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21. IntrodutionThis paper is onerned with estimating the onditional preditive distribution p(y|x), where
y is a univariate ontinuous response variable and x is a possibly high-dimensional vetor ofovariates. Our approah is an exerise in nonparametri regression density estimation sine
p(y|x) is modeled �exibly both for any given x but also aross di�erent ovariate values.Villani, Kohn and Giordani (2008) propose the Smooth Adaptive Gaussian Mixture (SAGM)model as �exible model for regression density estimation. Their model is a �nite mixtureof Gaussian densities with the mixing probabilities, the omponent means and omponentvarianes modeled as funtions of the ovariates x, with Bayesian variable seletion in allthree sets of ovariates. See Früewirth-Shnatter (2006) for a omprehensive introdution tomixture models.Villani et al. (2008) argues in favor of a omplex-and-few modeling philosophy where enough�exibility is used within the mixture omponents so that the number of omponents an bekept to a minimum; see also Wood, Jiang and Tanner (2003). This is in sharp ontrastto the simple-and-many approah used in the mahine learning literature (in partiular themixture-of-experts model introdued in Jaobs, Jordan, Nowlan and Hinton (1991), and Jordanand Jaobs (1994)) where the omponents are often linear homosedasti regressions, or evenonstant funtions. Villani et al. (2008) show that a single omplex omponent an often give abetter and numerially more stable �t in substantially less omputing time than a model withmany simpler omponents. Moreover, simulations and real appliations in Villani et al. (2008)show that a simple-and-many approah an fail to �t heterosedasti data even with a verylarge number of omponents, espeially in situations with more than one or two ovariates.Having heterosedasti omponents in the mixture is therefore ruial for aurately modelingheterosedasti data.In one of their appliations, Villani et al. (2008) model the distribution of daily stokmarket returns as a funtion of lagged returns and smooth measures of reent volatility. Thebest model uses one omponent to �t the strong heterosedastiity in the data and the othertwo or three omponents to apture the additional kurtosis and/or skewness. The urrentpaper ontinues the omplex-and-few approah and extends the SAGM model by generalizingthe Gaussian omponents to asymmetri student-t densities, thereby making it possible toapture skewness and exess kurtosis within the omponents. Eah omponent density has fourparameters: loation, sale, degrees of freedom and skewness, and eah of these four parametersare modeled as funtion of ovariates. This makes it possible to have e.g. the degrees offreedom smoothly varying over ovariate spae in a way ditated by the data. An e�ientMarkov Chain Monte Carlo (MCMC) simulation method is proposed that allows for Bayesianvariable seletion in all four parameters of the asymmetri t density, and in the mixture weights.The variable seletion makes it possible to handle a large number of ovariates. Reduing thenumber of e�etive parameters by variable seletion mitigates problems with over-�tting andis also bene�ial for the onvergene of the MCMC algorithm. The methodology is appliedto modeling the distribution of daily returns from the S&P500 stok market index. It isshown that a smooth mixture of asymmetri student t omponents outperforms SAGM and



3other ommonly used models for �nanial data in an out-of-sample evaluation of the preditivedensity during the �nanial turmoil in the end of year 2008 and beginning of 2009.2. The model and prior2.1. Smooth mixtures. Our model is a �nite mixture density with weights that are smoothfuntions of the ovariates,(2.1) p(y|x) =

K∑

k=1

ωk(x)pk(y|x),where pk(y|x) is the kth omponent density with weight ωk(x). The omponent densities areasymmetri student t densities desribed in detail in the next setion. The weights are modeledby a multinomial logit funtion(2.2) ωk(x) =
exp(x′γk)∑K
r=1 exp(x′γr)

,with γ1 = 0 for identi�ation. The ovariates in the omponents an in general be di�erentfrom the ovariates in the mixture weights. Jiang and Tanner (1999a,b) show that smoothmixtures with su�iently many omponents an approximate a wide lass of densities.To simplify the MCMC simulation, we express the mixture model in terms of latent variablesas in Diebolt and Robert (1994) and Esobar and West (1995). Let s1, ..., sn be unobservedindiator variables for the observations in the sample suh that si = k means that the ithobservation belongs to the kth omponent, pk(y|x). The model in (2.1) and (2.2) an then bewritten Pr(si = k|xi, γ) = ωk(xi)

yi|(si = k, xi) ∼ pk(yi|xi).Conditional on s = (s1, ..., sn)′, the mixture model deomposes into K separate omponentmodels p1(y|x), ..., pK(y|x), with eah data observation being alloated to one and only oneomponent.2.2. The omponent models. The omponent densities in SAGM are Gaussian with boththe mean and variane funtions of ovariates. Our artile extends this model so the omponentdensities belong to an asymmetri student t family. More spei�ally, the omponent modelsare split-t densities (Geweke, 1989) aording to the following de�nition.De�nition 1. The random variable y follows a split-t distribution with ν degrees of freedom,
y ∼ t(µ, φ, λ, ν), if its density funtion is of the form

c · κ(µ, φ, ν)I(y ≤ µ) + c · κ(µ, λφ, ν)I(y > µ),where
κ(µ, φ, ν) =


 ν

ν + (y−µ)2

φ2




(ν+1)/2

,



4is the kernel of a student t density with variane φ2ν/(ν−2) and c = 2[(1+λ)φ
√
νBeta(ν

2 ,
1
2)]−1is the normalization onstant. The loation parameter is µ, φ > 0 is the sale parameter, and

λ > 0 is the skewness parameter. When λ < 1 the distribution is skewed to the left, when
λ > 1 it is skewed to the right, and when λ = 1 it redues to the usual symmetri student-tdensity.The (one-omponent) split-t is similar to the ARCD model of Hansen (1994) whih heestimates by maximum likelihood to model the onditional density of the U.S. Dollar / SwissFran exhange rate.The next lemma gives the �rst four entral moments of the split-t density. We use thefollowing de�nition of skewness and exess kurtosis

S(y) =
E [y − E(y)]3

V (y)3/2

K(y) =
E [y − E(y)]4

V (y)2
− 3,where V (y) denotes the variane. The following lemma, whih an be proved by straightfor-ward algebra, gives some basi properties of the split-t distribution.Lemma 2. If y ∼ t(µ, φ, λ, ν) then

E(y) = µ+ h

V (y) =
1 + λ3

1 + λ

ν

ν − 2
φ2 − h2

E [y − E(y)]3 =
6λ(λ2 − 1) − 2(λ4 − 1)

(1 + λ) (ν − 1) (ν − 3)Beta
(

ν
2 ,

1
2

)ν 3

2φ3 + 2h3

E [y − E(y)]4 =
3ν2φ4

(
1 + λ5

)

(1 + λ) (ν − 2) (ν − 4)
− 3h4 + 6h2

(
1 + λ3

)
ν

(1 + λ) (ν − 2)
φ2

−16h
(λ− 1)
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)
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2φ4
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(
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2 ,

1
2

) ,where
h =

2
√
νφ (λ− 1)

(ν − 1)Beta
(

ν
2 ,

1
2

) ,and moment of order r exists exists if ν > r.The CDF of a split t distribution is of the form
1

1 + λ
+
a · Sign (y − µ)

1 + λ

(
1 −

Beta
(
t; ν

2 ,
1
2

)

Beta
(

ν
2 ,

1
2

)
)where

t =
νa2φ2

νa2φ2 + (y − µ)2
,and a = λ if y > µ and a = 1 otherwise, and Beta (t; ν

2 ,
1
2

) is the inomplete beta funtion(Abramowitz and Stegun, 1972).



5Eah of the four parameters µ, φ, λ and ν are onneted to ovariates as
µ = βµ0 + x′tβµ

lnφ = βφ0 + x′tβφ

lnλ = βλ0 + x′tβλ

ln ν = βν0 + x′tβν(2.3)but any smooth link funtion an equally well be used in the MCMC methodology. Additional�exibility an be obtained by letting a subset of the ovariates be a non-linear basis expansions,e.g. additive splines or splines surfaes (Ruppert, Wand and Carroll, 2003) as in Villani et al.(2008), but this is not pursued here. A strength of our approah is that the four regressionoe�ient vetors: βµ, βφ, βν and βλ are all treated in a uni�ed way in the MCMC algorithm.Whenever we refer to a regression oe�ient vetor without subsript, β, the argument appliesto all of the split-t parameters in (2.3).This split-t model will often be �exible enough to �t the data, but there are datasets thatrequire a smooth mixture model, for example when the data are multimodal for some ovariatesvalues. A seond example ours when the wrong link funtion is used in one of the split-tparameters, where the mixture an then orret for this erroneous hoie. A third example iswhen there are outliers in the data that annot be aommodated by a student t density.A smooth mixture of split-t densities is a model with a large number of parameters, however,and is therefore likely to over-�t the data unless model omplexity is ontrolled e�etively. Weuse Bayesian variable seletion in all four split-t parameters, and in the mixing funtion. Thisan lead to important simpli�ations of the split-t omponents. Not only does this ontrolomplexity for a given number of omponents, but it also simpli�es the existing omponentsif an additional omponent is added to the model (the LIDAR example in Villani, Kohn andGiordani (2007) illustrates this well). Inreasing the number of omponents an therefore evenredue the number of e�etive parameters in the model.A more extreme, but often empirially relevant, simpli�ation of the model is to assumethat one or more split-t parameters are ommon to the omponents, that is, only the inter-epts in (2.3) are allowed to be di�erent aross omponents. The unrestrited model wherethe regression oe�ients are allowed to di�er aross omponents is said to have separateomponents.2.3. The prior. Although the MCMC methodology (see Setion 3.2) allows any prior dis-tribution, we shall now present an easily spei�ed prior that depends only on a few hyper-parameters. First, we standardize the ovariates by subtrating the mean and dividing bythe standard deviation. This allows us to assume prior independene between the intereptand the remaining regression oe�ients, and the interepts have the interpretation of beingthe (possibly transformed) split-t parameters at the mean of the original ovariates. Sinethere an be a large number of ovariates in the model, our strategy is to inorporate availableprior information via the interepts, and to treat the remaining regression oe�ients moreinformally. Assuming a normal prior for µ implies a normal prior on βµ0. The other three



6split-t parameters φ, λ and ν are assumed to follow independent log-normal priors with means
m∗ and s∗, where m∗ and s∗ are di�erent for the di�erent split-t parameters. This translatesinto a normal prior on the interept with mean

m0 = lnm∗ − 1

2
ln

[(
s∗

m∗

)2

+ 1

]and variane
s20 = ln

[(
s∗

m∗

)2

+ 1

]
.The regression oe�ients βµ, βφ, βν and βλ are assumed to be independent a priori. Weallow for Bayesian variable seletion by augmenting eah parameter vetor β by a vetor ofbinary ovariate seletion indiators I = (i1, ..., ip) suh that βj = 0 if ij = 0. Let βI denotethe subset of β seleted by I. We assume the following prior for eah β vetor

βI |I ∼ N(0, τ2
βI)and βI |Ic is identially zero, where I is the omplement of I. Alternatively, one an use a

g-prior (Zellner, 1986) β ∼ N
[
0, τ2

β (X ′X)−1
] and then ondition on the restritions imposedby I; Denison, Holmes, Mallik and Smith (2002, p. 80-81) disusses the advantages anddisadvantages of these two di�erent priors. The g-prior is less appealing in a mixture ontextsine (X ′X)−1 may be a bad representation of the ovariane between parameters in thesmaller omponents, see Villani et al. (2008) for a disussion, and we will therefore use theidentity matrix here. We use τβ = 10 as the default value. Given that the ovariates havebeen standardized to zero mean and unit variane, these priors are vague. We investigate thesensitivity of the posterior inferenes and model omparison with respet to τβ in Setion 4.The variable seletion indiators are assumed to be independent Bernoulli with probability

ωβ a priori, but more ompliated distributions are easily aommodated, see e.g. the extensionin Villani et al. (2008) for splines in a mixture ontext or a prior whih is uniform on the variableseletion indiators for a given model size in Denison, Holmes, Mallik and Smith (2002). Itis also possible to estimate ωβ as proposed in Kohn, Smith and Chan (2001) with an extraGibbs sampling step. Note that ωβ may be di�erent for eah split-t parameter. Our defaultprior has ωβ = 0.5.The prior on the mixing funtion deomposes as
p(γ,Z, s) = p(s|γ,Z)p(γ|Z)p(Z),where Z is the p × (K − 1) matrix with variable seletion indiators for the p ovariates inthe mixing funtion (reall that γ1 = 0 for identi�ation). The variable indiators in Z areassumed to be iid Bernoulli(ωγ). The prior on γ = (γ′2, ..., γ

′
m)′ is assumed to be of the form

γZ |Z ∼ N(0, τ2
γ I),and γZc = 0 with probability one. We use τ2

γ = 10 as default value. Finally, p(s|γ,Z) is givenby the multinomial logit model in (2.2). To redue the number of parameters and to speed upthe MCMC algorithm we restrit the olumns of Z to be idential, i.e. make the assumption



7that a ovariate is either present in the mixing funtion in all omponents, or does not appearat all, but the extension to general Z is straightforward, see Villani et al. (2008).3. Inferene methodology3.1. The general MCMC sheme. We use MCMC methods to sample from the joint poste-rior distribution, and draw the parameters and variable seletion indiators in bloks. Villaniet al. (2008) experimented with several di�erent algorithms in a related setting and the algo-rithm outlined below is similar to their preferred algorithm. The details of the algorithm aregiven in Appendix A. The method used to selet the number of omponents is disussed inSetion 3.3.The algorithm is a Metropolis-within-Gibbs sampler that draws parameters using the fol-lowing six bloks:(1) {(β(k)
µ ,I(k)

µ )}k=1,...,K(2) {(β(k)
φ ,I(k)

φ )}k=1,...,K(3) {(β(k)
λ ,I(k)

λ )}k=1,...,K(4) {(β(k)
ν ,I(k)

ν )}k=1,...,K(5) s = (s1, ..., sn)(6) γ and IZThe parameters in the di�erent omponents are independent onditional on s. This means thateah of the �rst four bloks split up into K independent updating steps. Eah updating step inthe �rst four bloks is sampled using highly e�ient tailored MH proposals following a generalapproah desribed in the next setion. The latent omponent indiators in s are independentonditional on the model parameters and are drawn jointly from their full onditional posterior.Conditional on s, Step 6 is a multinomial logisti regression with variable seletion, and γ and
IZ are drawn jointly using a generalization of the method used to draw bloks 1-4, see Villaniet al. (2008) for details.Mixture models have well known identi�ation problems, the most serious one being theso alled label swithing problem, whih means that the likelihood is invariant with respetto permutations of the omponents in the mixture see e.g. Celeux, Hurn and Robert (2000),Jasra, Holmes and Stephens (2005) and Früewirth-Shnatter (2006). The aim of our artile isto estimate the preditive density, so that label swithing is neither a numerial nor oneptualproblem (Geweke, 2007). If an interpretation of the mixture omponents is required, then itis neessary to impose some identi�ation restritions on some of the model parameters, e.g.an ordering onstraint (Jasra, Holmes and Stephens, 2005).3.2. Updating (β,I) using variable-dimension �nite-step Newton proposals. Nottand Leonte (2004) extend Gamerman's (1997) method for generating MH proposals in a gen-eralized linear model (GLM) to the variable seletion ase. Villani et al. (2008) extend thealgorithm to a general setting not restrited to the exponential family. We �rst treat theproblem without variable seletion. The algorithm in Villani et al. (2008) only requires that



8the posterior density an be written as(3.1) p(β|y) ∝ p(y|β)p(β) =

n∏

i=1

p(yi|ϕi)p(β),where ϕi = x′iβ and xi is a ovariate vetor for the ith observation. Note that p(β|y) may bea onditional posterior density and the algorithm an then be used as a step in a Metropolis-within-Gibbs algorithm. The full onditional posteriors for bloks 1-4 in Setion 3.1 are learlyall of the form in (3.1). Newton's method an be used to iterate R steps from the urrent point
βc in the MCMC sampling toward the mode of p(β|y), to obtain β̂ and the Hessian at β̂. Notethat β̂ may not be the mode but is typially lose to it already after a few Newton iterations,so setting R = 1, 2 or 3 is usually su�ient. This makes the algorithm fast, espeially whenthe gradient and Hessian are available in losed form, whih is the ase here, see Appendix A.Having obtained good approximations of the posterior mode and ovariane matrix fromthe Newton iterations, the proposal βp is now drawn from the multivariate t-distribution with
g > 2 degrees of freedom:

βp|βc ∼ t


β̂, −

(
∂2 ln p(β|y)
∂β∂β′

)−1
∣∣∣∣∣
β=β̂

, g


 ,where the seond argument of the density is the ovariane matrix.In the variable seletion ase we propose β and I simultaneously using the deomposition

g(βp,Ip|βc,Ic) = g1(βp|Ip, βc)g2(Ip|βc,Ic),where g2 is the proposal distribution for I and g1 is the proposal density for β onditional on
Ip. The Metropolis-Hasting aeptane probability is

a[(βc,Ic) → (βp,Ip)] = min

(
1,
p(y|βp,Ip)p(βp|Ip)p(Ip)g1(βc|Ic, βp)g2(Ic|βp,Ip)

p(y|βc,Ic)p(βc|Ic)p(Ic)g1(βp|Ip, βc)g2(Ip|βc,Ic)

)
.The proposal density at the urrent point g1(βc|Ic, βp) is a multivariate t-density with mode

β̃ and ovariane matrix equal to the negative inverse Hessian evaluated at β̃, where β̃ is thepoint obtained by iterating R steps with the Newton algorithm, this time starting from βp. Asimple way to propose Ip is to randomly selet a small subset of Ic and then always proposea hange of the seleted indiators. This proposal an be re�ned in many ways, using e.g. theadaptive sheme in Nott and Kohn (2005), where the history of I-draws is used to adaptivelybuild up a proposal for eah indiator. It is important to note that βc and βp may now beof di�erent dimensions, so the original Newton iterations no longer apply. We will insteadgenerate βp using the following generalization of Newton's method. The idea is that whenthe parameter vetor β hanges dimensions, the dimension of the funtionals ϕc = x′βc and
ϕp = x′βp stay the same, and the two funtionals are expeted to be quite lose. A generalizedNewton update is(3.2) βr+1 = A−1

r (Brβr − gr), (r = 0, ..., R − 1),where β0 = βc, and the dimension of βr+1 equals the dimension of βp, and



9
gr = X ′

r+1d+
∂ ln p(β)

∂β

Ar = X ′
r+1DXr+1 +

∂2 ln p(β)

∂β∂β′

Br = X ′
r+1DXr +

∂2 ln p(β)

∂β∂β′
,(3.3)where d is an n-dimensional vetor with gradients ∂ ln p(yi|ϕi)/∂ϕi for eah observation ur-rently alloated to the omponent being updated. Similarly, D is a diagonal matrix withHessian elements

∂2 ln p(yi|ϕi)

∂ϕi∂ϕ′
i

,

Xr is the matrix with the ovariates that have non-zero oe�ients in βr, and all expressionsare evaluated at β = βr. For the prior gradient this means that ∂ ln p(β)/∂β is evaluated at βr,inluding all zero parameters, and that the sub-vetor onformable with βr+1 is extrated fromthe result. The same applies to the prior Hessian (whih does not depend on β however, if theprior is Gaussian). Note that we only need to ompute the salar derivatives ∂ ln p(yi|φi)/∂φiand ∂2 ln p(yi|φi)/∂φ
2
i .After the �rst Newton iteration the parameter vetor no longer hanges dimension, and thegeneralized Newton algorithm in (3.2) redues to the original Newton algorithm. The proposaldensity g1(βp|Ip, βc) is again taken to be the multivariate t-density in exatly the same wayas in the ase without ovariate seletion. One the simultaneous update of the (β,I)-pairis ompleted, we make a �nal update of the non-zero parameters in β, onditional on thepreviously aepted I, using the �xed dimension Newton algorithm.When a parameter is restrited to be proportional aross omponents (i.e. only the intereptdi�ers between omponents), the ommon regression vetor β appears in all K omponents.The updating step for the ommon β is of the same form as above, but d andD now ontain thegradients and Hessians for all n observations, where eah observation's gradient and Hessianis with respet to the omponent density that the observation is urrently alloated to.3.3. Model omparison. The key quantity in Bayesian model omparison is the marginallikelihood. The marginal likelihood is sensitive to the hoie of prior, however, and thisis espeially true when the prior is not very informative, see e.g. Kass (1993) for a generaldisussion and Rihardson and Green (1997) in the ontext of density estimation. By sari�inga subset of the observations to update/train the vague prior we remove muh of the dependeneon the prior, and obtain a better assessment of the preditive performane that an be expetedfor future observations. To deal with the arbitrary hoie of whih observations to use forestimation and model evaluation, one an use B-fold ross-validation of the log preditivedensity sore (LPDS):

B−1
B∑

b=1

ln p(ỹb|ỹ−b, x),where ỹb is an nb-dimensional vetor ontaining the nb observations in the bth test sample and
ỹ−b denotes the remaining observations used for estimation. If we assume that the observations



10are independent onditional on θ, then
p(ỹb|ỹ−b, x) =

∫ ∏

i∈Tb

p(yi|θ, xi)p(θ|ỹ−b)dθ,where Tb is the index set for the observations in ỹb, and the LPDS is easily omputed byaveraging ∏i∈Tb
p(yi|θ, xi) over the posterior draws from p(θ|ỹ−b). This requires samplingfrom eah of the B posteriors p(θ|ỹ−b) for b = 1, ..., B, but these MCMC runs an all be runin isolation from eah other and are therefore ideal for parallel omputing on widely availablemulti-ore proessors.Cross-validation is less appealing in a time series setting, and a more natural approah isto use the most reent observations in a single test sample. Moreover, for time series data itis typially false that the observations are independent onditional on the model parameters,so that the above estimation approah annot be used. An MCMC estimate of the LPDS ofa time series an instead be based on the deomposition

p(yT+1, .., yT+T ∗ |y1, .., yT ) = p(yT+1|y1, .., yT ) · · · p(yT+T ∗ |y1, .., yT+T ∗−1),with eah term in the deomposition
p(yt|y1, .., yt−1) =

∫
p(yt|y1, .., yt−1, θ)p(θ|y1, .., yt−1)dθ,estimated from a posterior sample of θ's based on data up to time t − 1. The problem isthat this requires T ∗ − T omplete runs with the MCMC algorithm, one for eah term in thedeomposition, whih is typially very time-onsuming (although omputer parallelism anagain be exploited). In situations where T is fairly large ompared to T ∗, we an approximatethe LPDS by omputing eah term p(yt|y1, .., yt−1) using the same posterior sample based ondata up to time T . We evaluate the auray of this approximation in the empirial appliationin the next setion.4. Modeling the distribution of daily stok market returns4.1. S&P500 data and priors. Modeling the volatility/variability in �nanial data has beenan highly ative researh area sine Engle's (1982) seminal paper introdued the ARCH model(see e.g. Baillie (2006) for a survey of the �eld), and there are large �nanial markets forvolatility-based instruments. Finanial data, suh as stok market returns, are typially heavytailed and subjet to volatility lustering, i.e. a time-varying variane that evolves in a verypersistent fashion. We here model the entire distribution of daily returns from the S&P500stok market index, p(yt|xt), where yt = 100 ln(pt/pt−1) is the daily return at time t, pt isthe losing S&P500 index on day t, and xt ontains the ovariate observations at time t.By fousing on the whole distribution of returns we are able to ompute e.g. the posteriordistribution of the Value-at-Risk (VaR), i.e. the 1% quantile of the return distribution, whihis of fundamental interest to �nanial analysts.We estimate the models using data from 4646 trading days between Jan 1, 1990 and May

29, 2008. The models are then evaluated out-of-sample on the subsequent 199 trading daysfrom May 30, 2008 to Marh 13, 2009. The data are plotted in the upper left sub-graph of
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µ φ ν λ

m∗ 0
√

(m∗
ν − 2)/m∗

ν 10 1
s∗ 10 1 7 1Table 1. The prior mean and standard deviation on the split-t parameters forthe S&P500 stok return data. The prior mean of φ is a funtion of the priormean of ν suh that the variane of returns is unity as in Villani et al. (2008).Figure 4.1, with the evaluation period marked out in red. To make the results omparable toGeweke and Keane (2007) and Villani et al. (2008), we standardize the ovariates to lie in theinterval [−1, 1], rather than making them mean zero with unit variane.Table 1 displays the prior hyper-parameters for the split-t parameters. The prior on ν and

λ are fairly vague and and the prior on µ and φ have been hosen to math the mean andvariane in Villani et al. (2008) as losely as possible.4.2. Models. Geweke and Keane (2007) show that a smooth mixture of homosedasti Gauss-ian regressions (the so alled Smoothly Mixing Regression, SMR) with two ovariates outper-forms the typially hard-to-beat t-GARCH(1,1) model (Bollerslev, 1987) in an out-of-sampleevaluation based on the LPDS (see Setion 3.3). The two ovariates are the return yesterday
yt−1 (LastDay) and CloseAbs95, a geometrially deaying average of past absolute returns

(1 − ρ)
∞∑

s=0

ρs |yt−2−s| ,where ρ = 0.95 is the disount fator. Following Geweke and Keane (2007) we assume themean of eah omponent to be onstant sine the level of the stok market returns are notexpeted to be preditable.Villani et al. (2008) demonstrate that the SAGM model with its heterosedasti omponentsoutperforms the SMR in Geweke and Keane (2007). Villani et al. (2008) also introdue sevenadditional ovariates and show that they substantially improve the out-of-sample performaneof the SAGM. We will onentrate on this nine-variable model. The seven additional ovariatesare: LastWeek and LastMonth, a moving average of the returns from the previous �ve and 20trading days, respetively. The variable CloseAbs80, the same variable as CloseAbs95 but with
ρ = 0.80, is also added to the ovariate set, and so is the square root of (1− ρ)

∑
∞

s=0 ρ
sy2

t−2−s,for ρ = 0.80 and 0.95 (CloseSqr80 and CloseSqr95). Finally, Villani et al. (2008) inlude ameasure of volatility that has been popular in the �nane literature: (1−ρ)
∑

∞
s=0ρ

s(ln p
(h)
t−1−s−

ln p
(l)
t−1−s), where p(h)

t and p(l)
t are the highest and lowest values of the S&P500 index at day

t. This measure has been shown both theoretially and empirially to arry more informationon the volatility than hanges in losing quotes (Alizadeh, Brandt and Diebold, 2002). Weonsider both ρ = 0.8 (MaxMin80) and ρ = 0.95 (MaxMin95). As in Villani et al. (2008), allvariables exept LastDay, LastWeek and LastMonth enter the model in logarithmi form.4.3. Results. We generated 30, 000 draws from the posterior, and used the last 25, 000 drawsfor inferene. This is more than su�ient for onvergene of the parameter estimates, the
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13Model K = 1 K = 2 K = 3 K = 4 K = 5 Max n.s.e.SMR −1044.78 −638.89 −505.74 −487.11 −489.19 0.98 (3)+ Skew −540.91 −525.07 −513.85 −506.68 −506.13 0.82 (2)+ DF −544.00 −518.71 −498.93 −500.14 −494.29 0.89 (1)+ Skew + DF −530.86 −504.63 −498.03 −498.83 −496.87 0.88 (5)SAGM Common −477.73 −473.10 −473.12 −470.30 −472.86 0.26 (2)+ Skew −474.18 −467.29 −468.75 −467.93 −467.22 0.35 (4)+ DF −474.74 −472.92 −470.51 −469.40 −468.87 0.34 (4)+ Skew + DF −472.37 −468.92 −469.30 −466.21 −465.86 0.53 (4)SAGM Separate −469.21 −469.50 −470.53 −471.02 0.49 (3)+ Skew −468.48 −466.93 −467.48 −468.02 0.58 (4)+ DF −469.08 −469.24 −462.03 −467.78 0.72 (5)+ Skew + DF −466.84 −462.56 −462.47 −474.58 0.74 (5)GARCH(1,1) −479.03
t-GARCH(1,1) −477.39Table 2. Evaluating the out-of-sample log preditive density sore (LPDS)on the 199 daily returns in the period May 30, 2008 - Marh 13, 2009. Theposterior distribution is omputed using data until May 29, 2008, and notupdated thereafter, exept for the two GARCH models whih are based onontinuously updated maximum likelihood estimates. The LPDS of the bestmodel for a given number of omponents is in bold font. The last olumn givesthe maximal numerial standard error of the LPDS for eah model with thenumber of omponents for whih the maximum was obtained in parenthesis.The notation for the models is suh that e.g. + Skew means that ovariate-dependent skewness is added to the model.posterior inlusion probabilities and the LPDS; see also Villani et al. (2008) for details regard-ing onvergene in the SAGM model. Three Newton steps were used for all parameters, butexperiments with a single Newton step gave essentially the same numerial e�ieny. Thenumerial e�ieny of the algorithm is doumented in some detail below.Table 2 presents the LPDS evaluated on the 199 trading days from May 30, 2008 to Marh

13, 2009, a period overing the �nanial risis with an unpreedented volatility. Figure 4.1shows that predition in the evaluation period is a tough test of the models beause it ex-trapolates outside the sample used for estimation. The posterior distributions of the modelsare not updated during the evaluation period (see Setion 3.3). With the exeption of someof the more poorly �tting models, this approximation of the LPDS is quite aurate. This isdoumented in Villani et al. (2008) and additional evidene on this issue is provided below.We observe from Table 2 that the SMR model does poorly, even with a large number ofomponents, and is outperformed by the GARCH(1, 1) and t-GARCH(1, 1) models. A smooth



14Model K = 1 K = 2 K = 3 K = 4 K = 5SMR −982.02 −597.47 −498.87 −484.42 −495.66SAGM −477.50 −472.94 −471.28 −471.53 −469.72Table 3. Evaluating the out-of-sample log preditive density sore (LPDS) onthe 199 daily returns in the period May 30, 2008 - Marh 13, 2009. The poste-rior distribution is updated every 10th observation throughout the evaluationsample.mixture of homosedasti omponents an generate some heterosedastiity in-sample, butwill neessarily fail in extrapolating heterosedasti data outside the estimation sample. Thesubsequent rows of Table 2 show that adding ovariate-dependent skewness and/or student
t omponents (with degrees of freedom a funtion of ovariates) to the SMR improves theLPDS substantially when the number of mixture omponents is small, but the SMR performsbetter in its standard form with Gaussian omponents when K is large. This reinfores theonlusion stressed in Villani et al. (2008) that having heterosedasti omponents is ruialfor modeling heterosedasti data.Table 2 also shows that SAGM is on par with the popular t-GARCH(1, 1) already with asingle omponent, outperforms it when K ≥ 2, and is more than 7 LPDS units better than
t-GARCH(1,1) at its maximum when K = 4. This is a substantial inrease in LPDS sine weare only using 199 observation in the evaluation sample.To ensure that our short ut of keeping the posterior distribution �xed as we go throughthe evaluation sample does not invalidate the onlusions from the LPDS, we re-omputed theLPDS for the SMR and the SAGM with a ommon variane funtion, this time updating theposterior at every tenth observation. The results are given in Table 3. A omparison of Table2 and 3 shows that there are fairly large di�erenes for the most poorly �tting versions ofSMR, but that the LPDS values for SAGM do not hange muh when the posterior is updatedontinuously.Table 2 shows that for the one omponent models, adding either ovariate-dependent skew-ness or degrees of freedom to the SAGM model inreases the LPDS by roughly 3 points,and adding them both inreases the LPDs by a further 2 points. The split-t with ovari-ate dependent sale, skewness and degrees of freedom is the best one omponent model, andits performane is lose to that of the best SAGM model with four omponents. The one-omponent split-t (SAGM + Skew + DF) is similar to the ARCD model of Hansen (1994)whih he uses to model the onditional density of the U.S. Dollar / Swiss Fran exhange rate.If we restrit the sale, skewness and degrees of freedom to be ommon aross omponents(up to a proportionality onstant) we see that adding omponents to the split-tmodel improvesits foreasting performane. However, we an get an even better LPDS by using separate om-ponents. Note that adding omponents in this ase introdues as muh as 41 new parametersto the model for every newly added omponent, and still we do not seem to over-�t even when



15the number of omponents is fairly large. This is beause of the self-adjustment mehanismemphasized in Villani et al. (2008): when an additional omponent is added to the mixture,the variable seletion simpli�es not only the new omponent but also the already existingomponents. The number of e�etive parameter an therefore even derease as omponentsare added. But there is a limit to what variable seletion an do, and there are lear signs ofover-�tting when K = 5. Also, the MCMC algorithm struggles when we use K > 3 separateomponents in the split-t model, with lower aeptable probabilities and higher risk of gettingstuk in a loal mode. Moreover, the split-t model with separate omponents has one dominantomponent whih is very similar to the one-omponent model, exept for the �ve-omponentmodel whih seems to pik up a more ompliated struture. We will desribe the estimationresults for the one-omponent model in detail below.Figure 4.2 displays normalized residuals in the evaluation sample for some seleted models.A normalized residual is de�ned as Φ−1 [F (yt)] , where F (·) is the umulative preditive distri-bution, where the parameter have been integrated out with respet to the posterior distributionbased on the estimation sample, so the residuals in Figure 4.2 are therefore out-of-sample. Ifthe model is orret, the normalized residuals should be iid N(0, 1). It is lear from Figure4.2 that even the SMR with largest LPDS produes muh to large residuals during the mostvolatile period. As indiated in the graph, 19.5% of the normalized residuals from the SMR(4)lie outside a 95% probability interval aording to the N(0, 1) referene distribution. TheSAGM(1) does better than the SMR, but this model also generates to many outliers: 3.5%of the residuals are outside the 99% referene interval. The remaining four models in Figure4.2 have rather similar seemingly homosedasti and independent residuals, and they all havelose to the right overage. The one-omponent split-t model is doing remarkably well duringthis very di�ult time period.We now take a more detailed look at the inferenes from the one-omponent split-t model.Table 4 presents summaries of the posterior distribution. The results from the variable sele-tion in the sale parameter is very similar to the results for the variane funtion in Villaniet al. (2008): the ovariates MaxMin95, LastWeek and LastMonth have a posterior inlusionprobability lose to one, and all other ovariates are essentially exluded from the sale param-eter. There is support for some small skewness in the model, but no ovariates enter λ. Thedegrees of freedom at the posterior mean is exp(2.482) = 11.96, (assuming all other ovariatesat their mean) whih is not very heavy tailed, but LastWeek enters the model with probability
0.638 and with a large negative oe�ient, so the degrees of freedom is very small for thelargest values of LastWeek (reall that LastWeek∈ [−1, 1]). The last olumn of Table 4 givesthe ine�ieny fator (IF) for all parameters with inlusion probabilities larger than 0.02. Itis lear that the MCMC algorithm is very e�ient, almost all parameters have IFs smallerthan 10. The MH aeptane probabilities for the regression oe�ients in µ, φ, ν and λ areas high as 95%, 81%, 75% and 94%, respetively.To explore the sensitivity to variations in the rather arbitrarily set prior parameter τ2

β(see Setion 2.3), we ompute the LPDS for the one-omponent split-t model using τ2
β =

1, 10 and 100 (the default), obtaining an LPDS of−472.89, −472.61 and −472.37, respetively.Sine the LPDS is based on the posterior distribution from a large sample (unlike the marginal
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17Parameters Mean Stdev Post.Inl. IFLoation µConst 0.084 0.019 � 9.919Sale φConst 0.402 0.035 � 7.125LastDay -0.190 0.120 0.036 0.903LastWeek -0.738 0.193 0.985 18.519LastMonth -0.444 0.086 0.999 4.133CloseAbs95 0.194 0.233 0.035 1.445CloseSqr95 0.107 0.226 0.023 2.715MaxMin95 1.124 0.086 1.000 6.012CloseAbs80 0.097 0.153 0.013 �CloseSqr80 0.143 0.143 0.021 �MaxMin80 -0.022 0.200 0.017 �Degrees of freedom νConst 2.482 0.238 � 5.708LastDay 0.504 0.997 0.112 2.899LastWeek -2.158 0.926 0.638 5.463LastMonth 0.307 0.833 0.089 5.560CloseAbs95 0.718 1.437 0.229 3.020CloseSqr95 1.350 1.280 0.279 2.758MaxMin95 1.130 1.488 0.222 6.564CloseAbs80 0.035 1.205 0.101 2.789CloseSqr80 0.363 1.211 0.112 3.330MaxMin80 -1.672 1.172 0.254 4.178Skewness λConst -0.104 0.033 � 10.423LastDay -0.159 0.140 0.027 1.170LastWeek -0.341 0.170 0.135 8.909LastMonth -0.076 0.112 0.016 �CloseAbs95 -0.021 0.096 0.008 �CloseSqr95 -0.003 0.108 0.006 �MaxMin95 0.016 0.075 0.008 �CloseAbs80 0.060 0.115 0.009 �CloseSqr80 0.059 0.111 0.010 �MaxMin80 0.093 0.096 0.013 �Table 4. Posterior summary of the one-omponent split-t model. The poste-rior mean, standard deviation and ine�ieny fators (IF) are omputed on-ditional on a ovariate being in the model. The IFs are not omputed forparameters with posterior probabilities smaller than 0.02.
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Figure 4.3. Time series plot of the posterior median and 95% probabilityintervals for some moments of the return distribution. The time series of returnsand two of the key ovariates are also plotted. The posterior distribution isbased on the full sample up to Marh 13, 2009. The distribution of the standarddeviation and the skewness are onditioned on ν > 2 and ν > 3, respetively.likelihood whih is based on the prior), this insensitivity to the prior is reassuring but notsurprising. We also ompare the posterior inferene on the regression oe�ients for thesame three values of τ2
β . The posterior means and standard deviations are very insensitive tohanges in τ2

β while the posterior inlusion probabilities generally derease with τ2
β , but not tothe extent of overturning the results about the importane of individual ovariates. The e�etof the prior on the inlusion probabilities is smaller for the ovariates that almost ertainlyenter the model. As an example, the posterior inlusion probabilities for LastDay in φ is 0.290,

0.110 and 0.036 for τ2
β = 1, 10 and 100, respetively, while for MaxMin95 they are 1.000, 0.999and 1.000 for the same three priors. Interestingly, the only signi�ant ovariate in the degreesof freedom funtion, LastWeek, has posterior inlusion probabilities of 0.66, 0.76 and 0.64 in

ν for the three di�erent values of τ2
β .Finally, Figure 4.3 presents some posterior moments, suh as the standard deviation andskewness, for the one-omponent split-t model over the latter part of the sample (inludingthe evaluation sample). The model is estimated on all available data up Marh 13, 2009.Figure 4.3 shows that the median of the degrees of freedom atually inreased during the most



19volatile part of the �nanial risis (but at the same time the sale parameter rose dramatiallyto bring about a very large boost in standard deviation of returns), but, during some spells,the posterior distribution of ν also has a long left tail with substantial probability mass onvery small values of ν. 5. ConlusionsA general model is presented for estimating the distribution of a ontinuous variable on-ditional on a set of ovariates. The model is a mixture of asymmetri student t densities withthe mixture weights and all four omponent parameters, loation, sale, degrees of freedomand skewness, being funtions of ovariates. We take a Bayesian approah to inferene andestimate the model by an e�ient MCMC simulation method. Bayesian variable seletion isarried out to obtain model parsimony and guard against over�tting. The model is appliedto analyse the distribution of daily stok market returns onditional on nine ovariates andoutperforms widely used GARCH models and other reently proposed mixture models in anout-of-sample evaluation of returns during the reent �nanial risis.



206. Appendix - MCMC implementationTo implement the MCMC algorithm we need the gradient and Hessian matrix of the on-ditional posteriors for eah of the four split-t parameters. Sine the priors on the regressionoe�ients in eah split-t parameter is a multivariate normal density, the prior gradient andHessian matrix are
∂ ln p(β)

∂β
= −Σ−1

β (β − µβ) and ∂2 ln p(β)

∂β∂β′
= −Σ−1

β .To derive the gradient and Hessian matrix with respet to the likelihood, we write the likelihoodas
p(y|x, µ, φ, ν, λ) =

∏

S1

t(y|µ, φ, ν)
∏

S2

t(y|µ, λφ, ν),where t(y|µ, φ, ν) denotes the student-t density
Γ(ν+1

2 )√
νπΓ(ν

2 )


 ν

ν + (y−µ)2

φ2




(ν+1)/2

,

S1 is the set of observations suh that y ≤ µ and S2 denotes the observations y > µ. It isonvenient to de�ne the indiator funtion
Iµ =

{
1 if y > µ

0 if y ≤ µ
,and a = λIµ .The following subsetions present the gradient and the Hessian for eah split-t parameter.Gradient and Hessian wrt µ

∂

∂µ
ln p (y|µ, v, φ, λ) =

(1 + ν) (y − µ)

νa2φ2 + (y − µ)2

∂2

∂µ2
ln p (y|µ, v, φ, λ) =

(1 + v)
[
(y − µ)2 − a2φ2ν

]

[
(y − µ)2 + a2φ2ν

]2 .Gradient and Hessian wrt φ
∂

∂φ
ln p (y|µ, v, φ, λ) =

ν
[
(y − µ)2 − a2φ2

]

φ
[
(y − µ)2 + νa2φ2

]

∂2

∂φ2
ln p (y|µ, v, φ, λ) =

2ν2a2
[
(y − µ)2 − a2φ2

]

[
(y − µ)2 + νa2φ2

] +
3va2 − ν

φ2 (y − µ)2

(y − µ)2 + νa2φ2Gradient and Hessian wrt ν
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∂

∂ν
ln p (y|µ, v, φ, λ) =

(y − µ)2 − vφ2a

2
[
(y − µ)2 + vφ2a

] +
1
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v + (y−µ)2
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+
1
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ψ
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+ 1
)
− ψ

(ν
2

)]

∂2

∂ν2
ln p(y|µ, v, φ, λ) =

(y − µ)4 + νφ4a

2ν
(
(y − µ)2 + νφ2a

)2 +
1

4

[
ψ1

(ν
2

+ 1
)
− ψ1

(ν
2

)]where ψ(·) is the digamma funtion and ψ1(·) is the trigamma funtion.Gradient and Hessian wrt λ
∂

∂λ
ln p (y|µ, v, φ, λ) = − 1

1 + λ
+

(1 + v) (y − µ)2 Iy

(y − µ)2 λ+ vφ2λ3

∂2

∂λ2
ln p (y|µ, v, φ, λ) =

1

(1 + λ)2
−

(1 + v) (y − µ)2
[
(y − µ)2 + 3vφ2λ2

]
Iy

[
(y − µ)2 λ+ vφ2λ3
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