
LEARNING FROM BIG DATA

Mattias Villani

Division of Statistics and Machine Learning
Department of Computer and Information Science

Linköping University

MATTIAS VILLANI (STIMA, LIU) LEARNING FROM BIG DATA 1 / 17



WHAT IS BIG DATA?
I Volume - the scale of the data.

I Financial transactions
I Supermarket scanners

I Velocity - continously streaming data.
I Stock trades
I News and social media

I Variety - highly varying data structures.
I Wall street journal articles
I Network data

I Veracity - varying data quality.
I Tweets
I Online surveys

I Volatility - constantly changing patterns.
I Trade data
I Telecom data
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CENTRAL BANKS CAN USE BIG DATA TO ...

I estimate fine grained economic models more accurately.

I estimate models for networks and flow in network.

I construct fast economic indicies:
I Scanner data for inflation
I Job adds and text from social media for fine grained unemployment
I Streaming order data for economic activity

I improve quality and transparency in decision making.
Summarizing news articles. Visualization.

I improve central banks’ communication. Is the message getting
through? Sentiments. Credibility. Expectations.
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SOME RECENT BIG DATA PAPER IN ECONOMICS

I Varian (2014). Big data: new tricks for econometrics. Journal of
Economic Perspectives.

I Heston and Sinha (2014). News versus Sentiment: Comparing Textual
Processing Approaches for Predicting Stock Returns.

I Bholat et al. (2015). Handbook in text mining for central banks.
Bank of England.

I Bajari et al. (2015). Machine Learning Methods for Demand
Estimation. AER.
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COMPUTATIONALLY BIG DATA

I Data are computationally big if they are used in a context where
computations are a serious impediment to analysis.

I Even rather small data sets can be computationally demanding when
the model is very complex and time-consuming.

I Computational dilemma: model complexity increases with large data:

I large data have the potential to reveal poor fit of simple models

I with large data one can estimate more complex and more detailed
models.

I with many observations we can estimate the effect from more
(explanatory) variables.

I The big question in statistics and machine learning: how to estimate
complex models on large data?
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LARGE DATA REVEALS TOO SIMPLISTIC MODELS
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Giordani, Jacobson, Villani and von Schedvin. Journal of Financial and Quantitative Analysis, 2014.
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BAYESIAN LEARNING

I Bayesian methods combine data information with other sources
I ... avoid overfitting by imposing smoothness where data are sparse
I ... connect nicely to prediction and decision making
I ... natural handling of model uncertainty
I ... are beautiful
I ... are time-consuming. MCMC.
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DISTRIBUTED LEARNING FOR BIG DATA
I Big data = data that does not fit on a single machine’s RAM.
I Distributed computations:

I Matlab: distributed arrays.
I Python: distarray.
I R: DistributedR.

I Parallel distributed MCMC algorithms
I Distribute data across several machines.
I Learn on each machine separately. MapReduce
I Combine the inferences from each machine in a correct way.
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DISTRIBUTED MCMC
ASYMPTOTICALLY EXACT, EMBARRASSINGLY PARALLEL MCMC 11
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Figure 1. Bayesian logistic regression posterior ovals. We show the posterior
90% probability mass ovals for the first 2-dimensional marginal of the posterior,
the M subposteriors, the subposterior density product (via the parametric

procedure), and the subposterior average (via the subpostAvg procedure). We
show M=10 subsets (left) and M=20 subsets (right). The subposterior density
product generates samples that are consistent with the true posterior, while
the subpostAvg produces biased results, which grow in error as M increases.

the posterior error vs time. A regular full-data chain takes much longer to converge to low error
compared with our combination methods, and simple averaging and pooling of subposterior
samples gives biased solutions.

We next compare our combination methods with multiple independent “duplicate” chains
each run on the full dataset. Even though our methods only require a fraction of the data
storage on each machine, we are still able to achieve a significant speed-up over the full-data
chains. This is primarily because the duplicate chains cannot parallelize burn-in (i.e. each chain
must still take some n steps before generating reasonable samples, and the time taken to reach
these n steps does not decrease as more machines are added). However, in our method, each
subposterior sampler can take each step more quickly, effectively allowing us to decrease the
time needed for burn-in as we increase M . We show this empirically in Figure 2 (right), where
we plot the posterior error vs time, and compare with full duplicate chains as M is increased.

Using a Matlab implementation of our combination algorithms, all (batch) combination
procedures take under twenty seconds to complete on a 2.5GHz Intel Core i5 with 16GB
memory.

8.1.2. Real-world data. Here, we use the covtype (predicting forest cover types)8 dataset, contain-
ing 581,012 observations in 54 dimensions. A single chain of HMC running on this entire dataset
takes an average of 15.76 minutes per sample; hence, it is infeasible to generate groundtruth
samples for this dataset. Instead we show classification accuracy vs time. For a given set of
samples, we perform classification using a sample estimate of the posterior predictive distribution

8http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets

Asymptotically Exact, Embarrassingly Parallel MCMC by Neiswanger, Wang, and Xing, 2014.
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MULTI-CORE PARALLEL COMPUTING
I Multi-core parallel computing. Can be combined with distributed

computing.
I Available in all high-level languages:

I Matlab’s parallel computing toolbox. parfor etc.
I Python: multiprocessing module, joblib module etc
I R: Parallel library.

I Communication overheads can easily overwhelm gains from parallelism.

First, we want the sampler to reach convergence as fast as possible (burn-in) so we measure
the running time (rather than the number of iterations) for the samplers to converge. We
define convergence as having occurred when a sampler has reached within 1% of the sparse
LDA sampler’s maximum log-likelihood value. We choose this definition because the sequential
collapsed sampler is recognized to be the gold standard in terms of convergence behavior. Similar
approaches have been used previously to assess convergence performance in mixture models
Villani et al. (2009).

The second aspect is the total running time of the sampler, i.e. time to burn-in plus the
time for the sampler to explore the posterior distribution of the parameters. Ideally we want
both these parts to be done as fast and efficiently as possible. We initialize z at the same state
for each seed and run a total of 20 000 iterations.

Dataset Sampler Topics No. Cores Priors

NIPS, Enron Sparse LDA 20, 100 1 α = 0.1, β = 0.01
NIPS, Enron PC-LDA 20, 100 1,4,8,16,32,64 α = 0.1, β = 0.01
NIPS, Enron Sparse AD-LDA 20, 100 4,8,16,32,64 α = 0.1, β = 0.01

Table 4: Summary of the speedup experiments.

Real speedup (Sahni and Thanvantri, 1996) can be defined as:

RealSpeedup(I, P ) =
Time(I,Qb, 1)

Time(I,Qp, P )
, (6)

where Time(I,Qb, 1) is the time it takes to solve the task I using the best sequential program.
Qb on 1 core, and Time(I,Qp, P ) is the time it takes to solve task I using program Qp on
P processors. In our measurements, sparse LDA is the fastest sampler on one core for all
configurations, so we will take sparse LDA to be the “best sequential program” Qb and compare
it with the PC-LDA sampler and AD-LDA as Qp in our measurements for real speedup.
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Figure 7: Real speedup to reach convergence (left) and speedup measured in total running time
(right) of PC-LDA averaged over five seeds compared with the fastest implementation on one
core (Sparse AD-LDA).

Figure 7 shows that we obtain a reasonable speedup to convergence up to eight cores on
the Enron and NIPS datasets with 20 topics. The maximum speedup with respect to time to
convergence we get on 20 topics is roughly 2.5 times on the Enron dataset with eight cores and
roughly two times on the NIPS dataset with 16 cores. With relatively few topics compared to
the size of the dataset the cost of sampling Φ is more than offset by the gains from parallelism.

When we increase the number of topics from 20 to 100 on these datasets, we do not get any
speedup compared to sparse LDA on one core no matter how many cores we use. This is because

14

Magnusson, Jonsson, Villani and Broman (2015). Parallelizing LDA using Partially Collapsed Gibbs Sampling.
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TOPIC MODELS
I Probabilistic model for text. Popular for summarizing documents.
I Input: a collection of documents.
I Output: K topics - probability distributions over the vocabulary.
Topic proportions for each document.

78  communicationS of the acm   |  april 2012 |  vol.  55 |  no.  4

review articles

time. (See, for example, Figure 3 for 
topics found by analyzing the Yale Law 
Journal.) Topic modeling algorithms 
do not require any prior annotations or 
labeling of the documents—the topics 
emerge from the analysis of the origi-
nal texts. Topic modeling enables us 
to organize and summarize electronic 
archives at a scale that would be impos-
sible by human annotation.

latent Dirichlet allocation
We first describe the basic ideas behind 
latent Dirichlet allocation (LDA), which 
is the simplest topic model.8 The intu-
ition behind LDA is that documents 
exhibit multiple topics. For example, 
consider the article in Figure 1. This 
article, entitled “Seeking Life’s Bare 
(Genetic) Necessities,” is about using 
data analysis to determine the number 
of genes an organism needs to survive 
(in an evolutionary sense).

By hand, we have highlighted differ-
ent words that are used in the article. 
Words about data analysis, such as 
“computer” and “prediction,” are high-
lighted in blue; words about evolutionary 
biology, such as “life” and “organism,” 
are highlighted in pink; words about 
genetics, such as “sequenced” and 

“genes,” are highlighted in yellow. If we 
took the time to highlight every word in 
the article, you would see that this arti-
cle blends genetics, data analysis, and 
evolutionary biology in different pro-
portions. (We exclude words, such as 
“and” “but” or “if,” which contain little 
topical content.) Furthermore, know-
ing that this article blends those topics 
would help you situate it in a collection 
of scientific articles.

LDA is a statistical model of docu-
ment collections that tries to capture 
this intuition. It is most easily described 
by its generative process, the imaginary 
random process by which the model 
assumes the documents arose. (The 
interpretation of LDA as a probabilistic 
model is fleshed out later.)

We formally define a topic to be a 
distribution over a fixed vocabulary. For 
example, the genetics topic has words 
about genetics with high probability 
and the evolutionary biology topic has 
words about evolutionary biology with 
high probability. We assume that these 
topics are specified before any data 
has been generated.a Now for each 

a Technically, the model assumes that the top-
ics are generated first, before the documents.

document in the collection, we gener-
ate the words in a two-stage process.

 ˲ Randomly choose a distribution 
over topics.

 ˲ For each word in the document
a.  Randomly choose a topic from 

the distribution over topics in 
step #1.

b.  Randomly choose a word from the 
corresponding distribution over 
the vocabulary.

This statistical model reflects the 
intuition that documents exhibit mul-
tiple topics. Each document exhib-
its the topics in different proportion 
(step #1); each word in each docu-
ment is drawn from one of the topics 
(step #2b), where the selected topic is 
chosen from the per-document distri-
bution over topics (step #2a).b

In the example article, the distri-
bution over topics would place prob-
ability on genetics, data analysis, and 

b We should explain the mysterious name, “latent 
Dirichlet allocation.” The distribution that is 
used to draw the per-document topic distribu-
tions in step #1 (the cartoon histogram in Figure 
1) is called a Dirichlet distribution. In the genera-
tive process for LDA, the result of the Dirichlet 
is used to allocate the words of the document to 
different topics. Why latent? Keep reading.

figure 1. the intuitions behind latent Dirichlet allocation. We assume that some number of “topics,” which are distributions over words,  
exist for the whole collection (far left). each document is assumed to be generated as follows. first choose a distribution over the topics (the 
histogram at right); then, for each word, choose a topic assignment (the colored coins) and choose the word from the corresponding topic. 
the topics and topic assignments in this figure are illustrative—they are not fit from real data. See figure 2 for topics fit from data.
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Blei (2012). Probabilistic Topic Models. Communications of the ACM.
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GPU PARALLEL COMPUTING
I Graphics cards (GPU) for parallel computing on thousands of cores.
I Neuroimaging: brain activity time series in one million 3D pixels.

From Eklund, Dufort, Villani and LaConte (2014). Frontiers of Neuroinformatics.

I GPU-enabled functions in
I Matlab’s Parallel Computing Toolbox.
I PyCUDA in Python.
I gputools in R.

I Still lots of nitty-gritty low level things to get impressive performance:
Low-level CUDA or OpenCL + putting the data in the right place.
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TALL DATA

I Tall data = many observations, not many variables.
I Approximate Bayes: VB, EP, ABC, INLA ...
I Recent idea: efficient random subsampling of the data in

algorithms that eventually give the full data inference.
I Especially useful when likelihood is costly (e.g. optimizing agents).

MCMC FOR LARGE DATA PROBLEMS 18
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Figure 2. The left panel shows the Relative Inefficiency Factors (RIF) for
PMCMC(1) adaptive (yellow bar) and PMCMC(1) non adaptive (red bar) for
each parameter obtained with a random walk Metropolis proposal. The right
panel shows the corresponding Relative Effective Draws (RED).
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Figure 3. The left panel shows the Relative Inefficiency Factors (RIF) for
PMCMC(1) adaptive (yellow bar) and PMCMC(1) non adaptive (red bar) for
each parameter obtained with an independent Metropolis-Hastings proposal.
The right panel shows the corresponding Relative Effective Draws (RED).

Figure 4 illustrates that by implementing PMCMC with a random update of u, the sizeable

increase in RIF for the IMH sampler can be prevented. We note that the same applies for the

RWM proposal, but is much less pronounced because the loss in efficiency is already small

for ω = 1 (see Figure 2). Table 1 gives additional results of the algorithms. Furthermore,

Figure 5 shows the improvement in relative effective draws as a consequence of the reduced

inefficiency. We conclude that randomly updating u is very beneficial for the efficiency of

the algorithm.

Figure 6 shows that the marginal posterior obtained with some different values of ω are

very close to the true posterior obtained with MCMC. This accuracy is further confirmed in

Figure 7, which shows the upper bound of the fractional error in the likelihood approximation

as derived in Quiroz et al. (2015).

SPEEDING UP MCMC 23
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Figure 5. Marginal posterior distributions for MCMC (solid blue line) vs
PMCMC (dashed red line) using a RWM proposal.

algorithm used here is highly vectorized and the computational cost decreases rather slowly

with increased step sizes. Other numerical methods have a computational cost which is linear

in the tuning parameter, and for such problems our subsampling method with PPS-weights

based on a relaxed tuning parameter would be dramatically better than MCMC on the full

sample.

5. Conclusions and Future Research

We propose a new framework for speeding up MCMC on models with time-consuming

likelihood functions. The algorithms use efficient subsampling of the data and an estimator

of the likelihood in a PMCMC scheme that is shown to sample from a posterior which is

within O(m− 1
2 ) of the true posterior, where m is the subsample size. Moreover, the constant

of proportionality in the error bound of the likelihood is shown to be small and our empirical

From Quiroz, Villani and Kohn (2014). Speeding up MCMC by efficient subsampling.
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WIDE DATA

I Wide data = many variables, comparatively few observation.
I Variable selection. Stochastic Search Variable Selection (SSVS).
I Shrinkage (ridge regression, lasso, elastic net, horseshoe). Big VARs.

Model Uncertainty in Growth Regressions 9

Table I. Marginal evidence of importance
BMA Sala-i-Martin

Regressors Post.Prob. CDF(0)

⇒ 1 GDP level in 1960 1.000 1.000

→ 2 Fraction Confucian 0.995 1.000

⇒ 3 Life expectancy 0.946 0.999

→ 4 Equipment investment 0.942 1.000

→ 5 Sub-Saharan dummy 0.757 0.997

→ 6 Fraction Muslim 0.656 1.000

→ 7 Rule of law 0.516 1.000

→ 8 Number of Years open economy 0.502 1.000

→ 9 Degree of Capitalism 0.471 0.987

→ 10 Fraction Protestant 0.461 0.966

→ 11 Fraction GDP in mining 0.441 0.994

→ 12 Non-Equipment Investment 0.431 0.982

→ 13 Latin American dummy 0.190 0.998

⇒ 14 Primary School Enrollment, 1960 0.184 0.992

→ 15 Fraction Buddhist 0.167 0.964

16 Black Market Premium 0.157 0.825

→ 17 Fraction Catholic 0.110 0.963

→ 18 Civil Liberties 0.100 0.997

19 Fraction Hindu 0.097 0.654

→ 20 Primary exports, 1970 0.071 0.990

→ 21 Political Rights 0.069 0.998

→ 22 Exchange rate distortions 0.060 0.968

23 Age 0.058 0.903

→ 24 War dummy 0.052 0.984

25 Size labor force 0.047 0.835

26 Fraction speaking foreign language 0.047 0.831

27 Fraction of Pop. Speaking English 0.047 0.910

28 Ethnolinguistic fractionalization 0.035 0.643

→ 29 Spanish Colony dummy 0.034 0.938

→ 30 S.D. of black-market premium 0.031 0.993

31 French Colony dummy 0.031 0.702

→ 32 Absolute latitude 0.024 0.980

33 Ratio workers to population 0.024 0.766

34 Higher education enrollment 0.024 0.579

35 Population Growth 0.022 0.807

36 British Colony dummy 0.022 0.579

37 Outward Orientation 0.021 0.634

38 Fraction Jewish 0.019 0.747

→ 39 Revolutions and coups 0.017 0.995

40 Public Education Share 0.016 0.580

41 Area (Scale Effect) 0.016 0.532

it is widely accepted to be of theoretical and empirical importance and was one of the
few regressors that Levine and Renelt (1992) found to be robust. The importance of
Equipment investment was stressed in DeLong and Summers (1991). Whereas the in-
clusion of both variables receives strong support from BMA and Sala-i-Martin’s classical
analysis, the actual marginal inference on the regression coefficients is rather different,
as can be judged from Figure 1. The next row of plots corresponds to two variables
(Standard deviation of black market premium and Revolutions and coups) that are each
included in Sala-i-Martin’s analysis (with CDF(0) ≥ 0.993), yet receive very low pos-
terior probability of inclusion in our BMA analysis (3.1% and 1.7%, respectively). For
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WIDE DATA

I Many other models in the machine learning literature are of interest:
trees, random forest, support vector machines etc.VOL. VOL NO. ISSUE MACHINE LEARNING METHODS FOR DEMAND ESTIMATION 5

Table 1—Model Comparison: Prediction Error

Validation Out-of-Sample
RMSE Std. Err. RMSE Std. Err. Weight

Linear 1.169 0.022 1.193 0.020 6.62%
Stepwise 0.983 0.012 1.004 0.011 12.13%
Forward Stagewise 0.988 0.013 1.003 0.012 0.00%
Lasso 1.178 0.017 1.222 0.012 0.00%
Random Forest 0.943 0.017 0.965 0.015 65.56%
SVM 1.046 0.024 1.068 0.018 15.69%
Bagging 1.355 0.030 1.321 0.025 0.00%
Logit 1.190 0.020 1.234 0.018 0.00%
Combined 0.924 0.946 100.00%
# of Obs 226,952 376,980
Total Obs 1,510,563
% of Total 15.0% 25.0%

yet commonly used in economics, we think
that practitioners will find value in the flex-
ibility, ease-of-use, and scalability of these
methods to a wide variety of applied set-
tings.

One concern has been the relative paucity
of econometric theory for machine learn-
ing models. In related work (Bajari et al.,
2014), we provide asymptotic theory re-
sults for rates of convergence of the under-
lying machine learning models. We show
that while several of the machine learn-
ing models have non-standard asymptotics,
with slower-than-parametric rates of con-
vergence, the model formed by combin-
ing estimates retains standard asymptotic
properties. This simplifies the construction
of standard errors for both parameters and
predictions, making the methods surveyed
here even more accessible for the applied
practitioner.
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ONLINE LEARNING

I Streaming data. Scanners, internet text, trading of financial assets
etc

I How to learn as data come in sequentially? Fixed vs time-varying
parameters.

I State space models:

yt = f (xt) + εt

xt = g(xt−1) + h(zt) + νt

I Dynamic topic models.
I Kalman or particle filters.
I Dynamic variable selection.
I How to detect changes in the system online?
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CONCLUDING REMARKS

I Big traditional data (e.g. micro panels) are clearly useful for central
banks.

I Remains to be seen if more exotic data (text, networks, internet
searches etc) can play an important role in analysis and
communication.

I Big data will motivate more complex models. Big data + complex
models = computational challenges.

I Economists do not have enough competence for dealing with big data.
Computer scientists, statisticians, numerical mathematicians will be
needed in central banks.

I Economics is not machine learning: not only predictions matter. How
to fuse economic theory and big data?
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