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Apart from sections B and D below, the derivations in this appendix are standard and can

be found in the technical appendices in ACEL and CEE, for example. We display them here

so that the technical results are all available in one place and in a consistent notation. The

material in sections B and D involve straightforward (but, sometimes tedious) extensions of

the results in the manuscript. Equation numbers refer to equation numbers in the text of

the paper.

A. Equilibrium Conditions in the Model Without Capital

We first derive the equilibrium conditions associated with price setting. We then derive the

other conditions.

A.1. Price Setting Equilibrium Conditions

The discounted profits of the

Et

1X

j=0

βj υt+j

period t+j profits sent to householdz }| {2

4
revenuesz }| {

Pi,t+jYi,t+j −
total costz }| {

Pt+jst+jYi,t+j

3

5,

where υt+j denotes the period t+ j Lagrange multiplier on household budget constraint. Let

P̃t denote the price selected by each of the 1− ξp firms that have opportunity to reoptimize
price in period t. Because firms have no state variables, they are only concerned about future

histories in which they cannot reoptimize price. This leads to the following objective function

for a firm that can reoptimize price in period t :

Et

1X

j=0

(
βξp
)j
υt+j

h
P̃tYi,t+j − Pt+jst+jYi,t+j

i
.

Substitute out for intermediate good firm output using the demand curve:

Et

1X

j=0

(
βξp
)j
υt+jYt+jP

"
t+j

h
P̃ 1−"t − Pt+jst+jP̃−"t

i
,

where

" ≡
λf

λf − 1
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Di§erentiate with respect to P̃t :

Et

1X

j=0

(
βξp
)j
υt+jYt+jP

"
t+j

[
(1− ")

(
P̃t

)−"
+ "Pt+jst+jP̃

−"−1
t

]
= 0,

or,

Et

1X

j=0

(
βξp
)j
υt+jYt+jP

"+1
t+j

"
P̃t
Pt+j

− λfst+j

#

= 0.

Note that when ξp = 0, one obtains the standard result, that price is fixed markup over

marginal cost.

Now, substitute out the multiplier:

Et

1X

j=0

(
βξp
)j

marginal utility of currency = υt+jz }| {
u0 (Ct+j)

Pt+j
Yt+jP

"+1
t+j

"
P̃t
Pt+j

− λfst+j

#

= 0,

or, given our assumption about log utility,

Et

1X

j=0

(
βξp
)j Yt+j
Ct+j

P "
t+j

"
P̃t
Pt+j

− λfst+j

#

= 0.

or,

Et

1X

j=0

(
βξp
)j Yt+j
Ct+j

(Xt,j)
−" [p̃tXt,j − λfst+j] = 0,

where

p̃t =
P̃t
Pt
, Xt,j =

(
1

πt+jπt+j−1···πt+1
, j ≥ 1

1, j = 0.
, Xt,j = Xt+1,j−1

1

πt+1
, j > 0

Solving for p̃t :

p̃t =
Et
P1

j=0

(
βξp
)j Yt+j

Ct+j
(Xt,j)

−" λfst+j

Et
P1

j=0

(
βξp
)j Yt+j

Ct+j
(Xt,j)

1−"
=
Kp,t

Fp,t
,

We now obtain simple recursive expressions for Kp,t and Fp,t.
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Consider Kp,t first. Accordingly,

Kp,t = Et

1X

j=0

(
βξp
)j Yt+j
Ct+j

(Xt,j)
−

λf
λf−1 λfst+j

= λf
Yt
Ct
st + βξpEt

1X

j=1

(
βξp
)j−1 Yt+j

Ct+j

(
1

πt+1
Xt+1,j−1

)− λf
λf−1

λfst+j

= λf
Yt
Ct
st + βξpEt

(
1

πt+1

)− λf
λf−1

1X

j=0

(
βξp
)j
X
−

λf
λf−1

t+1,j λf
Yt+1+j
Ct+1+j

st+1+j

= λf
Yt
Ct
st + βξp

=Etz }| {
EtEt+1

(
1

πt+1

)− λf
λf−1

1X

j=0

(
βξp
)j
X
−

λf
λf−1

t+1,j λf
Yt+1+j
Ct+1+j

st+1+j

= λf
Yt
Ct
st + βξpEt

(
1

πt+1

)− λf
λf−1

Et+1

1X

j=0

(
βξp
)j
X
−

λf
λf−1

t+1,j λf
Yt+1+j
Ct+1+j

st+1+j

= λf
Yt
Ct
st + βξpEt

(
1

πt+1

)− λf
λf−1

Kp,t+1

so that

Kp,t = λf
Yt
Ct
st + βξpEt

(
1

πt+1

) λf
1−λf

Kp,t+1. (A.1)

Similarly,

Fp,t ≡ Et
1X

j=0

(
βξp
)j Yt+j
Ct+j

(Xt,j)
λf

1−λf =
Yt
Ct
+ βξpEt

(
1

πt+1

) λf
1−λf

Fp,t+1 (A.2)

In (A.1), marginal cost is defined in (3.8) and (??), repeated here for convenience:

st =
1

λf

Ctzh (ht, & t)

At
.

Evaluating (3.7)

Pt =

[(
1− ξp

)
P̃

1
1−λf
t + ξpP

1
1−λf
t−1

]1−λf
.

Dividing by Pt and rearranging, we obtain:

p̃t =

2

41− ξpπ
1

λf−1

t

1− ξp

3

5

1−λf

(A.3)

We conclude that the equilibrium conditions associated with price setting are (A.1), (A.2)

and: 2

41− ξpπ
1

λf−1

t

1− ξp

3

5

1−λf

=
Kp,t

Fp,t
. (A.4)
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In a zero inflation steady state without price distortions,

Kp = Fp (A.5)

according to (A.4). It then follows from (A.1) and (A.2) that

s = 1/λf , Fp =

1
1−ηg

1− βξp
, (A.6)

where 1/
(
1− ηg

)
is the steady state output to consumption ratio, Yt/Ct, and ηg is the

steady state Gt/Yt ratio. the object, ηg, is something we fix in the calculations. See below

for further discussion.

In the analysis of the linearized equilibrium conditions in the manuscript, we set gt, ηg ≡ 0.
Di§erentiating (A.1), (A.2) and (A.4) in steady state:

K̂p,t =
(
1− βξp

)
ŝt + βξp

[
λf

λf − 1
π̂t+1 + K̂p,t+1

]

F̂p,t = βξp

[
1

λf − 1
π̂t+1 + F̂p,t+1

]

K̂p,t =
ξp

1− ξp
π̂t + F̂p,t

Substitute the third equation into the first:

ξp
1− ξp

π̂t + F̂p,t =
(
1− βξp

)
ŝt + βξp

[
λf

λf − 1
π̂t+1 +

ξp
1− ξp

π̂t+1 + F̂p,t+1

]

Substitute the recursive expression for F̂p,t :

ξp
1− ξp

π̂t+βξp

[
1

λf − 1
π̂t+1 + F̂p,t+1

]
=
(
1− βξp

)
ŝt+βξp

[
λf

λf − 1
π̂t+1 +

ξp
1− ξp

π̂t+1 + F̂p,t+1

]
,

and rearrange, to obtain:

π̂t = βπ̂t+1 +

(
1− βξp

) (
1− ξp

)

ξp
ŝt.

This is the linearized Phillips curve used in the text.

A.2. Other Private Sector Equilibrium Conditions

We now derive the equilibrium relationship between aggregate consumption and aggregate

inputs, (3.11), using the approach described in Yun (1996). Let Y ∗t denote the unweighted

integral of intermediate inputs:

Y ∗t ≡
Z 1

0

Yi,tdi =

Z 1

0

Athi,tdi = Atht.
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Using the demand curve, (3.6),

Y ∗t =

Z 1

0

Yi,tdi = Yt

Z 1

0

(
Pi,t
Pt

)− λf
λf−1

di = YtP

λf
λf−1

t

Z 1

0

P
−

λf
λf−1

i,t di = YtP

λf
λf−1

t (P ∗t )
−

λf
λf−1 ,

say, where

P ∗t ≡

"Z 1

0

P
−

λf
λf−1

i,t di

#−(λf−1)
λf

=

"
(
1− ξp

)
P̃
−

λf
λf−1

t + ξp
(
P ∗t−1

)− λf
λf−1

#−(λf−1)
λf

.

Combining the preceding three equations, we obtain (3.11), which we reproduce here for

convenience:

Ct
At

= p∗tht − gtnt

log
Ct
Ct−1

= log (p∗tht − gtnt)− log
(
p∗t−1ht−1 − gt−1nt−1

)
+ gA,t

Gt + Ct = p
∗
tAtht. (A.7)

In (A.7), include government consumption expenditures, which we model as follows:

Gt = gtNt,

where log gt is potentially a stationary stochastic process independent of any other shocks in

the system, such as At. Also,

Nt = A
γ
tN

1−γ
t−1 , 0 < γ ≤ 1. (A.8)

In the extreme case, γ = 1, this reduces to the model of Gt studied in Christiano and

Eichenbaum (1992). A problem with the latter model, however, is that it implies Gt moves

immediately with shocks to At, an implication that seems implausible. With γ close to zero,

the immediate impact of At on Gt is virtually nil. Yet, regardless of the value of γ, Gt/At
converges to a constant in nonstochastic steady state. This is necessary if we are to have

balanced growth in the case that At follows a growth path in the steady state. To see that

Gt/At converges in steady state, note

nt =

(
nt−1
gA,t

)1−γ
, nt ≡

Nt
At
, (A.9)

so that the steady state value of nt is:

n =

(
1

gA

) 1−γ
γ

. (A.10)
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From this we conclude that
Gt
At
= gtnt, (A.11)

is constant in a steady state too. In our steady state analysis, we are interested in fixing ηg,

the steady state ratio of Gt to Yt :

ηg =
G

Y
=
G/A

Y/A
=
g
(
1
gA

) 1−γ
γ

h
.

In practice, we fix ηg, gA and h at their empirically relevant values and so the above equation

can be thought of as determining a value for g.

In (A.7), we have used the goods clearing condition, (3.10), and p∗t captures the distortions

to output due to the price setting frictions:

p∗t ≡
(
P ∗t
Pt

) λf
λf−1

.

The law of motion of the distortions is, using (A.3) and (A.4):

p∗t =

2

6
4
(
1− ξp

)
0

@1− ξpπ
1

λf−1

t

1− ξp

1

A

λf

+
ξpπ

λf
λf−1

t

p∗t−1

3

7
5

−1

. (A.12)

By (A.1), we require an expression for λfYtst/Ct. After substituting out for Ct from (A.7)

into the expression for marginal cost, (3.8), and using (??), we obtain:

λf
Yt
Ct
st =

1

λf

Ctzh (ht, & t)

At
λf
Yt
Ct
=
Ytzh (ht, & t)

At
.

Then,

λf
Yt
Ct
st = p

∗
thtzh (ht, & t) , (A.13)

where zh denotes the marginal disutility of labor and z is defined in (2.19). Equation (A.13)

combines the marginal cost of intermediate good firms with the optimal employment decision

by the family, (3.4). By (A.2) we require an expression for Yt/Ct :

Yt
Ct
=

p∗tAtht
p∗tAtht − gtntAt

=
p∗tht

p∗tht − gtnt
(A.14)

The family’s intertemporal Euler equation is, using (3.3):

1 = βEt
p∗tht − gtnt[

p∗t+1ht+1 − gt+1nt+1
]
gA,t+1

Rt
πt+1

, (A.15)
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where we have used (A.7) to substitute out for Ct and Ct+1 and

gA,t+1 ≡
At+1
At

.

Writing the equilibrium conditions, (A.1) and (A.2), after using (A.13) and (A.14), we

obtain:

Kp,t = p∗thtzh (ht, & t) + βξpEt

(
1

πt+1

) λf
1−λf

Kp,t+1 (A.16)

Fp,t =
p∗tht

p∗tht − gtnt
+ βξpEt

(
1

πt+1

) λf
1−λf

Fp,t+1 (A.17)

The 6 private sector equilibrium conditions are (A.16), (A.17), (A.4), (A.9), (A.12), and

(A.15). There are 7 endogenous variables:

ht, p
∗
t , Rt, πt, Kp,t, Fp,t, nt.

When government spending is zero, then (A.9) and nt drop from the system.

A.3. Closing the Model

The previous subsection enumerated 6 equilibrium conditions for determining 7 endogenous

variables. One way to close the model is to consider the Ramsey-optimal allocations. Another

is to add a Taylor rule equation.
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A.3.1. Ramsey-optimal Allocations

We set government spending to zero here. Substituting out for Ct using (A.7), and for st
using (A.13), the Lagrangian representation of the Ramsey problem is:

max
p∗t ,ht,Rt,πt,Fp,t,Kp,t

E0

1X

t=0

βt{log ht + log p∗t − z (ht, & t)

+λ1t

[
1

p∗tht
− Et

β

p∗t+1ht+1gA,t+1

Rt
πt+1

]

+λ2t

2

6
4
1

p∗t
−

0

B
@
(
1− ξp

)
0

@1− ξpπ
1

λf−1

t

1− ξp

1

A

λf

+
ξpπ

λf
λf−1

t

p∗t−1

1

C
A

3

7
5

+λ3t

"

1 + βξpEt

(
1

πt+1

) 1
1−λf

Fp,t+1 − Fp,t

#

+λ4tp
∗
t

2

4htzh (ht, & t) + βξpEt

(
1

πt+1

) λf
1−λf p∗t+1

p∗t

Kp,t+1

p∗t+1
−
Kp,t

p∗t

3

5

+λ5t

2

6
4Fp,t

0

@1− ξpπ
1

λf−1

t

1− ξp

1

A

1−λf

−Kp,t

3

7
5}.

In the fourth Lagrangian constraint, it is convenient to factor out p∗t .We conjecture (and can

later verify) that the first, third, fourth and fifth constraints are not binding on the problem.

In particular, we can simply select Rt to satisfy the first constraint, Fp,t to satisfy the third,

Kp,t to satisfy the fourth, and we then need to verify that the fifth constraint is satisfied, as

well as Rt ≥ 1.
Implementing the conjecture, the problem, with gt ≡ 0, reduces to:

max
p∗t ,ht,πt

E0

1X

t=0

βt{log p∗t + log ht − z (ht, & t)

+λ2t

2

6
4
1

p∗t
−

0

B
@
(
1− ξp

)
0

@1− ξpπ
1

λf−1

t

1− ξp

1

A

λf

+
ξpπ

λf
λf−1

t

p∗t−1

1

C
A

3

7
5},

where logAt in the utility function is ignored because it cannot be controled. This leads to

the e¢ciency condition for hours and p∗t :

htzh (ht, & t) = 1. (A.18)

Interestingly, this coincides with the first-best setting for ht. The e¢ciency conditions for p∗t
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and πt are, respectively,

p∗t = λ2t − βλ2t+1ξpπ

λf
λf−1

t+1 = 0
0

@1− ξpπ
1

λf−1

t

1− ξp

1

A

λf−1

=
πt
p∗t−1

. (A.19)

Rearranging, and substituting into (A.12), we obtain:

p∗t =
h(
p∗t−1

) 1
λf−1 ξp +

(
1− ξp

)iλf−1
(A.20)

πt =
p∗t−1
p∗t
. (A.21)

We now verify that all the constraints on the Ramsey problem assumed to be non-binding are

in fact satisfied. Consider the fourth Lagrangian constraint, after substituting out (A.18),

(A.20), and (A.21):

1 + βξpEt

(
1

πt+1

) 1
1−λf Kp,t+1

p∗t+1
=
Kp,t

p∗t
.

We let this equation define Kp,t, so that the fourth Lagrangian is satisfied. The requirement

that the third Lagrangian constraint also be satisfied implies

Kp,t

p∗t
= Fp,t. (A.22)

Letting (A.22) define Fp,t we have that the third Lagrangian is satisfied. From (A.19) and

(A.21),
0

@1− ξpπ
1

λf−1

t

1− ξp

1

A

λf−1

= p∗t . (A.23)

It follows from (A.22) and (A.23) that the fifth Lagrangian constraint is satisfied. The first

Lagrangian constraint is trivially satisfy if we use it to define the nominal rate of interest,

Rt. As long as the shocks are not too big, Rt ≥ 1.
We have established that allocations in which hours worked, the price distortions and

inflation satisfy (A.18), (A.20), and (A.21), respectively, solve the Ramsey problem.

A.3.2. Taylor Rule Equilibrium

Consider the following policy rule:

Rt = R
1−ρRR

ρR
t−1π

(1−ρR)rπ
t x

(1−ρR)ry
t , (A.24)
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where

xt =
Yt

Ỹt
,

and Ỹt is the first-best level of consumption. We can write

xt =
p∗tAtht

Ath̃t
=
p∗tht

h̃t
,

where ht is equilibrium hours worked and h̃t is the value of hours worked in the e¢cient

equilibrium, which is define by:
At

C̃t
= zh

(
h̃t, & t

)
.

Here, C̃t denotes consumption in the e¢cient equilibrium. Using the resource constraint

with no price distortions, (A.7) with p∗t = 1, and rewriting:

At

Ath̃t −Gt
=

1

h̃t − gtnt
= zh

(
h̃t, & t

)
,

or, (
h̃t − gtnt

)
zh

(
h̃t, & t

)
= 1.

Equilibrium is characterized by the requirement that (A.24) as well as the above equation

be satisfied, and also (A.16), (A.17), (A.4), (A.9), (A.12), and (A.15). Summarizing:

0 = Et

2

4p∗thtzh (ht, & t) + βξp

(
1

πt+1

) λf
1−λf

Kp,t+1 −Kp,t

3

5 (A.25)

0 = Et

"
p∗tht

p∗tht − gtnt
+ βξpEt

(
1

πt+1

) 1
1−λf

Fp,t+1 − Fp,t

#

(A.26)

Kp,t =

2

41− ξpπ
1

λf−1

t

1− ξp

3

5

1−λf

Fp,t (A.27)

p∗t =

2

6
4
(
1− ξp

)
0

@1− ξpπ
1

λf−1

t

1− ξp

1

A

λf

+
ξpπ

λf
λf−1

t

p∗t−1

3

7
5

−1

(A.28)

1 = βEt
p∗tht − gtnt(

p∗t+1ht+1 − gt+1nt+1
)
gA,t+1

Rt
πt+1

(A.29)

Rt = R1−ρRR
ρR
t−1π

(1−ρR)rπ
t

(
p∗tht

h̃t

)(1−ρR)ry
(A.30)

1 =
(
h̃t − gtnt

)
zh

(
h̃t, & t

)
(A.31)

nt =

(
nt−1
gA,t

)1−γ
(A.32)
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The 8 variables to be determined by these 8 equations are:

Kp,t, Fp,t, ht, h̃t, p
∗
t , πt, Rt, nt (A.33)

The present discounted value of utility is:

E0

1X

t=0

βt [logCt − z (ht, & t)] (A.34)

= E0

1X

t=0

βt [log (p∗tht − gtnt)− z (ht, & t)] +
logA0
1− β

+
1

1− β
E0

1X

t=1

βt log gA,t

The piece that is exogenous and additive is not interesting. Define

w
(
gA,0, p

∗
−1, &0

)
= E0

1X

t=0

βt [log (p∗tht − gtnt)− z (ht, & t)]

= log (p∗0h0 − g0n0)− z (h0, &0) + βE0w (gA,1, p
∗
0, &1) .

We can add this equation to the list, (A.25)-(A.30), above,

Et [log (p
∗
tht − gtnt)− z (ht, & t) + βwt+1 − wt] = 0, (A.35)

giving us one additional variable, wt, and one additional equation.

This system can be solved in Dynare. Simply type in equations (A.25)-(A.32) and (A.35).

We have three stochastic processes, gt, gA,t and & t. Let xt denote one of these. Then, the law

of motion of xt is:

log xt = (1− ρx) log x+ ρx log xt−1 + "xt ,

for xt = gt, gA,t, & t.

A.4. Steady State

From (A.5) and (A.6),

Kp = Fp, s = 1/λf , Fp =

1
1−ηg

1− βξp
.

From (A.12), in a zero inflation steady state,

p∗ = 1.

We want to impose that government spending is a given proportion, ηg, of total output in

the steady state:

ηg =
G

C +G
=
gnA

Ah
=
gn

h
=
g
(
1
gA

) 1−γ
γ

h
,
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by (A.10). Thus, the steady state value of g is:

g = ηghg
1−γ
γ

A , gn = ηgh (A.36)

Combining (A.13), the result for the steady state value of s and (A.7), (A.11) to obtain:

h

h− gn
= hzh (h, &) ,

or, using (A.36),

1 =
[
1− ηg

]
hzh (h, &) . (A.37)

We now proceed to develop the formulas necessary to compute zh. Recall, the disutility

of labor function, z (ht) in (2.19). Write this in terms of mt :

Z (mt) = log
h
Q (mt)

(
eF+&t(1+σL)m

σL
t − 1

)
+ 1
i
−
a2&2t (1 + σL) σ

2
L

2σL + 1
m2σL+1
t − η& tσLm

σL+1
t ,

(A.38)

where

ht = mtη + a
2& tσLm

σL+1
t ≡ Q (mt) , (A.39)

mt = Q−1 (ht) ,

where Q−1 is inverse function of Q, defined by:

ht = Q
(
Q−1 (ht)

)
. (A.40)

Then,

z (ht) = Z
(
Q−1 (ht)

)
. (A.41)

We require the first and second derivatives of z. Thus,

zh (ht) = Zm
(
Q−1 (ht)

) [
Q−1

]0
(ht) , (A.42)

where [Q−1]0 denotes the derivative of the function, Q−1. To obtain an expression for [Q−1]0 (ht) ,

di§erentiate (A.40) with respect to ht :

1 = Q0
(
Q−1 (ht)

) [
Q−1

]0
(ht) ,

so that:
[
Q−1

]0
(ht) =

1

Q0 (Q−1 (ht))
. (A.43)

We also require the second derivative of Q−1. Di§erentiating (A.40) a second time with

respect to ht :

0 = Q00
(
Q−1 (ht)

) ([
Q−1

]0
(ht)

)2
+Q0

(
Q−1 (ht)

) [
Q−1

]00
(ht) .
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Substituting from the first derivative:

0 = Q00
(
Q−1 (ht)

)( 1

Q0 (Q−1 (ht))

)2
+Q0

(
Q−1 (ht)

) [
Q−1

]00
(ht) ,

so that
[
Q−1

]00
(ht) = −Q00

(
Q−1 (ht)

)( 1

Q0 (Q−1 (ht))

)3
. (A.44)

Substituting (A.43) into (A.42),

zh (ht) =
Zm (Q

−1 (ht))

Q0 (Q−1 (ht))
.

Di§erentiating z in (A.41) a second time,

zhh (ht) = Zmm
(
Q−1 (ht)

) ([
Q−1

]0
(ht)

)2
+ Zm

(
Q−1 (ht)

) [
Q−1

]00
(ht) ,

which, after substituting from (A.43) and (A.44), is:

zhh (ht) = Zmm
(
Q−1 (ht)

)( 1

Q0 (Q−1 (ht))

)2
− Zm

(
Q−1 (ht)

)
Q00
(
Q−1 (ht)

)( 1

Q0 (Q−1 (ht))

)3

=

(
1

Q0 (Q−1 (ht))

)2
Zm
(
Q−1 (ht)

) [Zmm (Q−1 (ht))
Zm (Q−1 (ht))

−
Q00 (Q−1 (ht))

Q0 (Q−1 (ht))

]

=

(
1

Q0 (mt)

)2
Zm (mt)

[
Zmm (mt)

Zm (mt)
−
Q00 (mt)

Q0 (mt)

]
,

where the expressions for Q0, Q00, Zm, Zmm can be obtained by symbolic di§erentiation of

the underlying functions, (A.38) and (A.39).

The endogenous variables are

h,m,σz, u, p̄,

and the equations are:

(1)h = mη + a2&σLm
σL+1 (A.45)

(2)p̄ = η + &a2 (1 + σL)m
σL

(3)1 =
[
1− ηg

]
hzh (h, &)

(4)σz =
zhhh

zh

(5)κokun =
a2&σ2Lm

σL (1− u)
1− u+ a2&σ2LmσL

u =
m− h
m

.
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The parameters are:

F, &, a, η,σL.

We solve the steady state using two di§erent strategies, depending on our purposes.

The first strategy, the straightforward one, takes the parameters as given and computes the

steady values of the endogenous variables. We implement this strategy by placing a grid

of values of m on the unit interval. For each value of m on the grid we compute h using

(1) and evaluate (3). We count the number of places on the grid where there is a switch in

the sign of (3), i.e., in 1−
[
1− ηg

]
hzh (h, &) . For each sign switch, we then narrowed down

the corresponding value of m that implements (3) exactly using a nonlinear equation solver.

After this, we computed p̄ using (2) as well as steady state unemployment, u. In practice, we

found two sets of solutions to the steady state equations, but one was inadmissible because it

implied u < 0.We applied this ‘first strategy’ to compare the steady states of the involuntary

unemployment model studied in this section with the steady state of the full information

model in section B holding model parameters fixed. Section B shows that the steady state

of the full information model is also characterized by (A.45). The di§erence between the two

models lies in the details of the function, zh. With this approach to computing the steady

state we are able to evaluate the impact on welfare and other variables of the assumption of

limited information. We compute the value of information in consumption units as follows.

According to (A.34), steady state utility is, apart from an additive constant, as follows:

U =
1

1− β
[log (h)− z] .

Here, h denotes steady state employment and z denotes the steady state disutility of labor

(the fact, h− gn =
(
1− ηg

)
h, in steady state has been used here). Let utility in the steady

state of the full information model be denoted:

U fi =
1

1− β

[
log
(
hfi
)
− zfi

]

Let λ denote the percent increase in consumption in the involuntary unemployment model

that makes households in that model indi§erent between staying in that environment, or con-

verting to the environment with full information. Let U (λ) denote the level of utility in the

involuntary unemployment equilibrium when consumption is raised from h to h (1 + λ/100) .

We seek λ such that

U (λ) = U fi.

Note:

U (λ) =
1

1− β
[log (h) + log (1 + λ/100)− z]

= U +
1

1− β
log (1 + λ/100) ,
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so that

λ = 100
h
e(1−β)(U

fi−U) − 1
i
.

Our second strategy for computing the steady state takes the values of p̄, m, u and σz as

given. Thus, the ‘parameters’ become:

p̄, m, u, σz,σL (A.46)

and the ‘endogenous’ variables become:

F, &, a, η, h.

We wish to solve the system for the endogenous variables, for a given set of values for the

parameters. To do so, note first that h is determined by

h = m (1− u) .

We then proceed to solve equations (1)-(4) with respect to F, &, a, η using a nonlinear

multipler equation solver. This solution strategy is useful when we want to compute obser-

vationally equivalent parameterizations for the models considered in this paper. When we

do this, we take observed data as given. Variables like m and u are measured from time

averages of unemployment and the labor force, and σz can be estimated from applying time

series techniques to the reduced form of the model using macroeconomic data that do not

include unemployment and the labor force.

In our analysis, we find it convenient to compare the model with involuntary unemploy-

ment with two other models. This includes the CGG model and the model in which the

family problem is based on full information. The lattter is treated in the section devoted to

that model. Here, we develop the steady state equations for the CGG model.

The only change required for computing the steady state lies in the specification of zh
in (A.37). We define the disutility of labor in the CGG model as the one implicit in the

‘standard model’, (4.20):

z (ht, & t) = &h1+σLt .

Then, (A.37) reduces to:

1 =
[
1− ηg

]
hzh (h, &) =

[
1− ηg

]
& (1 + σL)h

σL+1.

Note that as ηg increases, h does too. In the CGG model m = h because there is no job

search.
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We follow the approach taken in the involuntary unemployment model in calibrating m,

and thus h too (see (A.46)). We thus define the preference shock in this model as

& =
1[

1− ηg
]
(1 + σL)h1+σL

.

Of course the steady state unemployment rate is zero (as it is outside of steady state too)

because there is no monopoly power in the labor market. In addition, we parameterizer the

curvature, σz, of the disutility of labor. This is simply

σL = σz

in the CGG model. Then, labor supply is simply:

zh (ht, & t) = & (1 + σL)h
σL
t ,

B. The Family Utility Function Under Full Information

Our model of involuntary unemployment makes two sorts of assumptions: (i) households

have di§erent aversions to work and must make an e§ort to find work and (ii) their type

and e§ort levels are private information. The fact that there is unemployment in the BLS

sense follows from (i) only and (ii) is required for unemployment to be ‘involuntary’. This

section allows us to determine the impact on the analysis of (ii), by deriving the family utility

function that applies when (ii) is not satisfied.

The first subsection derives the family utility function. The second subsection discusses

the steady state when this model of unemployment is introduced into CGG.

B.1. Family Utility Function

Thus, we assume that the family observes everything about the individual household: the

e§ort it exerts to find a job, if any, and its aversion to work. The family selects a consump-

tion allocation and level of search e§ort, conditional on a household’s type. It does so by

optimizing the ex ante utility of an arbitrary household or, equivalently, by optimizing the

average utility of all households ex post. Households with 0 ≤ l ≤ m participate in the labor

force and those with 1 ≥ l ≥ m do not, where m is a choice variable. We drop subscripts to

simplify the notation. The family optimization problem is:

max
m,{el},cw,cnw

Z m

0

(
p (el) [log (c

w)− F − & (1 + σL) l
σL ] + (1− p (el)) log (cnw)−

1

2
e2l

)
dl

+(1−m) log (cnw)
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subject to the resource constraint, (2.14), and the link between the number employed, h,

and the labor force, m, (2.9). We reproduce these constraints here for convenience:

C = hcw + (1− h) cnw

h =

Z m

0

p (el) dl = mη + a

Z m

0

eldl.

Rewrite the objective:

max
m,{el},cw,cnw

Z m

0

(
p (el)

[
log

(
cw

cnw

)
− F − & (1 + σL) l

σL

]
−
1

2
e2l

)
dl + log (cnw) .

From the resource constraint:
cw

cnw
=

C
cnw

− (1− h)
h

.

So that, after substituting out the resource constraint, we get:

max
m,{el},cnw

Z m

0

 

p (el)

"

log

 
C
cnw

− (1− h)
h

!

− F − & (1 + σL) l
σL

#

−
1

2
e2l

!

dl + log (cnw)

+λ

[Z m

0

p (el) dl − h
]
,

where λ is the multiplier on the restriction linking m and h. The first order condition for cnw

is:

cnw = C,

so that the objective reduces to:

max
m,{el}

Z m

0

(
−p (el) [F + & (1 + σL) l

σL ]−
1

2
e2l

)
dl + log (C) (B.1)

+λ

[Z m

0

p (el) dl − h
]
.

Optimization with respect to el implies:

el = λa− a [F + & (1 + σL) l
σL ] ,

so that, using (2.2),

p (el) = η + λa2 − a2 [F + & (1 + σL) l
σL ] .

Also,

h =

Z m

0

p (el) dl = m
(
η + λa2 − a2 [F + &mσL ]

)
, (B.2)

or,

λ =
h
m
− η

a2
+ F + &mσL . (B.3)
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Optimality of the choice of m in (B.1) implies, by Leibniz’s rule:

−p (em) [F + & (1 + σL)m
σL ]−

1

2
e2m + λp (em) = 0,

or,

−
[
η + λa2 − a2x

]
x−

1

2
(λa− ax)2 + λ

(
η + λa2 − a2x

)
= 0,

where

x ≡ F + & (1 + σL)m
σL . (B.4)

Simplifying,

−
(
η + λa2

)
x+ a2x2 −

1

2
(λa)2 + λa2x−

1

2
a2x2 + λ

(
η + λa2

)
− λa2x = 0,

or,

f (x) ≡ x2 − 2
(
η + λa2

a2

)
x+ λ

h
λ+ 2

η

a2

i
= 0. (B.5)

It is easy to verify that there are two values of x with the property, f (x) = 0 :

1

a2
(
λa2 + 2η

)
, λ.

Substituting out for λ from (B.3) these solutions reduce to:

h
m
+ η

a2
+ F + &mσL ,

h
m
− η

a2
+ F + &mσL .

Consider the first solution:

F + & (1 + σL)m
σL =

h
m
+ η

a2
+ F + &mσL

or,

mσL =
h
m
+ η

a2&σL
(B.6)

There is a unique value of m, m ≥ 0, that satisfies (B.6). To see this, note that the left side
of (B.6) starts at zero and increases without bound as m increases. The right side starts

at plus infinity (thus, greater than the left size) with m = 0 and declines monotonically to

a finite number as m increases (thus, the right side is eventually below the left side). By

continuity and monotonicity, there is a unique value of m that satisfies the equality in (B.6).

Of course, the only admissible solution satisfies m 2 (h, 1) . The second solution to f (x) = 0
implies

F + & (1 + σL)m
σL =

h
m
− η

a2
+ F + &mσL ,

18



or

mσL =
h
m
− η

a2&σL
. (B.7)

Interestingly, this also reduces to the expression in (A.39):

h = ηm+ a2&σLm
σL+1 ≡ Q (m) . (B.8)

There is a unique value of m, m ≥ 0, that satisfies (B.7) for any h ≥ 0. This is because m
is monotone increasing for m ≥ 0 and Q (0) = 0. Whether one or both of (B.6) and (B.7)

correspond to local maxima requires examining the relevant second order condition. We do

so now, graphically. Of course, we can anticipate that the smaller of the two solutions, the

one associated with (B.7), is likely to correspond to the maximum sought in (B.1).

The existence of more than one solution to (B.5) implies that we must investigate second

order conditions. Di§erentiate (B.5) with respect to m :

f 0 (x)
dx

dm
=

[
x−

η + λa2

a2

]
2
dx

dm
.

Since 2dx/dm > 0 the sign of the above expression corresponds to the sign of the object in

square brackets, which is, after substituting out for x from (B.4) and for λ from (B.3):

&σLm
σL −

h
m

a2

It is easy to verify that (B.6) implies the above expression is positive, while (B.7) implies

the above expression is negative. Thus, (B.7) satisfies the first and second order conditions

necessary for an optimum. Thus, (B.7) is a local optimum, while (B.6) is a local minimum.

It is interesting to investigate whether (B.9) satisfies the usual bounds for a probability,

given (B.3) and (B.7). Using (B.3) to substitute out for λ in (B.9) and rearranging,

p (el) =
h

m
+ a2& [mσL − (1 + σL) lσL ] .

Using (B.7) to substitute out for h/m in the previous expression, we obtain:

p (el) = η + (1 + σL) a
2& [mσL − lσL ] . (B.9)

Interestingly, this is the same function obtained for the involuntary unemployment model

(to see this, substitute the incentive constraint, (2.8), into the probability function for that

model, (2.6)).

We would like to have an expression for the family utility function, the function that
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attains the optimum in (B.1) for given C and h. Consider the object under the integral in

the objective function, (B.1):

−p (el) [F + & (1 + σL) l
σL ]−

1

2
e2l

= −
[
η + λa2 − a2 [F + & (1 + σL) l

σL ]
]
[F + & (1 + σL) l

σL ]−
1

2
[λa− a [F + & (1 + σL) l

σL ]]2

= −
(
η + λa2

)
[F + & (1 + σL) l

σL ] + a2 [F + & (1 + σL) l
σL ]2 −

1

2
[λa− a [F + & (1 + σL) l

σL ]]2

= −
(
η + λa2

)
[F + & (1 + σL) l

σL ] + a2 [F + & (1 + σL) l
σL ]2

−
1

2

[
(λa)2 − 2λa2 [F + & (1 + σL) l

σL ] + a2 [F + & (1 + σL) l
σL ]2

]

= −
(
η + λa2

)
[F + & (1 + σL) l

σL ] + a2 [F + & (1 + σL) l
σL ]2

−
1

2
(λa)2 + λa2 [F + & (1 + σL) l

σL ]−
1

2
a2 [F + & (1 + σL) l

σL ]2

= −η [F + & (1 + σL) l
σL ] +

1

2
a2 [F + & (1 + σL) l

σL ]2 −
1

2
(λa)2

Note,
Z m

0

[F + & (1 + σL) l
σL ] dl = Fm+ &mσL+1

Z m

0

[F + & (1 + σL) l
σL ]2 dl =

Z m

0

[
F 2 + 2& (1 + σL) l

σLF + &2 (1 + σL)
2 l2σL

]
dl

= mF 2 + 2&mσL+1F + &2 (1 + σL)
2 m

2σL+1

2σL + 1

Then, the integral in (B.1) is
Z m

0

{
−η [F + & (1 + σL) l

σL ] +
1

2
a2 [F + & (1 + σL) l

σL ]2 −
1

2
(λa)2

}
dl

= −ηm [F + &mσL ] +
1

2
a2m

[
F 2 + 2&mσLF + &2 (1 + σL)

2 m2σL

2σL + 1

]
−
1

2
(λa)2m,

with λ given by (B.3) and m given by (B.6). The graph of this object, for m 2 (h, 1) takes
the form of a partial sine wave. Note that there are two values of m where this function is

flat. They correspond to (B.6) and (B.7). Consistent with the algebra above, the second flat

point is a local minimum, while the first is a local maximum.

To construct the utility function of the representative agent, write the following function

of m :

Z (m,h) = ηm [F + &mσL ]−
1

2
a2m

[
F 2 + 2&mσLF + &2 (1 + σL)

2 m2σL

2σL + 1

]
+
1

2
(λ (m,h) a)2m,

(B.10)
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where λ (m,h) is the particular function of m and h given by (B.3). Express (B.8) as

m = Q−1 (h) . (B.11)

Then, the utility function of the representative agent is:

u (C, h) = log (C)− z (h) , (B.12)

where

z (h) = Z
(
Q−1 (h) , h

)
, (B.13)

where Q−1 is defined as the inverser function of Q (see (A.40)).

Our calculations require the derivative of z, zh (h) . According to (B.13),

zh (h) = Z1
(
Q−1 (h) , h

) [
Q−1

]0
(h) + Z2

(
Q−1 (h) , h

)
,

where [Q−1]0 (h) is the derivative of the inverse function of Q, defined in terms of Q0 in (A.43).

Using (A.43):

zh (h) =
Z1 (Q

−1 (h) , h)

Q0 (Q−1 (ht))
+ Z2

(
Q−1 (h) , h

)
. (B.14)

We also require the second derivative of z, zhh :

zhh (h) = Z11
(
Q−1 (h) , h

) ([
Q−1

]0
(h)
)2
+ Z12

(
Q−1 (h) , h

) [
Q−1

]0
(h)

+Z1
(
Q−1 (h) , h

) [
Q−1

]00
(h) + Z21

(
Q−1 (h) , h

) [
Q−1

]0
(h)

+Z22
(
Q−1 (h) , h

)
,

where the second derivative of the inverse function, [Q−1]00 (h) , can be computed using (A.44).

Using (A.43) and (A.44):

zhh (h) = Z11
(
Q−1 (h) , h

)( 1

Q0 (Q−1 (ht))

)2
+
Z12 (Q

−1 (h) , h)

Q0 (Q−1 (ht))
(B.15)

−Z1
(
Q−1 (h) , h

)
Q00
(
Q−1 (ht)

)( 1

Q0 (Q−1 (ht))

)3

+
Z21 (Q

−1 (h) , h)

Q0 (Q−1 (ht))
+ Z22

(
Q−1 (h) , h

)
,

Given (B.14) and (B.14), we can compute the curvature of utility:

σz =
zhhh

zh
.

All these formulas can be computed symbolically given the definitions of the Z and Q

functions in (B.10) and (B.8), respectively.
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B.2. Steady State

We discuss two ways of computing the steady state of the model. The first is the ‘natural’

one. This takes the parameters of the model as given and computes the implied exogenous

variables. This is useful for doing one type of comparison of the full information version of

the model with our involuntary unemployment model. For example, we can ask how the

level of unemployment is a§ected by the absence of full information. The second approach

allows us to impose certain endogenous variables exogenously, and back out parameters.

B.2.1. A First Approach to Computing the Steady State

The structural parameters of the model are

F, &, a, η,σL.

The endogenous variables of interest are

p̄, h,m, u, σz.

The relevant equations are (A.45):

(1)h = mη + a2&σLm
σL+1

(2)p̄ = η + &a2 (1 + σL)m
σL

(3)1 =
[
1− ηg

]
hzh (h, &)

(4)σz =
zhhh

zh

u =
m− h
m

.

Notably, equations (1) and (2) in (A.45) are literally unchanged from what they are in the

full information model because the expressions for p (el) and the mapping from m to h are

unchanged. In addition, equations (3) and (4) are formally the same, although the details of

zh and zhh are di§erent for the partial information model because z is di§erent. The steady

state is found by solving (3) for h. Then, (1) is solved for m and (2) is solved for p̄. Finally,

the last equation is solved for u.

B.2.2. A Second Approach to Solving the Steady State

We proceed here in a way that is parallel to the approach taken in the involuntary unem-

ployment model, in section A.4. In particular, the exogenous ‘parameters’ are (A.46):

p̄, m, u, σz,σL.

22



treated asand the ‘endogenous’ variables are:

F, &, a, η, h.

As in A.4, h is derived trivially from the parameters:

h = (1− u)m.

There now remain four endogenous variables to be solved for, F, &, a, η, using (1)-(4). As

before, we select F, &, a, η to set these equations to zero for given values of the exogenous

parameters.

C. Quantitative Properties of the Model Without Capital

This section explores various quantitative properties of our simple model without capital.

The assumption of limited information lies at the heart of our model of unemployment, and

we quantity the impact of this assumption by comparing the properties of the model with

and without limited information.

C.1. Parameter Values

To do the numerical calculations, we must assign values to our involuntary unemployment

model parameters. Table A1 reports the values of a subset of parameters that are relatively

uncontroversial. For example, we set values for the Taylor rule that imply the Taylor principle

is satisfied (i.e., rπ > 1), we assume substantial interest rate smoothing (ρR is large) and

the feedback on the output gap is modest (ry is small). The steady state share, ηg, of

government consumption to gross output is 20 percent. Government consumption is a long

weighted average of current and past technology (i.e., γ is close to zero). The autocorrelation

of the three shocks in the model is large. Finally, the innovation standard deviation of the

three shocks was chosen so that each shock, when operative in isolation, causes the standard

deviation of quarterly output growth in the model to be around 1 percent, the corresponding

post WWII average in US data. The exception is the standard deviation of the preference

shock which is set to zero throughout the analysis in this section.

We treated the structural parameters associated with households’ job finding function,

p (e) , and their disutility of labor di§erently. These parameters are:

F, &, a, η, σL. (C.1)

We do not have direct observations on these parameters, nor are we aware of any estimates
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of these parameters in the literature. So, we chose values for them so that, conditional on

the value of ηg given in Table A1, the steady state of the involuntary unemployment model

implies the values of

m, u, 1/σz, 1/κ
okun, p̄ (C.2)

that are reported in the top left panel of Table A2. The indicated steady state value of the

labor force participation rate, m = 2/3, corresponds to the average value of this variable in

recent years. The steady state value of unemployment, u = 0.056, corresponds to the aver-

age value of unemployment in the post war US data. The compensated family labor supply

elasticity, 1/σz = 2, is roughly the corresponding object used in the real business cycle litera-

ture.56 This is where the distinction between the compensated family labor supply elasticity

and the Frisch elasticity is important. If 1/σz were interpretable as a Frisch elasticity, then

the labor literature implies a value of 1/σz well below unity. However, as noted above, 1/σz
has no connection to any individual agent’s willingness to vary hours worked in response to

a wage change in our model. The value of κokun was selected so that the model is consistent

with a standard estimate of Okun’s law. Finally, we chose a value for p̄ to ensure that in

the stochastic version of the model, the likelihood of violating the upper bound constraint

on the job finding probability is small. The mapping from (C.2) to (C.1) using the steady

state equilibrium conditions is described in detail in section A.4 of this technical appendix.

Table A2 contains an in-depth comparison of the involuntary unemployment model (im-

perfect information) against the full information model and the standard model.

D. Non-Separability in Utility

In the manuscript, we work with a household utility function in which consumption and

leisure are additively separable. In this appendix, we show that the analysis can also easily

be done with two non-separable utility functions that have been used extensively in the

literature.
56A standard real business cycle model (see, e.g., the ‘divisible labor’ model in Christiano and Eichenbaum,

1992) uses preferences,
P1

t=0 β
t [log (Ct) +  (1− ht)] , where ht denotes time worked of the representative

agent, as a fraction of available time. The labor first order condition associated with the agent’s optimal

labor choice is  Ct/ (1− ht) = wt, where wt denotes the real wage. The consumption compensated (ac-

tually ‘consumption constant’, with these preferences) labor supply function is (apart from a constant),

log (1− ht) = logwt. This implies the following steady state elasticity of employment with respect to the

wage:
d log ht
d logwt

= −
1− h
h

= −2.

Here, we assume that in steady state, 1/3 of available time is devoted to market work, i.e., h = 1/3.
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D.1. King-Plosser-Rebelo Preferences

We replace the preferences in (2.3) with:

p (et)
(cwt )

1−γ

1− γ
v (l) + (1− p (et))

(cnwt )
1−γ

1− γ
v (0)−

1

2

e2t
1− γ

, γ > 1

v (l) = F + & t (1 + σL) l
σL .

With these preferences, utility is decreasing in l, and the marginal utility of consumption is

increasing in l. In this case, the household with aversion to work, l, sets

el,t = max
{
a
[
(cwt )

1−γ v (l)− (cnwt )
1−γ v (0)

]
, 0
}
.

In this case, households that participate in the labor market receive utility

1

2
a2

"
(cwt )

1−γ

1− γ
v (l)−

(cnwt )
1−γ

1− γ
v (0)

#2
+
(cnwt )

1−γ

1− γ
v (0) ,

while households that do not participate receive

(cnwt )
1−γ

1− γ
v (0) .

The incentive constraint (i.e., the analog of (2.8)) requires:

(cwt )
1−γ v (m) = (cnwt )

1−γ v (0) (D.1)

The mapping from the labor force, mt, to the number of people working, ht, is given by:

ht =

Z mt

0

p (el,t) dl = a
2 (c

w
t )
1−γ

γ − 1
& t (1 + σL)

Z mt

0

[mσL
t − lσL ] dl = a2

(cwt )
1−γ

γ − 1
& tσLm

σL+1
t .

(D.2)

Combining the resource constraint, (2.14), with the incentive constraint, (D.1), we obtain:

cwt =
Ct

ht + (1− ht)
h
v(mt)
v(0)

i 1
1−γ

(D.3)

cnwt =
Ct

h
v(mt)
v(0)

i 1
1−γ

ht + (1− ht)
h
v(mt)
v(0)

i 1
1−γ
. (D.4)

Integrating utility over all the households in the family, the analog of (2.17) is:

u (cwt , c
nw
t ,mt) = a

2 (c
w
t )
2(1−γ)

(1− γ)2
(1 + σL)

σ2Lm
2σL+1
t

(2σL + 1)
+
(cnwt )

1−γ

1− γ
v (0) . (D.5)

Equations (D.2), (D.3) and (D.4) provide a mapping from Ct and ht to cwt , c
nw
t and mt.

Utility is then given by (D.5). Thus, we have family utility in terms of Ct and ht only.
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D.2. Greenwood-Hercowitz-Hu§man Preferences

We now replace the preferences in (2.3) with:

p (et)
(cwt + F − (1 + σL) l

1+σL)
1−γ − 1

1− γ
+ (1− p (et))

(cnwt + F )1−γ − 1
1− γ

−
1

2
e2t , γ > 0.

In this case,

el,t = max

(

a

"
(cwt + F − (1 + σL) l1+σL)

1−γ − (cnwt + F )1−γ

1− γ

#

, 0

)

,

so that the utility of a household that participates in the labor force is:

1

2
a2

"
(cwt + F − (1 + σL) l1+σL)

1−γ − (cnwt + F )1−γ

1− γ

#2
+
(cnwt + F )1−γ − 1

1− γ
.

Comparing this with the utility of households that choose to be out of the labor force, we

obtain the incentive constraint:

cwt − (1 + σL)m
1+σL
t = cnwt (D.6)

The mapping between the labor force and the number of people working is provided by:

ht =

Z mt

0

p (el,t) dl =
a2

1− γ

Z mt

0

"
(cwt + F − (1 + σL) l

1+σL)
1−γ

−
(
cwt + F − (1 + σL)m

1+σL
t

)1−γ

#

dl. (D.7)

Now,
Z mt

0

[
cwt + F − (1 + σL) l

1+σL
]1−γ

dl

= mt

[
cwt + F − (1 + σL)m

1+σL
t

]1−γ
 
cwt + F − (1 + σL)m

(1+σL)
t

cwt + F

!−(1−γ)

×F
(h

− (1− γ) 1
1+σL

i
; 1 +

1

1 + σL
;
(1 + σL)m

1+σL
t

cwt + F

)
,

where

F (x; a; b)

denotes the hypergeometric function where x is a 1× 2 row vector and a and b are scalars.57

In this way, (D.7) defines a mapping from cwt , c
nw
t and mt to ht :

ht = f (c
w
t , c

nw
t ,mt) . (D.8)

57This formula may be found at http://integrals.wolfram.com/index.jsp. In MATLAB, the hypergeometric

function is evaluated using hypergeom(x,a,b).
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Combining the resource constraint, (2.14), with the incentive constraint, (D.6), we obtain:

cwt = Ct + (1− ht) (1 + σL)m1+σL
t (D.9)

cnwt = Ct − ht (1 + σL)m1+σL
t (D.10)

Ex ante utility of all the households in the family, the analog of (2.17), is (after using the

incentive constraint):

u (cwt , c
nw
t ,mt) =

1

2

a2

(1− γ)2

Z mt

0

"
(cwt + F − (1 + σL) l

1+σL)
1−γ

− (cnwt + F )1−γ

#2
dl (D.11)

+
(cnwt + F )1−γ − 1

1− γ

Expanding the square term:
Z mt

0

h(
cwt + F − (1 + σL) l

1+σL
)1−γ − (cnwt + F )1−γ

i2
dl

=

Z mt

0

(
cwt + F − (1 + σL) l

1+σL
)2(1−γ)

dl

−2 (cnwt + F )1−γ
Z mt

0

(
cwt + F − (1 + σL) l

1+σL
)2(1−γ)

dl

+mt (c
nw
t + F )2(1−γ) ,

which can be evaluated using formulas analogous to the one after (D.7). Equations (D.8),

(D.9) and (D.10) provide a mapping from Ct and ht to cwt , c
nw
t and mt. Utility is then given

by (D.11). Thus, we have family utility in terms of Ct and ht only.

E. Solving the Model Used in the Empirical Analysis

We first derive the equilibrium conditions associated with optimal wage setting. We then

indicate the remaining equilibrium conditions of the model. Finally, we describe a strategy

for solving the model’s steady state.

E.1. Scaling of Variables

We adopt the following scaling of variables. The neutral shock to technology is zt and its

growth rate is µz,t :
zt
zt−1

= µz,t.
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The variable, Ψt, is an embodied shock to technology and it is convenient to define the

following combination of embodied and neutral technology:

z+t ≡ Ψ
α

1−α
t zt,

µz+,t ≡ µ
α

1−α
Ψ,t µz,t. (E.1)

Capital, K̄t, and investment, It, are scaled by z+t Ψt. Consumption goods Ct, government

consumption Gt and the real wage, Wt/Pt are scaled by z+t . Also, υt is the multiplier on the

nominal household budget constraint in the Lagrangian version of the household problem.

That is, υt is the marginal utility of one unit of currency. The marginal utility of a unit of

consumption is υtPt. The latter must be multiplied by z+t to induce stationarity. Thus, our

scaled variables are:

kt+1 =
Kt+1

z+t Ψt
, k̄t+1 =

K̄t+1

z+t Ψt
, it =

It
z+t Ψt

, ct =
Ct
z+t
, gt =

Gt
z+t
, w̄t =

Wt

z+t Pt
(E.2)

 z+,t = υtPtz
+
t , ỹt =

Yt
z+t
, p̃t =

P̃t
Pt
, wt =

W̃t

Wt

,
...
wt ≡

...
W t

Wt

,
1
wt =

1
W t

Wt

.

We define the scaled date t price of new installed physical capital for the start of period t+1

as pk0,t and we define the scaled real rental rate of capital as r̄kt :

pk0,t = ΨtPk0,t, r̄
k
t = Ψtr

k
t .

where Pk0,t is in units of the homogeneous good. We define the following inflation rates:

πt =
Pt
Pt−1

, πit =
P it
P it−1

.

Here, Pt is the price of the homogeneous output good and P it is the price of the domestic

final investment good.

E.2. Wage Setting by the Family

We consider the problem of a monopolist who represents households that supply the type j

labor service. That monopolist optimizes the utility function of j−type households, (2.18),
subject to Calvo frictions. With probability 1 − ξw the monopolist reoptimizes the wage

and with probability ξw the monopolist sets the current wage rate according to (4.9). In

each period, type j households supply the quantity of labor dictated by demand, (4.5).

Because the j−type family has perfect consumption insurance, the monopolist can take the
j−type family’s consumption as given. However, the monopolist does assign a weight to
the revenues from j−type labor that corresponds to the value, υt, assigned to income by
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the family. Ignoring terms beyond the control of the monopolist the monopolist seeks to

maximize:

Ejt

1X

i=0

βi
[
−z
(
ht+i,j, ζt+i

)
+ υt+iWt+i,jht+i,j

]
.

Here, υt denotes the Lagrange multiplier on the type j family’s time t flow budget constraint,

(3.2). The function, z, is defined in (2.18), but we reproduce it here for convenience:

z (hj,t, ζt) = log
h
hj,t

(
eF+&(1+σL)f(ht)

σL − 1
)
+ 1
i
−
a2&2 (1 + σL) σ

2
L

2σL + 1
f (hj,t)

2σL+1−η&σLf (hj,t)
σL+1 .

Here, f (hj,t, ζt) is the unique value of mt that satisfies

hj,t = Q (mj,t, ζt) ≡ mj,tη + a
2& tσLm

σL+1
j,t , (E.3)

for a given value of mt. That is,

mj,t = f (hj,t, ζt) ≡ Q
−1 (hj,t, ζt) ,

where Q−1 is the inverse function of Q. In the case of the standard model, z is implicitly

defined in (4.20).

E.2.1. Di§erentiating the Family Disutility of Labor

In the calculations that follow, we require the derivatives of z and f , evaluated in steady

state. In the case of the standard model, these calculations are trivial. We compute the

derivatives for our model with involuntary unemployment here. We drop the j subscript for

convenience, as well as the stochastic shock. From the definition of the inverse function,

mt = f (Q (mt)) .

We find the derivatives of f by di§erentiating this expression twice with respect to mt :

1 = f 0 (Q (mt))Q
0 (mt)

0 = f 00 (Q (mt)) [Q
0 (mt)]

2
+ f 0 (Q (mt))Q

00 (mt)

From the first expression,

f 0 (Q (mt)) =
1

Q0 (mt)
.

Substituting this into the second expression and solving:

0 = f 00 (Q (mt)) [Q
0 (mt)]

2
+
Q00 (mt)

Q0 (mt)
,
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so that

f 00 (Q (mt)) = −
Q00 (mt)

[Q0 (mt)]
3 ,

From (E.3),

Q0 (mt) = η + (σL + 1) a
2&σLm

σL
t

Q00 (mt) = (σL + 1) a
2&σ2Lm

σL−1
t ,

so that, in steady state,

fh =
1

η + (σL + 1) a2&σLmσL
(E.4)

fhh = −
(σL + 1) a

2&σ2Lm
σL−1

[η + (σL + 1) a2&σLmσL ]3
,

where m denotes the steady state value of m, computed below.

Let,

Z (mt) = log
h
Q (mt)

(
eF+&(1+σL)m

σL
t − 1

)
+ 1
i
−
a2&2 (1 + σL) σ

2
L

2σL + 1
m2σL+1
t − η&σLm

σL+1
t

ht = Q (mt) ≡ mtη + a
2&σLm

σL+1
t ,

so that

z (ht) ≡ Z
(
Q−1 (ht)

)
= Z (f (ht)) ,

and

zh (ht) = Z 0 (f (ht)) fh (ht)

zhh (ht) = Z 00 (f (ht)) [fh (ht)]
2 + Z 0 (f (ht)) fhh (ht) .

Evaluating this in steady state,

zh = Z
0fh, zhh = Z

00f 2h + Z
0fhh.

In this case,

σz ≡
zhhh

zh
=
[Z 00f 2h + Z

0fhh]h

Z 0fh
=
Z 00fhh

Z 0
+
fhhh

fh
From (E.4),

fh =
1

Q0
, fhh = −

Q00

[Q0]3
,

so that

σz =
Z 00fhh

Z 0
+
fhhh

fh

=
Z 00h

Z 0Q0
−
Q00h

[Q0]2

=
Q

Q0

[
Z 00

Z 0
−
Q00

Q0

]
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E.2.2. First Order Condition Associated with Family Wage Setting

Consider the monopoly wage setter, j, that has an opportunity to reoptimize the wage rate.

The objective function with ht+i,j substituted out using labor demand, (4.5), and ignoring

terms beyond the control of the monopolist, is as follows:

Et

1X

i=0

(βξw)
i [−z

0

@ζt+i,

 
W̃tπ̃w,t+i · · · π̃w,t+1

Wt+i

! λw
1−λw

Ht+i

1

A

+υt+iW̃tπ̃w,t+i · · · π̃w,t+1

 
W̃tπ̃w,t+i · · · π̃w,t+1

Wt+i

! λw
1−λw

Ht+i],

where

W̃tπ̃w,t+i · · · π̃w,t+1

is the nominal wage rate of the monopolist which sets wage W̃t in period t and cannot

reoptimize again afterward. Also, z is the function described in the case of our model with

unemployment, and it is (4.20) in the case of the standard model. We adopt the following

scaling convention:

wt =
W̃t

Wt

, w̄t =
Wt

z+t Pt
,  z+,t = υtPtz

+
t .

With this notation, the objective can be written,

Et

1X

i=0

(βξw)
i [−z

 

ζt+i,

(
wtw̄t
w̄t+i

Xt,i

) λw
1−λw

Ht+i

!

+  z+,t+iw
1

1−λw
t w̄tXt,i

(
w̄t
w̄t+i

Xt,i

) λw
1−λw

Ht+i],

where:

Xt,i =
π̃w,t+i · · · π̃w,t+1

πt+iπt+i−1 · · · πt+1µz+,t+i · · · µz+,t+1
.

Di§erentiating with respect to wt,

Et

1X

i=0

(βξw)
i [−zth,t+i

λw
1− λw

w
λw

1−λw
−1

t

(
w̄t
w̄t+i

Xt,i

) λw
1−λw

Ht+i

+
1

1− λw
 z+,t+iw

1
1−λw

−1
t w̄tXt,i

(
w̄t
w̄t+i

Xt,i

) λw
1−λw

Ht+i],

where

zth,t+i ≡ zh

 

ζt+i,

(
wtw̄t
w̄t+i

Xt,i

) λw
1−λw

Ht+i

!

.

Here, ht2,t+i denotes the marginal utility of labor in period t + i, for a monopolist who last

reoptimized the wage rate in period t. Dividing and rearranging,

Et

1X

i=0

(βξw)
i

(
w̄t
w̄t+i

Xt,i

) λw
1−λw

Ht+i[ z+,t+iwtw̄tXt,i − λwz
t
h,t+i] = 0. (E.5)
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The first object in square brackets is the marginal utility real wage in period t + i and the

second is a markup, λw, over the marginal utility cost of working. According to (E.5) the

monopolist attempts to set a weighted average of the term in square brackets to zero. The

structure of ztz,t+i makes it di¢cult to express (E.5) in recursive form. This is because we

have not found a way to express zth,t+1 = Ztz
t+1
h,t+1, for some variable, Zt. The expression,

(E.5), is recursive after linearizing it about steady state. Thus,

ẑth,t+i ≡
dzh

(
ζt+i,

(
wtw̄t
w̄t+i

Xt,i

) λw
1−λw

Ht+i

)

zh

(
ζ, w

λw
1−λwH

) ,

where a variable without a time subscript denotes non-stochastic steady state. Expanding

this expression:

ẑth,t+i = σ& ζ̂t+i + αh,1

(
ŵt + b̄wt − b̄wt+i + X̂t,i

)
+ σzĤt+i,

where,

σ& ≡
zhζζ

zh
, σz ≡

zhhH

zh
, αh,1 ≡

λw
1− λw

σz.

Also,

X̂t,i = b̃πw,t+i + · · ·+ b̃πw,t+1 − π̂t+i − π̂t+i−1 − · · ·− π̂t+1 − µ̂z+,t+i − · · ·− µ̂z+,t+1.

However, note:
b̃πw,t+1 = κwπ̂t.

Then,

X̂t,i = −∆κw π̂t+i −∆κw π̂t+i−1 − · · ·−∆κw π̂t+1 − µ̂z+,t+i − · · ·− µ̂z+,t+1,

where

∆κw ≡ 1− κwL,

where L denotes the lag operator.

Write out (E.5) in detail:

Ht[ z+,twtw̄t − λwz
t
h,t]

+βξw

(
w̄t
w̄t+1

Xt,1

) λw
1−λw

Ht+1[ z+,t+1wtw̄tXt,1 − λwz
t
h,t+1]

+ (βξw)
2

(
w̄t
w̄t+2

Xt,2

) λw
1−λw

Ht+2[ z+,t+2wtw̄tXt,2 − λwz
t
h,t+2] + ... = 0
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In expanding this expression, we can simply set the terms outside the square brackets to

their steady state values. The reason is that the term inside the brackets are equal to zero

in steady state. Thus, the expansion of the previous expression about steady state:

H[d
(
 z+,twtw̄t

)
− λwd

(
zth,t
)
]

+βξwH[d
(
 z+,t+1wtw̄tXt,1

)
− λwd

(
zth,t+1

)
]

+ (βξw)
2H[d

(
 z+,t+2wtw̄tXt,2

)
− λwd

(
zth,t+2

)
] + ... = 0

or,

H[ z+w̄
(
 ̂z+,t + ŵt + b̄wt

)
− λwzhẑ

t
h,t]

+βξwH[ z+w̄
(
 ̂z+,t+1 + ŵt + b̄wt + X̂t,1

)
− λwzhẑ

t
h,t+1]

+ (βξw)
2H[ z+w̄

(
 ̂z+,t+2 + ŵt + b̄wt + X̂t,2

)
− λwzhẑ

t
h,t+2] + ... = 0

Note that in steady state,  z+w̄ = λwzh, so that, after multiplying by 1/ (H z+w̄) , we

obtain:

 ̂z+,t + ŵt + b̄wt − ẑ
t
h,t

+βξw[ ̂z+,t+1 + ŵt + b̄wt + X̂t,1 − ẑth,t+1]

+ (βξw)
2 [ ̂z+,t+2 + ŵt + b̄wt + X̂t,2 − ẑth,t+2] + ... = 0

Substitute out for ẑth,t+i and X̂t,i :

0 =  ̂z+,t + ŵt + b̄wt −
h
σ& ζ̂t + αh,1ŵt + σzĤt

i

+βξw[ ̂z+,t+1 + ŵt + b̄wt −
(
∆κw π̂t+1 + µ̂z+,t+1

)

−
(
σ& ζ̂t+1 + αh,1

(
ŵt + b̄wt − b̄wt+1 −

(
∆κw π̂t+1 + µ̂z+,t+1

))
+ σzĤt+1

)
]

+ (βξw)
2 [ ̂z+,t+2 + ŵt + b̄wt −

(
∆κw π̂t+2 + µ̂z+,t+2

)
−
(
∆κw π̂t+1 + µ̂z+,t+1

)

−

 

σ& ζ̂t+2 + αh,1

 
ŵt + b̄wt − b̄wt+2

−
(
∆κw π̂t+2 + µ̂z+,t+2

)
−
(
∆κw π̂t+1 + µ̂z+,t+1

)

!

+ σzĤt+2

!

] + ...
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Collecting terms:

0 =

1X

j=0

(βξw)
j
h
 ̂z+,t+j −

(
σ& ζ̂t+j + σzĤt+j

)i
+
1− αh,1
1− βξw

ŵt

+
1− αh,1βξw
1− βξw

b̄wt + αh,1

1X

j=1

(βξw)
j b̄wt+j

− (1− αh,1) βξw
[(
∆κw π̂t+1 + µ̂z+,t+1

)]

− (1− αh,1) (βξw)
2 [(∆κw π̂t+2 + µ̂z+,t+2

)
+
(
∆κw π̂t+1 + µ̂z+,t+1

)]

−...

or,

0 =
1X

j=0

(βξw)
j
h
 ̂z+,t+j −

(
σ& ζ̂t+j + σzĤt+j

)i
+
1− αh,1
1− βξw

ŵt

+
1− αh,1βξw
1− βξw

b̄wt +
1X

j=1

(βξw)
j

[
αh,1 b̄wt+j −

1− αh,1
1− βξw

(
∆κw π̂t+j + µ̂z+,t+j

)]
.

Note

St = Xt + βξwXt+1 + (βξw)
2Xt+2 + ...

= Xt + βξw

St+1z }| {
[Xt+1 + βξwXt+2 + ...],

so that the log-linearized first order condition can be written:

0 = F,t +
1− αh,1
1− βξw

ŵt +
1− αh,1βξw
1− βξw

b̄w +Gt, (E.6)

where

Ft =
1X

j=0

(βξw)
j
h
 ̂z+,t+j −

(
σ& ζ̂t+j + σzĤt+j

)i

=  ̂z+,t −
(
σ& ζ̂t + σzĤt

)
+ βξwFt+1

Gt =

1X

j=1

(βξw)
j

[
αh,1 b̄wt+j −

1− αh,1
1− βξw

(
∆κw π̂t+j + µ̂z+,t+j

)]

= βξwαh,1 b̄wt+1 −
(1− αh,1) βξw
1− βξw

(
∆κw π̂t+1 + µ̂z+,t+1

)
+ βξwGt+1

Note:
(
1− βξwL

−1)Ft ≡ Ft − βξwFt+1 =  ̂z+,t −
(
σ& ζ̂t + σzĤt

)
(E.7)

(
1− βξwL

−1)Gt ≡ Gt − βξwGt+1 = βξwαh,1 b̄wt+1 −
(1− αh,1) βξw
1− βξw

(
∆κw π̂t+1 + µ̂z+,t+1

)
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We now obtain a second restriction on ŵt using the relation between the aggregate wage

rate and the wage rates of individual households:

Wt =

[
(1− ξw)

(
W̃t

) 1
1−λw

+ ξw (π̃w,tWt−1)
1

1−λw

]1−λw
.

Dividing both sides by Wt :

1 = (1− ξw) (wt)
1

1−λw + ξw

(
π̃w,tWt−1

Wt

) 1
1−λw

.

Note,

πw,t ≡
Wt

Wt−1
=

w̄tz
+
t Pt

w̄t−1z
+
t−1Pt−1

=
w̄tµz+,tπt

w̄t−1
,

so that

1 = (1− ξw) (wt)
1

1−λw + ξw

(
w̄t−1π̃w,t
w̄tµz+,tπt

) 1
1−λw

.

Di§erentiate and make use of w = 1, π̃w = µz+π :

0 = (1− ξw)
1

1− λw
ŵt + ξw

1

1− λw

h
b̄wt−1 + b̃πw,t − b̄wt − µ̂z+,t − π̂t

i
,

or,

ŵt = −
ξw

1− ξw

[
b̄wt−1 − b̄wt − µ̂z+,t −∆κw π̂t

]
.

Use this expression to substitute out for ŵt in (E.6):

1− αh,1
1− βξw

ξw
1− ξw

[
b̄wt−1 − b̄wt − µ̂z+,t −∆κw π̂t

]
= Ft +

1− βξwαh,1
1− βξw

b̄wt +Gt.

Multiply by (1− βξwL
−1) and use (E.7):

1− αh,1
1− βξw

ξw
1− ξw

(
1− βξwL

−1) [b̄wt−1 − b̄wt − µ̂z+,t −∆κw π̂t
]

=  ̂z+,t −
(
σ& ζ̂t + σzĤt

)
+
(
1− βξwL

−1) 1− βξwαh,1
1− βξw

b̄wt

+βξwαh,1 b̄wt+1 −
(1− αh,1) βξw
1− βξw

(
∆κw π̂t+1 + µ̂z+,t+1

)
,

or,

1− αh,1
1− βξw

ξw
1− ξw

"
b̄wt−1 − βξw b̄wt − b̄wt + βξw b̄wt+1 − µ̂z+,t
+βξwµ̂z+,t+1 −∆κw π̂t + βξw∆κw π̂t+1

#

=  ̂z+,t −
(
σ& ζ̂t + σzĤt

)
+
1− βξwαh,1
1− βξw

[
b̄wt − βξw b̄wt+1

]

+βξwαh,1 b̄wt+1 −
(1− αh,1) βξw
1− βξw

(
∆κw π̂t+1 + µ̂z+,t+1

)
.
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Note that the wage does not simply enter via nominal wage inflation. To see this, note

b̄wt − b̄wt−1 = π̂w,t − µ̂z+,t − π̂t,

where π̂w,t denotes nominal wage inflation. But, it is not simply b̄wt− b̄wt−1 that enters in this
expression. That is, if we tried to express the above expression in terms of nominal wage

inflation, we would simply add another variable to it, π̂w,t, without subtracting any, such as

the real wage, b̄wt. Collecting terms:

0 = Et[η0 b̄wt−1 + η1 b̄wt + η2 b̄wt+1 + η3π̂t−1 + η4π̂t + η5π̂t+1 + η6µ̂z+,t + η7µ̂z+,t+1 (E.8)

+η8 ̂z+,t + η9Ĥt + η10ζ̂t],

where

η0 =
1− αh,1
1− βξw

ξw
1− ξw

, η1 = −η0 (1 + βξw)−
(1− βξwαh,1)

1− βξw
,

η2 = βξw

(
η0 +

(1− βξwαh,1)

1− βξw
− αh,1

)
, η3 = η0κw,

η4 = −η0 (1 + κwβξw)−
(1− αh,1) βξw
1− βξw

κw,

η5 = η0βξw +
(1− αh,1) βξw
1− βξw

,

η6 = −η0, η7 = η5, η8 = −1, η9 = σz, η10 = σ& .

Note that (E.8) is the same for the standard model and for our model with involuntary

unemployment. The di§erence between the two models has only to do with the construction

of σ& and σz.

The wage equation can be thought of, for computational purposes, as a nonlinear equa-

tion, if we treat
b̄wt =

w̄t − w̄
w̄

,

and the other hatted variables in the same way.

E.3. Other Equilibrium Conditions

E.3.1. Firms

We let st denote the firm’s marginal cost, divided by the price of the homogeneous good.

The standard formula, expressing this as a function of the factor inputs, is as follows:

st =

(
rkt Pt
α

)α (
WtR

f
t

1−α

)1−α

Ptz
1−α
t

.
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When expressed in terms of scaled variables, this reduces to:

st =

(
r̄kt
α

)α 
w̄tR

f
t

1− α

!1−α
. (E.9)

Productive e¢ciency dictates that st is also equal to the ratio of the real cost of labor to the

marginal product of labor:

st =

(
µΨ,t

)α
w̄tR

f
t

(1− α)
(

ki,t
µz+,t

/Hi,t

)α . (E.10)

The only real decision taken by intermediate good firms is to optimize price when it is

selected to do so under the Calvo frictions. According The first order necessary conditions

associated with price optimization are, after scaling:58

Et

"

 z+,tyt +

(
π̃f,t+1
πt+1

) 1
1−λf

βξpF
f
t+1 − F

f
t

#

= 0 (E.11)

Et

2

4λf z+,tytst + βξp

(
π̃f,t+1
πt+1

) λf
1−λf

Kf
t+1 −K

f
t

3

5 = 0, (E.12)

p̊t =

2

66
4
(
1− ξp

)
0

B
@
1− ξp

(
π̃f,t
πt

) 1
1−λf

1− ξp

1

C
A

λf

+ ξp

(
π̃f,t
πt
p̊t−1

) λf
1−λf

3

77
5

1−λf
λf

, (E.13)

2

6
4
1− ξp

(
π̃f,t
πt

) 1
1−λf

1− ξp

3

7
5

(1−λf)

=
Kf
t

F ft
, (E.14)

π̃f,t ≡ (πt−1)
κd (π)1−κd . (E.15)

In terms of scaled variables, the law of motion for the capital stock is as follows:

k̄t+1 =
1− δ

µz+,tµΨ,t
k̄t +Υt

(
1− S̃

(
µz+,tµΨ,tit

it−1

))
it. (E.16)

The aggregate production relation is:

yt = (p̊t)
λf

λf−1

[
ϵt

(
1

µΨ,t

1

µz+,t
k̄tut

)α
H1−α
t − φ

]
.

58When we linearize about the steady state and set {d = 0, we obtain,

π̂t− b̄πt =
β

1 + κdβ
Et
(
π̂t+1 − b̄πt+1

)
+

κd
1 + κdβ

(
π̂t−1 − b̄πt

)
−
κdβ (1− ρπ)
1 + κdβ

b̄πt+
1

1 + κdβ

(1− βξd) (1− ξd)
ξd

cmct,

where a hat indicates log-deviation from steady state.
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Finally, the resource constraint is:

yt = gt + ct + it + a (ut)
k̄t

µ ,tµz+,t
.

E.3.2. Family

We now derive the equilibrium conditions associated with the household, apart from the

wage condition, which was derived in a previous subsection. The Lagrangian representation

of the household’s problem is:

Ej0

1X

t=0

βt{[ln (Ct − bCt−1)− z (ht,j, ζt)]

υt

"
Wt,jht,j +X

k
t K̄t +

(
Rt−1 − τR (Rt−1 − 1)

)
Bt

+at,j − Pt
(
Ct +

1
Ψt
It

)
−Bt+1 − PtPk0,t∆t

#

+!t

[
∆t + (1− δ) K̄t +

(
1− S̃

(
It
It−1

))
It − K̄t+1

]
}

The first order condition with respect to Ct is:

1

Ct − bCt−1
− Et

bβ

Ct+1 − bCt
= υtPt,

or, after expressing this in scaled terms and multiplying by z+t :

 z+,t =
1

ct − b ct−1µz+,t

− βbEt
1

ct+1µz+,t+1 − bct
. (E.17)

The first order condition with respect to ∆t is, after rearranging:

PtPk0,t =
!t
υt
. (E.18)

The first order condition with respect to It is:

!t

[
1− S̃

(
It
It−1

)
− S̃ 0

(
It
It−1

)
It
It−1

]
+ Etβ!t+1S̃

0
(
It+1
It

)(
It+1
It

)2
=
Ptυt
Ψt

.

Making use of (E.18), multiplying by Ψtz+t , rearranging and using the scaled variables,

 z+,tpk0,t

[
1− S̃

(
µz+,tµΨ,tit

it−1

)
− S̃ 0

(
µz+,tµΨ,tit

it−1

)
µz+,tµΨ,tit

it−1

]
(E.19)

+β z+,t+1pk0,t+1S̃
0
(
µz+,t+1µΨ,t+1it+1

it

)(
it+1
it

)2
µz+,t+1µΨ,t+1 =  z+,t,

Optimality of the choice of K̄t+1 implies the following first order condition:

!t = βEtυt+1X
k
t+1 + βEt!t+1 (1− δ) = βEtυt+1

[
Xk
t+1 + Pt+1Pk0,t+1 (1− δ)

]
,
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using (E.18). Using (E.18) again,

υt = Etβυt+1

[
Xk
t+1 + Pt+1Pk0,t+1 (1− δ)

PtPk0,t

]
= Etβυt+1R

k
t+1, (E.20)

where Rkt+1 denotes the rate of return on capital:

Rkt+1 ≡
Xk
t+1 + Pt+1Pk0,t+1 (1− δ)

PtPk0,t

Multiply (E.20) by Ptz+t and express the results in scaled terms:

 z+,t = βEt z+,t+1
Rkt+1

πt+1µz+,t+1
. (E.21)

Expressing the rate of return on capital, (4.13), in terms of scaled variables:

Rkt+1 =
πt+1
µΨ,t+1

ut+1r̄
k
t+1 − a(ut+1) + (1− δ)pk0,t+1

pk0,t
. (E.22)

The first order condition associated with capital utilization is:

Ψtr
k
t = a

0 (ut) ,

or, in scaled terms,

r̄kt = a
0 (ut) . (E.23)

The first order condition with respect to Bt+1 is:

υt = βυt+1Rt.

Multiply by z+t Pt :

 z+,t = βEt
 z+,t+1

µz+,t+1πt+1
Rt. (E.24)

E.4. Steady State

We describe two strategies for computing the steady state. In each case, the strategy is

applied to our model with involuntary unemployment, and we indicate what changes are

required for the standard model. The first steady state strategy takes all the model parame-

ters as given and computes the endogenous variables. The second imposes values for several

endogenous variables and solves for an equal number of parameters.
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E.4.1. First Algorithm

Consider the equilibrium conditions associated with price setting. In steady state, these

reduce to (we have used that π̃f = π using (??)):

F f =
 z+y

1− βξp

Kf =
λf z+ys

1− βξp
p̊ = 1

Kf
t

F ft
= 1

These equations imply

(1)s =
1

λf
.

Thus,

(2)s =

(
r̄k

α

)α(
w̄Rf

1− α

)1−α
=
1

λf
! w̄ =

(1− α)

Rf

[
1

λf

( α
r̄k

)α] 1
1−α

,

(3)s =
(µΨ)

α w̄Rf

ϵ (1− α)
(

k̄
µz+
/H
)α =

1

λf
,!

k̄

H
= µz+

[
λf (µΨ)

α w̄Rf

ϵ (1− α)

] 1
α

where

(4)Rf = νfR + 1− νf

The equilibrium conditions associated with wage setting is:

(5)w̄ = λw
zh
 z+

,

which is the usual wage markup equation. Also,

(6)h = H.

The consumption-compensated elasticity of labor supply is

(7)σz =
zhhh

zh
.

This reduces to σL in the case of the standard model, and is derived above in the case of the

model with involuntary unemployment.

Also,

(8)

[
1−

1− δ

µz+µΨ

]
k̄ = Υi,
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and

(9) z+ =
1

c

µz+ − βb

µz+ − b
,

pk0 = 1

Consider the utilization adjustment cost function. We specify that as follows, with σb =

r̄k :

a(u) = 0.5σbσau
2 + σb (1− σa) u+ σb ((σa/2)− 1)

a(1) = σbσa + σb (1− σa)− σb

Then, a0 (u) = r̄k implies

u = 1, a (1) = 0.

We use the latter two results in what follows. The household intertemporal Euler equation

for capital implies:

(10)1 = β
Rk

πµz+
,

with

(11)Rk =
π

µΨ

[
r̄k + 1− δ

]
.

The intertemporal Euler equation for nominal bonds:

(12)1 =
βR

µz+π
.

The production function and resource constraint:

(13)y = ϵ

(
1

µΨ

1

µz+
k̄

)α
H1−α − φ,

(14)y = g + c+ i

The 17 variables whose steady state values are to be determined are:

y, c, i, R, h,H, k̄, r̄k, Rk, w̄, z+ , s, R
f , u, p̄,m,σz.

Here is a strategy for solving these equations. Equation (1) produces s; R from (12); Rf

from (4); Rk from (10); r̄k from (11); w̄ from (2); k̄/H from (3).

The remaining variables can be found using a one dimensional search. Fix a value for h.

By (6), we have H; from k̄/H we have k̄; from (13) we have y; from (8) we have i; from (14)

and

ηg =
g

y
,
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we have c; from (9) we have  z+ ; in the case of the model with involuntary unemployment,

compute m from the steady state version of (2.10):

(15)h = mη + a2&σLm
σL+1;

compute σz using (7) or σz = σL in the case of the standard model; we are now in a position

to evaluate (5):

f (h) = w̄ − λw
zh
 z+

.

Adjust h until f (h) = 0.

In the case of our model with involuntary unemployment, we proceed as follows. Compute

u from

(16)u =
m− h
m

.

Let p̄ denote the steady state probability that the marginal household with l = 0 finds a job.

According to (??):
(17) p̄ = η + &a2 (1 + σL)m

σL .

This algorithm solves for 17 endogenous variables using 17 equations.

In the case of the standard model, m solves the steady state version of (4.22):

 z+w̄ = & (m)σL ,

and then the unemployment rate is computed using m and h.

E.4.2. A Second Algorithm

We find it convenient to shift three endogenous labor market variables to the list of exogenous

variables:

u, m, p̄, σz.

Corresponding to this, we shift four parameters to the list of endogenous variables:

F, &, a, η.

Thus, we must solve for the following 17 variables:

y, c, i, R, h,H, k̄, r̄k, Rk, w̄, z+ , s, R
f , F, &, a, η.

We compute the steady state as follows. As before, equation (1) produces s; R from (12);

Rf from (4); Rk from (10); r̄k from (11); w̄ from (2); k̄/H from (3). Compute h from (16);

H is found from (6); k̄ from k̄/H; y from (13); i from (8); c from (14) and

ηg =
g

y
;
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 z+ from (9).

Equations (5), (7), (15), and (17) remain to be solved for F, &, a, η. Fix values of F and

a. We compute η as follows. Rewrite (15):

mσL+1 =
h−mη
a2&σL

.

Multiply both sides of (17) by m and substitute out for mσL+1 from the previous expression:

σL
1 + σL

(
p̄+

η

σL

)
m = h

Substitute this into (16):

u =
m− h
m

= 1−
σL

1 + σL

(
p̄+

η

σL

)
=
1 + σL (1− p̄)− η

1 + σL
,

or,

η = 1 + σL (1− p̄)− (1 + σL) u,

so that we now have η (this must be non-negative). Rewriting (15), we have & :

(150) & =
h−mη

a2mσL+1σL
.

Next, adjust F and a so that (5) and (7) are satisfied.

E.4.3. Steady State Replacement Ratio

Here, we compute the steady state consumption of employed and non-employed households.

By the analog of (2.8), the incentive constraint for the jth family is:

cwt,j = bCt−1 +
(
cnwt,j − bCt−1

)
eF+ζt(1+σL)m

σL
t,j .

The jth family’s resource constraint is:

ht,jc
w
t,j + (1− ht,j) c

nw
t,j = Ct.

Substituting out for cwt,j from the incentive constraint, we obtain:

bCt−1 +
(
cnwt,j − bCt−1

)
eF+ζt(1+σL)m

σL
t,j +

(1− ht,j)
ht,j

cnwt,j =
Ct
ht,j
.

Rearrange,

cnwt,j =
Ct +

(
eF+ζt(1+σL)m

σL
t,j − 1

)
ht,jbCt−1

ht,j

(
eF+ζt(1+σL)m

σL
t,j − 1

)
+ 1

.
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Scaling,

c̃nwt,j =
ct +

(
eF+ζt(1+σL)m

σL
t,j − 1

)
ht,j

b
µz+
ct−1

ht,j

(
eF+ζt(1+σL)m

σL
t,j − 1

)
+ 1

.

In steady state:

c̃nw = c
1 +

(
eF+ζ(1+σL)m

σL − 1
)
h b
µz+

h (eF+ζ(1+σL)m
σL − 1) + 1

,

and

c̃w =
b

µz+
c+

(
cnw −

b

µz+
c

)
eF+ζ(1+σL)m

σL

F. Aggregate Hours Worked

Given our linear approximation, and the assumptions that imply that steady state is undis-

torted by wage frictions, we have

ĥt = Ĥt.

Although this is a well known result (see, e.g., Yun (1996)), we derive it here for completeness.

Recall,

ht ≡
Z 1

0

hj,tdj.

Invert the demand for labor, (4.5), to obtain an expression in terms of hj,t. Substitute this

into the expression for ht to obtain:

ht = Ht

Z 1

0

ẘ
λw

1−λw
j,t dj, (F.1)

where

ẘj,t ≡
Wj,t

Wt

.

Here,Wt denotes the aggregate wage rate, which one obtains by substituting (4.4) into (4.5):

Wt =

[Z 1

0

W
1

1−λw
j,t dj

]1−λw
.

Because all families are identical in steady state (see the discussion after (4.9)), ẘj = 1 for

all j. Totally di§erentiating (F.1),

ĥt = Ĥt +

Z 1

0

b̊wj,tdj.
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Thus, to determine the percent deviation of aggregate employment from steady state, we

require the integral of the percent deviations of type j wages from the aggregate wage, over

all j. We now show that this integral is, to first order, equal to zero.

Express the integral in (F.1) as follows:

ht = ẘ
λw

1−λw
t Ht,

say, where

ẘt ≡
[Z 1

0

ẘ
λw

1−λw
j,t dj

] 1−λw
λw

. (F.2)

Pursuing logic that is standard in the Calvo price/wage setting literature we obtain:

Wt =

[
(1− ξw)

(
W̃t

) 1
1−λw

+ ξw (π̃w,tWt−1)
1

1−λw

]1−λw
(F.3)

ẘt =

"

(1− ξw)w
λw

1−λw
t + ξw

(
π̃w,t
πw,t

ẘt−1

) λw
1−λw

# 1−λw
λw

, (F.4)

where:

wt ≡
W̃t

Wt

, πw,t ≡
Wt

Wt−1
,

and W̃t denotes the wage set by the 1− ξw families that have the opportunity to reoptimize
in the current period. Because all families are identical in steady state

w = ẘ =
π̃w
πw

= 1, (F.5)

where π̃w,t is defined in (4.9) and πw,t denotes wage inflation:

πw,t ≡
Wt

Wt−1
.

Dividing (F.3) by Wt and solving,

wt =

2

6
4
1− ξw

(
π̃w,t
πw,t

) 1
1−λw

1− ξw

3

7
5

1−λw

. (F.6)

Di§erentiating (F.4) and (F.6) in steady state:

b̊wt = (1− ξw) ŵt + ξw

(
b̃πw,t − π̂w,t + b̊wt−1

)
(F.7)

ŵt = −
ξw

1− ξw

(
b̃πw,t − π̂w,t

)
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Using the latter to substitute out for ŵt in (F.7):

b̊wt = ξw
b̊wt−1.

Thus, to first order the wage distortions evolve according to a stable first order di§erence

equation, unperturbed by shocks. For this reason, we set

b̊wt = 0, (F.8)

for all t.

Totally di§erentiating (F.2) and using (F.5), (F.8):

Z 1

0

b̊wj,tdj = 0.

That is, to first order, the integral of the percent deviations of individual wages from the

aggregate is zero.

G. Technical Appendix: Tables

Table A1: Structural Parameters of Small Model Held Fixed

Parameter Value Description

β 1.03−.25 Discount factor

gA 1.0047 Technology growth

ξp 0.75 Price stickiness

λf 1.2 Price markup

ρR 0.8 Taylor rule: interest smoothing

rπ 1.5 Taylor rule: inflation

ry 0.2 Taylor rule: output gap

γ 0.001 Di§usion speed of technology into gov. consumption

ηg 0.2 Government consumption share on GDP
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Table A2: The Impact of Imperfect Information in the Small Model

Involuntary

Unemp. Model
Full Information Model Standard Model

Variable
(Imperfect

Information)

Fixed

Structural

Paramsb

Obser-

vational

Equivalentc

Obser-

vational

Equivalentd
Description

Steady State Properties

m 0.67 0.69 0.67 0.63 Labor force

h 0.63 0.68 0.63 0.63 Employment

u 0.056 0.015 0.056 n.a. Unemployment rate

p̄ 0.95 0.99 0.95 n.a. Max p(e)

1/σz 2.0 0.80 2.0 2.0 Labor supply elast.

1/κOkun 2.0 1.64 2.0 n.a. Okun’s law coe¢cient

cnw/cw 0.18 1.0 1.0 1.0 Replacement ratio

0.189 n.a. n.a. Price (% of C) of info.a

Structural Parameterse

a 0.53 0.53 0.74 n.a. Slope, p(e)

η 0.86 0.86 0.86 n.a. Intercept, p(e)

& 4.64 4.64 2.45 1.67 Slope, labor disutility

F 1.39 1.39 1.83 n.a. Intercept, labor dis.util.

σL 13.31 13.31 13.31 0.5 Power, labor disutility
a Percent increase in consumption in steady state of involuntary unemployment model that makes

steady state utility in that model

equal to steady state utility of model with full information.

b Full information model with same structural parameters as involuntary unemployment model.

c Full information model with parameter values in Table A1, plus parameter values in bottom panel

of this table, chosen so that full information model steady state properties

in the top panel (except cnw/cw) coincide with those in involuntary unemployment model.

d Standard model with parameter values in Table A1, plus parameter values for & and

σL so that h and 1/σz coincide with those of the involuntary unemployment model.
e Model structural parameter values are those listed in Table A1 plus the ones indicated

in the bottom panel of this table.
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