but often empirically relevant, simplification of the model is to assume
that one or more split-t parameters are common to the components, that is, only the inter-
cepts in (2.3) are allowed to be different across components. The unrestricted model where
the regression coefficients are allowed to differ across components is said to have separate

components.

2.3. The prior. Although the MCMC methodology (see Section 3.2) allows any prior dis-
tribution, we shall now present an easily specified prior that depends only on a few hyper-
parameters. First, we standardize the covariates by subtracting the mean and dividing by
the standard deviation. This allows us to assume prior independence between the intercept
and the remaining regression coefficients, and the intercepts have the interpretation of being
the (possibly transformed) split-¢ parameters at the mean of the original covariates. Since
there can be a large number of covariates in the model, our strategy is to incorporate available
prior information via the intercepts, and to treat the remaining regression coefficients more

informally. Assuming a normal prior for p implies a normal prior on §,9. The other three
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split-t parameters ¢, A and v are assumed to follow independent log-normal priors with means
m* and s*, where m* and s* are different for the different split-t parameters. This translates

into a normal prior on the intercept with mean

1 s*\2
mo :lnm* — 5111 [(E) +1

* 0\ 2

The regression coefficients 3,, 84, 5, and 3y are assumed to be independent a priori. We

and variance

allow for Bayesian variable selection by augmenting each parameter vector § by a vector of
binary covariate selection indicators Z = (i1, ...,4,) such that 8; = 0 if i; = 0. Let Sz denote
the subset of 3 selected by Z. We assume the following prior for each § vector

Br|Z ~ N(0,731)

and [zc|Z¢ is identically zero, where Z¢ is the complement of Z. Alternatively, one can use a
g-prior (Zellner, 1986) 8 ~ N [O, TE(X’X)_l} and then condition on the restrictions imposed
by Z; Denison, Holmes, Mallick and Smith (2002, p. 80-81) discusses the advantages and
disadvantages of these two different priors. The g-prior is less appealing in a mixture context
since (X’X)~! may be a bad representation of the covariance between parameters in the
smaller components, see Villani et al. (2008) for a discussion, and we will therefore use the
identity matrix here. We use 73 = 10 as the default value. Given that the covariates have
been standardized to zero mean and unit variance, these priors are vague. We investigate the
sensitivity of the posterior inferences and model comparison with respect to 73 in Section 4.

The variable selection indicators are assumed to be independent Bernoulli with probability
wg a priori, but more complicated distributions are easily accommodated, see e.g. the extension
in Villani et al. (2008) for splines in a mixture context or a prior which is uniform on the variable
selection indicators for a given model size in Denison, Holmes, Mallick and Smith (2002). Tt
is also possible to estimate wg as proposed in Kohn, Smith and Chan (2001) with an extra
Gibbs sampling step. Note that wg may be different for each split-t parameter. Our default
prior has wg = 0.5.

The prior on the mixing function decomposes as

p(77 z, 8) - p(S")/, Z)p(’y‘Z)p(Z),

where Z is the p x (K — 1) matrix with variable selection indicators for the p covariates in
the mixing function (recall that v; = 0 for identification). The variable indicators in Z are

assumed to be #id Bernoulli(w). The prior on v = (7%, ...,7,,)" is assumed to be of the form
vz|Z ~ N(0,71),

and yze = 0 with probability one. We use 7'3 = 10 as default value. Finally, p(s|y, Z) is given
by the multinomial logit model in (2.2). To reduce the number of parameters and to speed up
the MCMC algorithm we restrict the columns of Z to be identical, i.e. make the assumption
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that a covariate is either present in the mixing function in all components, or does not appear
at all, but the extension to general Z is straightforward, see Villani et al. (2008).

3. INFERENCE METHODOLOGY

3.1. The general MCMC scheme. We use MCMC methods to sample from the joint poste-
rior distribution, and draw the parameters and variable selection indicators in blocks. Villani
et al. (2008) experimented with several different algorithms in a related setting and the algo-
rithm outlined below is similar to their preferred algorithm. The details of the algorithm are
given in Appendix A. The method used to select the number of components is discussed in
Section 3.3.

The algorithm is a Metropolis-within-Gibbs sampler that draws parameters using the fol-

lowing six blocks:

) LB T b,
@) {8 ke,
3) {8V T b,
@) {8, T ek
(5) s = (51, 8n)

(6) v and Z»

The parameters in the different components are independent conditional on s. This means that
each of the first four blocks split up into K independent updating steps. Each updating step in
the first four blocks is sampled using highly efficient tailored MH proposals following a general
approach described in the next section. The latent component indicators in s are independent
conditional on the model parameters and are drawn jointly from their full conditional posterior.
Conditional on s, Step 6 is a multinomial logistic regression with variable selection, and ~ and
Iz are drawn jointly using a generalization of the method used to draw blocks 1-4, see Villani
et al. (2008) for details.

Mixture models have well known identification problems, the most serious one being the
so called label switching problem, which means that the likelihood is invariant with respect
to permutations of the components in the mixture see e.g. Celeux, Hurn and Robert (2000),
Jasra, Holmes and Stephens (2005) and Friiewirth-Schnatter (2006). The aim of our article is
to estimate the predictive density, so that label switching is neither a numerical nor conceptual
problem (Geweke, 2007). If an interpretation of the mixture components is required, then it
is necessary to impose some identification restrictions on some of the model parameters, e.g.
an ordering constraint (Jasra, Holmes and Stephens, 2005).

3.2. Updating ((3,Z) using variable-dimension finite-step Newton proposals. Nott
and Leonte (2004) extend Gamerman’s (1997) method for generating MH proposals in a gen-
eralized linear model (GLM) to the variable selection case. Villani et al. (2008) extend the
algorithm to a general setting not restricted to the exponential family. We first treat the

problem without variable selection. The algorithm in Villani et al. (2008) only requires that



the posterior density can be written as

n

(3.1) p(Bly) o< pylB)p(B) = [ [ p(uilei)p(B),
i=1

where ¢; = 23 and z; is a covariate vector for the ith observation. Note that p(S|y) may be
a conditional posterior density and the algorithm can then be used as a step in a Metropolis-
within-Gibbs algorithm. The full conditional posteriors for blocks 1-4 in Section 3.1 are clearly
all of the form in (3.1). Newton’s method can be used to iterate R steps from the current point
B in the MCMC sampling toward the mode of p(5|y), to obtain 3 and the Hessian at 3. Note
that ﬁ may not be the mode but is typically close to it already after a few Newton iterations,
so setting R = 1,2 or 3 is usually sufficient. This makes the algorithm fast, especially when
the gradient and Hessian are available in closed form, which is the case here, see Appendix A.

Having obtained good approximations of the posterior mode and covariance matrix from
the Newton iterations, the proposal 3, is now drawn from the multivariate t-distribution with
g > 2 degrees of freedom:

9 )

ik lnp(ﬁly)>_1

Byl ~ t B,—< 5585

B=5
where the second argument of the density is the covariance matrix.

In the variable selection case we propose § and Z simultaneously using the decomposition

g(ﬂzu Zp’ﬁa Ic) =0 (6}2‘1—1)7 60)92 (Zp‘ﬂw Zc)7

where go is the proposal distribution for Z and g; is the proposal density for § conditional on
Z,. The Metropolis-Hasting acceptance probability is

p(pra Ip)p(ﬁp |Ip)p(zp)91 (Be|Ze, ﬁp)92 (Ich, Ip) >
p(y|Be, Ze)p(Be|Ze)p(Ze) g1 (ﬁp’z}n Be) g2 (Zp’/ﬁca Z.) '

The proposal density at the current point gi(8.|Zc, Bp) is a multivariate ¢-density with mode

al(Be,Zc) — (Bp,Zp)] = min (1,

B and covariance matrix equal to the negative inverse Hessian evaluated at 5 , where E is the
point obtained by iterating R steps with the Newton algorithm, this time starting from 3,. A
simple way to propose Z, is to randomly select a small subset of Z. and then always propose
a change of the selected indicators. This proposal can be refined in many ways, using e.g. the
adaptive scheme in Nott and Kohn (2005), where the history of Z-draws is used to adaptively
build up a proposal for each indicator. It is important to note that 3. and 3, may now be
of different dimensions, so the original Newton iterations no longer apply. We will instead
generate (3, using the following generalization of Newton’s method. The idea is that when
the parameter vector 8 changes dimensions, the dimension of the functionals ¢, = 2/3. and
©p = 2’ [, stay the same, and the two functionals are expected to be quite close. A generalized
Newton update is

(3.2) Brp1 =AYNB.B—g), (r=0,...,R—1),

where By = ., and the dimension of 3,11 equals the dimension of 3,, and



Oln
gr = X;Hd"‘ia];(ﬁ)
9% 1n
A, = X;+1DXT+1+%TPg/ﬂ)
9” Inp(B)
_ !/
(3.3) B, = X, ,1/DX, + 0308

where d is an n-dimensional vector with gradients 0ln p(y;|p;)/0p; for each observation cur-
rently allocated to the component being updated. Similarly, D is a diagonal matrix with
Hessian elements
0% In p(yilpi)
0p;0¢);

X, is the matrix with the covariates that have non-zero coefficients in (,, and all expressions
are evaluated at = (3,. For the prior gradient this means that 01n p((3)/90 is evaluated at 3,
including all zero parameters, and that the sub-vector conformable with 3,1 is extracted from
the result. The same applies to the prior Hessian (which does not depend on 3 however, if the
prior is Gaussian). Note that we only need to compute the scalar derivatives 01n p(y;|¢;)/0¢;
and 0% Inp(yi|di)/0¢7.

After the first Newton iteration the parameter vector no longer changes dimension, and the
generalized Newton algorithm in (3.2) reduces to the original Newton algorithm. The proposal
density ¢1(8p|Zp, Bc) is again taken to be the multivariate ¢-density in exactly the same way
as in the case without covariate selection. Once the simultaneous update of the (3,Z)-pair
is completed, we make a final update of the non-zero parameters in (3, conditional on the
previously accepted Z, using the fixed dimension Newton algorithm.

When a parameter is restricted to be proportional across components (i.e. only the intercept
differs between components), the common regression vector [ appears in all K components.
The updating step for the common (3 is of the same form as above, but d and D now contain the
gradients and Hessians for all n observations, where each observation’s gradient and Hessian

is with respect to the component density that the observation is currently allocated to.

3.3. Model comparison. The key quantity in Bayesian model comparison is the marginal
likelihood. The marginal likelihood is sensitive to the choice of prior, however, and this
is especially true when the prior is not very informative, see e.g. Kass (1993) for a general
discussion and Richardson and Green (1997) in the context of density estimation. By sacrificing
a subset of the observations to update/train the vague prior we remove much of the dependence
on the prior, and obtain a better assessment of the predictive performance that can be expected
for future observations. To deal with the arbitrary choice of which observations to use for
estimation and model evaluation, one can use B-fold cross-validation of the log predictive
density score (LPDS):

B
B> " Inp(sl b, @),
b=1

where ¢ is an ny-dimensional vector containing the n; observations in the bth test sample and
7_p denotes the remaining observations used for estimation. If we assume that the observations
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are independent conditional on 6, then

p(G6lG—b, @ /Hp yil6, z;)p(0]7—p)d0

i€Ty
where 7 is the index set for the observations in g, and the LPDS is easily computed by
averaging Hz‘eTb p(yi|0, z;) over the posterior draws from p(0|g_p). This requires sampling
from each of the B posteriors p(8|g_p) for b = 1, ..., B, but these MCMC runs can all be run
in isolation from each other and are therefore ideal for parallel computing on widely available
multi-core processors.

Cross-validation is less appealing in a time series setting, and a more natural approach is
to use the most recent observations in a single test sample. Moreover, for time series data it
is typically false that the observations are independent conditional on the model parameters,
so that the above estimation approach cannot be used. An MCMC estimate of the LPDS of

a time series can instead be based on the decomposition

PYTA15 -, Y7 Y15 -, yT) = PYT 1YL, - yT) - - PYTT Y1, o YT 1),

with each term in the decomposition

p(?/t|y1,--,yt71) = /P(yt|y1,--,yt1,9)p(9|y1,--,yt1)d9,

estimated from a posterior sample of 8’s based on data up to time ¢ — 1. The problem is
that this requires T* — T’ complete runs with the MCMC algorithm, one for each term in the
decomposition, which is typically very time-consuming (although computer parallelism can
again be exploited). In situations where T is fairly large compared to 7™, we can approximate
the LPDS by computing each term p(y¢|yi, .., y¢—1) using the same posterior sample based on
data up to time 1. We evaluate the accuracy of this approximation in the empirical application

in the next section.

4. MODELING THE DISTRIBUTION OF DAILY STOCK MARKET RETURNS

4.1. S&P500 data and priors. Modeling the volatility /variability in financial data has been
an highly active research area since Engle’s (1982) seminal paper introduced the ARCH model
(see e.g. Baillie (2006) for a survey of the field), and there are large financial markets for
volatility-based instruments. Financial data, such as stock market returns, are typically heavy
tailed and subject to volatility clustering, i.e. a time-varying variance that evolves in a very
persistent fashion. We here model the entire distribution of daily returns from the S&P500
stock market index, p(y¢|z:), where y; = 1001n(p;/pi—1) is the daily return at time ¢, p; is
the closing S&P500 index on day t, and x; contains the covariate observations at time t.
By focusing on the whole distribution of returns we are able to compute e.g. the posterior
distribution of the Value-at-Risk (VaR), i.e. the 1% quantile of the return distribution, which
is of fundamental interest to financial analysts.

We estimate the models using data from 4646 trading days between Jan 1, 1990 and May
29, 2008. The models are then evaluated out-of-sample on the subsequent 199 trading days
from May 30, 2008 to March 13, 2009. The data are plotted in the upper left sub-graph of
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7 ¢ v_A
m* 0 +/(mi—2)/m; 10 1
st 10 1 7 1

TABLE 1. The prior mean and standard deviation on the split-t parameters for
the S&P500 stock return data. The prior mean of ¢ is a function of the prior
mean of v such that the variance of returns is unity as in Villani et al. (2008).

Figure 4.1, with the evaluation period marked out in red. To make the results comparable to
Geweke and Keane (2007) and Villani et al. (2008), we standardize the covariates to lie in the
interval [—1, 1], rather than making them mean zero with unit variance.

Table 1 displays the prior hyper-parameters for the split-t parameters. The prior on v and
A are fairly vague and and the prior on g and ¢ have been chosen to match the mean and

variance in Villani et al. (2008) as closely as possible.

4.2. Models. Geweke and Keane (2007) show that a smooth mixture of homoscedastic Gauss-
ian regressions (the so called Smoothly Mixing Regression, SMR) with two covariates outper-
forms the typically hard-to-beat --GARCH(1,1) model (Bollerslev, 1987) in an out-of-sample
evaluation based on the LPDS (see Section 3.3). The two covariates are the return yesterday
yr—1 (LastDay) and CloseAbs95, a geometrically decaying average of past absolute returns

00
(1 - P) ZPS |yt72fs| ;
s=0

where p = 0.95 is the discount factor. Following Geweke and Keane (2007) we assume the
mean of each component to be constant since the level of the stock market returns are not
expected to be predictable.

Villani et al. (2008) demonstrate that the SAGM model with its heteroscedastic components
outperforms the SMR in Geweke and Keane (2007). Villani et al. (2008) also introduce seven
additional covariates and show that they substantially improve the out-of-sample performance
of the SAGM. We will concentrate on this nine-variable model. The seven additional covariates
are: LastWeek and LastMonth, a moving average of the returns from the previous five and 20
trading days, respectively. The variable CloseAbs80, the same variable as CloseAbs95 but with
p = 0.80, is also added to the covariate set, and so is the square root of (1—p) > % p*y? 5_,,
for p = 0.80 and 0.95 (CloseSqr80 and CloseSqr95). Finally, Villani et al. (2008) include a

measure of volatility that has been popular in the finance literature: (1—p) ) %2 p*(In pl@k s

In pgl_)l_ ), where p,gh) and pgl) are the highest and lowest values of the S&P500 index at day
t. This measure has been shown both theoretically and empirically to carry more information
on the volatility than changes in closing quotes (Alizadeh, Brandt and Diebold, 2002). We
consider both p = 0.8 (MaxMin80) and p = 0.95 (MaxMin95). As in Villani et al. (2008), all

variables except LastDay, LastWeek and LastMonth enter the model in logarithmic form.

4.3. Results. We generated 30,000 draws from the posterior, and used the last 25,000 draws
for inference. This is more than sufficient for convergence of the parameter estimates, the
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Model K=1 K=2 K=3 K=14 K=5 Max n.s.e.
SMR —1044.78 —638.89 —505.74 —487.11 —489.19 0.98 (3)
+ Skew —-540.91 —-525.07 —513.85 —506.68 —506.13 0.82(2)
+ DF —544.00 —518.71 —498.93 —500.14 —494.29 0.89(1)
+ Skew + DF —530.86 —504.63 —498.03 —498.83 —496.87 0.88(5)
SAGM Common —477.73 —473.10 —473.12 —470.30 —472.86 0.26 (2)
+ Skew —474.18 —467.29 —468.75 —467.93 —467.22 0.35(4)
+ DF —474.74  —472.92 —470.51 —469.40 —468.87 0.34 (4)
+ Skew + DF —472.37 —468.92 —469.30 —466.21 —465.86 0.53 (4)
SAGM Separate —469.21 —469.50 —470.53 —471.02 0.49 (3)
+ Skew —468.48 —466.93 —467.48 —468.02 0.58 (4)
+ DF —469.08 —469.24 —-462.03 —467.78 0.72(5)
+ Skew + DF —466.84 —462.56 —462.47 —474.58 0.74 (5)
GARCH(1,1) —479.03

t-GARCH(1,1) —477.39

TABLE 2. Evaluating the out-of-sample log predictive density score (LPDS)
on the 199 daily returns in the period May 30, 2008 - March 13, 2009. The
posterior distribution is computed using data until May 29, 2008, and not
updated thereafter, except for the two GARCH models which are based on
continuously updated maximum likelihood estimates. The LPDS of the best
model for a given number of components is in bold font. The last column gives
the maximal numerical standard error of the LPDS for each model with the
number of components for which the maximum was obtained in parenthesis.
The notation for the models is such that e.g. + Skew means that covariate-
dependent skewness is added to the model.

posterior inclusion probabilities and the LPDS; see also Villani et al. (2008) for details regard-
ing convergence in the SAGM model. Three Newton steps were used for all parameters, but
experiments with a single Newton step gave essentially the same numerical efficiency. The
numerical efficiency of the algorithm is documented in some detail below.

Table 2 presents the LPDS evaluated on the 199 trading days from May 30, 2008 to March
13, 2009, a period covering the financial crisis with an unprecedented volatility. Figure 4.1
shows that prediction in the evaluation period is a tough test of the models because it ex-
trapolates outside the sample used for estimation. The posterior distributions of the models
are not updated during the evaluation period (see Section 3.3). With the exception of some
of the more poorly fitting models, this approximation of the LPDS is quite accurate. This is
documented in Villani et al. (2008) and additional evidence on this issue is provided below.

We observe from Table 2 that the SMR model does poorly, even with a large number of
components, and is outperformed by the GARCH(1,1) and --GARCH(1, 1) models. A smooth
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Model K =1 K=2 K=3 K=4 K=5
SMR  —982.02 —597.47 —498.87 —484.42 —495.66
SAGM —477.50 —472.94 —471.28 —471.53 —469.72

TABLE 3. Evaluating the out-of-sample log predictive density score (LPDS) on
the 199 daily returns in the period May 30, 2008 - March 13, 2009. The poste-
rior distribution is updated every 10th observation throughout the evaluation
sample.

mixture of homoscedastic components can generate some heteroscedasticity in-sample, but
will necessarily fail in extrapolating heteroscedastic data outside the estimation sample. The
subsequent rows of Table 2 show that adding covariate-dependent skewness and/or student
t components (with degrees of freedom a function of covariates) to the SMR improves the
LPDS substantially when the number of mixture components is small, but the SMR performs
better in its standard form with Gaussian components when K is large. This reinforces the
conclusion stressed in Villani et al. (2008) that having heteroscedastic components is crucial
for modeling heteroscedastic data.

Table 2 also shows that SAGM is on par with the popular --GARCH(1, 1) already with a
single component, outperforms it when K > 2, and is more than 7 LPDS units better than
t-GARCH(1,1) at its maximum when K = 4. This is a substantial increase in LPDS since we
are only using 199 observation in the evaluation sample.

To ensure that our short cut of keeping the posterior distribution fixed as we go through
the evaluation sample does not invalidate the conclusions from the LPDS, we re-computed the
LPDS for the SMR and the SAGM with a common variance function, this time updating the
posterior at every tenth observation. The results are given in Table 3. A comparison of Table
2 and 3 shows that there are fairly large differences for the most poorly fitting versions of
SMR, but that the LPDS values for SAGM do not change much when the posterior is updated
continuously.

Table 2 shows that for the one component models, adding either covariate-dependent skew-
ness or degrees of freedom to the SAGM model increases the LPDS by roughly 3 points,
and adding them both increases the LPDs by a further 2 points. The split-t with covari-
ate dependent scale, skewness and degrees of freedom is the best one component model, and
its performance is close to that of the best SAGM model with four components. The one-
component split-t (SAGM + Skew + DF) is similar to the ARCD model of Hansen (1994)
which he uses to model the conditional density of the U.S. Dollar / Swiss Franc exchange rate.

If we restrict the scale, skewness and degrees of freedom to be common across components
(up to a proportionality constant) we see that adding components to the split-¢ model improves
its forecasting performance. However, we can get an even better LPDS by using separate com-
ponents. Note that adding components in this case introduces as much as 41 new parameters
to the model for every newly added component, and still we do not seem to over-fit even when
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the number of components is fairly large. This is because of the self-adjustment mechanism
emphasized in Villani et al. (2008): when an additional component is added to the mixture,
the variable selection simplifies not only the new component but also the already existing
components. The number of effective parameter can therefore even decrease as components
are added. But there is a limit to what variable selection can do, and there are clear signs of
over-fitting when K = 5. Also, the MCMC algorithm struggles when we use K > 3 separate
components in the split-t model, with lower acceptable probabilities and higher risk of getting
stuck in a local mode. Moreover, the split-t model with separate components has one dominant
component which is very similar to the one-component model, except for the five-component
model which seems to pick up a more complicated structure. We will describe the estimation
results for the one-component model in detail below.

Figure 4.2 displays normalized residuals in the evaluation sample for some selected models.
A normalized residual is defined as ® ! [F(y;)], where F(-) is the cumulative predictive distri-
bution, where the parameter have been integrated out with respect to the posterior distribution
based on the estimation sample, so the residuals in Figure 4.2 are therefore out-of-sample. If
the model is correct, the normalized residuals should be #id N(0,1). It is clear from Figure
4.2 that even the SMR with largest LPDS produces much to large residuals during the most
volatile period. As indicated in the graph, 19.5% of the normalized residuals from the SMR/(4)
lie outside a 95% probability interval according to the N(0,1) reference distribution. The
SAGM(1) does better than the SMR, but this model also generates to many outliers: 3.5%
of the residuals are outside the 99% reference interval. The remaining four models in Figure
4.2 have rather similar seemingly homoscedastic and independent residuals, and they all have
close to the right coverage. The one-component split-t model is doing remarkably well during
this very difficult time period.

We now take a more detailed look at the inferences from the one-component split-¢ model.
Table 4 presents summaries of the posterior distribution. The results from the variable selec-
tion in the scale parameter is very similar to the results for the variance function in Villani
et al. (2008): the covariates MaxMin95, LastWeek and LastMonth have a posterior inclusion
probability close to one, and all other covariates are essentially excluded from the scale param-
eter. There is support for some small skewness in the model, but no covariates enter A\. The
degrees of freedom at the posterior mean is exp(2.482) = 11.96, (assuming all other covariates
at their mean) which is not very heavy tailed, but LastWeek enters the model with probability
0.638 and with a large negative coefficient, so the degrees of freedom is very small for the
largest values of LastWeek (recall that LastWeeke [—1,1]). The last column of Table 4 gives
the inefficiency factor (IF) for all parameters with inclusion probabilities larger than 0.02. Tt
is clear that the MCMC algorithm is very efficient, almost all parameters have IFs smaller
than 10. The MH acceptance probabilities for the regression coefficients in u, ¢, v and A are
as high as 95%, 81%, 75% and 94%, respectively.

To explore the sensitivity to variations in the rather arbitrarily set prior parameter Té
(see Section 2.3), we compute the LPDS for the one-component split-t model using 7'5 =
1, 10 and 100 (the default), obtaining an LPDS of —472.89, —472.61 and —472.37, respectively.
Since the LPDS is based on the posterior distribution from a large sample (unlike the marginal
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FIGURE 4.2. Plot of the 199 normalized residuals in the evaluation sample over
time. The red dotted lines are the 99% probability intervals under the N (0, 1)
reference distribution. Each sub-graph displays the percentage of normalized
residuals outside the 95% and 99% probability intervals of the N (0, 1) reference
distribution.
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Parameters Mean Stdev Post.Incl. IF

Location u
Const 0.084  0.019 - 9.919
Scale ¢
Const 0.402  0.035 - 7.125
LastDay -0.190  0.120 0.036 0.903

LastWeek -0.738 0.193 0.985 18.519
LastMonth -0.444 0.086 0.999 4.133

CloseAbs95 0.194  0.233 0.035 1.445
CloseSqr95 0.107  0.226 0.023 2.715
MaxMin95 1.124 0.086 1.000 6.012
CloseAbs80 0.097  0.153 0.013 -
CloseSqr80 0.143  0.143 0.021 -
MaxMin80 -0.022  0.200 0.017 -

Degrees of freedom v

Const 2.482  0.238 - 5.708
LastDay 0.504  0.997 0.112 2.899
LastWeek -2.158 0.926 0.638 5.463
LastMonth 0.307  0.833 0.089 5.560
CloseAbs95 0.718 1.437 0.229 3.020
CloseSqr95 1.350  1.280 0.279 2.758
MaxMin95 1.130 1.488 0.222 6.564
CloseAbs80 0.035  1.205 0.101 2.789
CloseSqr80 0.363  1.211 0.112 3.330
MaxMin80 -1.672 1.172 0.254 4.178
Skewness A
Const -0.104  0.033 - 10.423
LastDay -0.159  0.140 0.027 1.170
LastWeek -0.341  0.170 0.135 8.909
LastMonth -0.076  0.112 0.016 -
CloseAbs95 -0.021  0.096 0.008 -
CloseSqr95 -0.003  0.108 0.006 -
MaxMin95 0.016  0.075 0.008 -
CloseAbs80 0.060  0.115 0.009 -
CloseSqr80 0.059  0.111 0.010 -
MaxMin&0 0.093  0.096 0.013 —

TABLE 4. Posterior summary of the one-component split-t model. The poste-
rior mean, standard deviation and inefficiency factors (IF) are computed con-
ditional on a covariate being in the model. The IFs are not computed for
parameters with posterior probabilities smaller than 0.02.
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FIGURE 4.3. Time series plot of the posterior median and 95% probability
intervals for some moments of the return distribution. The time series of returns
and two of the key covariates are also plotted. The posterior distribution is
based on the full sample up to March 13, 2009. The distribution of the standard
deviation and the skewness are conditioned on v > 2 and v > 3, respectively.

likelihood which is based on the prior), this insensitivity to the prior is reassuring but not
surprising. We also compare the posterior inference on the regression coefficients for the
same three values of 7—62' The posterior means and standard deviations are very insensitive to
changes in 7-52 while the posterior inclusion probabilities generally decrease with Té, but not to
the extent of overturning the results about the importance of individual covariates. The effect
of the prior on the inclusion probabilities is smaller for the covariates that almost certainly
enter the model. As an example, the posterior inclusion probabilities for LastDay in ¢ is 0.290,
0.110 and 0.036 for 7'52 =1, 10 and 100, respectively, while for MaxMin95 they are 1.000, 0.999
and 1.000 for the same three priors. Interestingly, the only significant covariate in the degrees
of freedom function, LastWeek, has posterior inclusion probabilities of 0.66, 0.76 and 0.64 in
v for the three different values of 7—62‘

Finally, Figure 4.3 presents some posterior moments, such as the standard deviation and
skewness, for the one-component split-t model over the latter part of the sample (including
the evaluation sample). The model is estimated on all available data up March 13, 20009.

Figure 4.3 shows that the median of the degrees of freedom actually increased during the most
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volatile part of the financial crisis (but at the same time the scale parameter rose dramatically
to bring about a very large boost in standard deviation of returns), but, during some spells,
the posterior distribution of v also has a long left tail with substantial probability mass on

very small values of v.

5. CONCLUSIONS

A general model is presented for estimating the distribution of a continuous variable con-
ditional on a set of covariates. The model is a mixture of asymmetric student ¢ densities with
the mixture weights and all four component parameters, location, scale, degrees of freedom
and skewness, being functions of covariates. We take a Bayesian approach to inference and
estimate the model by an efficient MCMC simulation method. Bayesian variable selection is
carried out to obtain model parsimony and guard against overfitting. The model is applied
to analyse the distribution of daily stock market returns conditional on nine covariates and
outperforms widely used GARCH models and other recently proposed mixture models in an

out-of-sample evaluation of returns during the recent financial crisis.
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6. APPENDIX - MCMC IMPLEMENTATION

To implement the MCMC algorithm we need the gradient and Hessian matrix of the con-
ditional posteriors for each of the four split-t parameters. Since the priors on the regression
coefficients in each split-t parameter is a multivariate normal density, the prior gradient and

Hessian matrix are

dInp(pB) - 9*Inp(B) -
98 = _Eﬁl(ﬁ - Mﬁ) and 0Bop3 = _Eﬁl'

To derive the gradient and Hessian matrix with respect to the likelihood, we write the likelihood
as

plz, 1, 6,0, N) = [ tulm 6, v) [ ] t(wlu, Ao, v),
S Sa

where t(y|u, ¢, v) denotes the student-t density

(v+1)/2
e
T

Nz

S is the set of observations such that y < p and Sy denotes the observations y > p. It is

) v
%) v+ (y;5)2

)

convenient to define the indicator function
lify>up
P oify <’

and @ = A,
The following subsections present the gradient and the Hessian for each split-t parameter.
Gradient and Hessian wrt u
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where 9(-) is the digamma function and () is the trigamma function.
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