Drivers of the Great Housing Boom-Bust: Credit Conditions, Beliefs, or Both?

Josue Cox and Sydney C. Ludvigson

New York University

Cox and Ludvigson

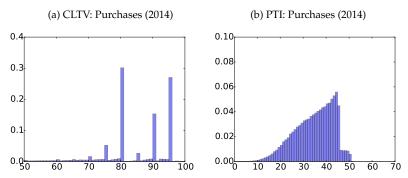
- "Great Housing Cycle"≈ 2000-2010, with a *boom* ≈ 2000-2006, a *bust* ≈ 2007-2010.
- Generated keen interest in origins of house price fluctuations.
- Two potential **driving forces** commonly cited: *credit conditions*, and *beliefs*.

- "Great Housing Cycle"≈ 2000-2010, with a *boom* ≈ 2000-2006, a *bust* ≈ 2007-2010.
- Generated keen interest in origins of house price fluctuations.
- Two potential **driving forces** commonly cited: *credit conditions*, and *beliefs*.
- Theoretical studies yet to reach consensus on the mechanism
 - Davis & Heathcote '05; Kahn '08; Kiyotaki et. al. '11; Piazessi Schneider '08; Iacoviello Pavan '13; Sommer et. al. '13; Landvoigt et. al., '15; Favilukis, et. al., '17; Greenwald '17; Kaplan et. al., '17.

- "Great Housing Cycle"≈ 2000-2010, with a *boom* ≈ 2000-2006, a *bust* ≈ 2007-2010.
- Generated keen interest in origins of house price fluctuations.
- Two potential **driving forces** commonly cited: *credit conditions*, and *beliefs*.
- Theoretical studies yet to reach consensus on the mechanism
 - Davis & Heathcote '05; Kahn '08; Kiyotaki et. al. '11; Piazessi Schneider '08; Iacoviello Pavan '13; Sommer et. al. '13; Landvoigt et. al., '15; Favilukis, et. al., '17; Greenwald '17; Kaplan et. al., '17.
- Points to need for **empirical evidence**.

• Even empirical researchers looking at similar data have reached divergent conclusions. Examples:

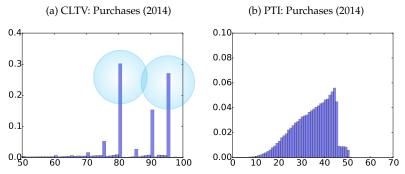
- Even empirical researchers looking at similar data have reached divergent conclusions. Examples:
- Mian & Sufi '09, '16 find boom caused by nascent extension of credit to *subprime/lower-income borrowers*, bust by subsequent reversal.
 - Often interpreted as consistent with *credit conditions view*.


- Even empirical researchers looking at similar data have reached divergent conclusions. Examples:
- Mian & Sufi '09, '16 find boom caused by nascent extension of credit to *subprime/lower-income borrowers*, bust by subsequent reversal.
 - Often interpreted as consistent with *credit conditions view*.
- Adelino, Schoar, Severino '16 find boom characterized by increase in mortgage originations to all borrowers, including *higher-income/prime*, bust by defaults by same borrowers.
 - Often interpreted as consistent with *beliefs view*.

- Even empirical researchers looking at similar data have reached divergent conclusions. Examples:
- Mian & Sufi '09, '16 find boom caused by nascent extension of credit to *subprime/lower-income borrowers*, bust by subsequent reversal.
 - Often interpreted as consistent with *credit conditions view*.
- Adelino, Schoar, Severino '16 find boom characterized by increase in mortgage originations to all borrowers, including *higher-income/prime*, bust by defaults by same borrowers.
 - Often interpreted as consistent with *beliefs view*.
- Often these views discussed as if they were **mutually exclusive** possibilities.

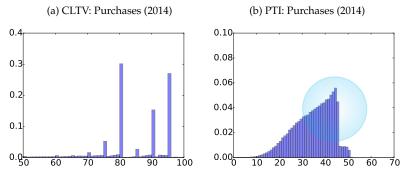
• Both could be at work in data.

- Both could be at work in data.
- Commonly believed that **higher income and prime** borrowers less constrained by credit conditions than **subprime** borrowers. But...


- Both could be at work in data.
- Commonly believed that higher income and prime borrowers less constrained by credit conditions than subprime borrowers. But...
- Greenwald '17: evidence vast majority of *prime borrowers* take out **largest mortgage possible** given their CLTV, PTI limits + other eligibility requirements...
- => Any homeowner who isn't **buying with cash** likely to be constrained, or nearly so.

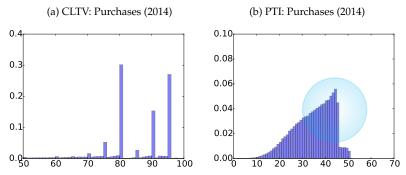
Distribution of combined LTV (CLTV) and PTI ratios on newly issued conventional fixed-rate mortgages securitized by Fannie Mae. Panel (a) presents CLTV, the ratio of total mortgage debt to the value of the house, summing over multiple mortgages against the same property. Panel (b) displays the distribution of PTI ratios, weighted by loan balance. Source: Fannie Mae Single Family Dataset and Greenwald (2017).

Cox and Ludvigson


• CLTV distribution: Majority of borrowers grouped in **spikes** at known institutional limits and cost discontinuities.

Distribution of combined LTV (CLTV) and PTI ratios on newly issued conventional fixed-rate mortgages securitized by Fannie Mae. Panel (a) presents CLTV, the ratio of total mortgage debt to the value of the house, summing over multiple mortgages against the same property. Panel (b) displays the distribution of PTI ratios, weighted by loan balance. Source: Fannie Mae Single Family Dataset and Greenwald (2017).

Cox and Ludvigson


• PTI: Clear influence of spike at institutional limit (45%) distributions building before complete truncation.

Distribution of combined LTV (CLTV) and PTI ratios on newly issued conventional fixed-rate mortgages securitized by Fannie Mae. Panel (a) presents CLTV, the ratio of total mortgage debt to the value of the house, summing over multiple mortgages against the same property. Panel (b) displays the distribution of PTI ratios, weighted by loan balance. Source: Fannie Mae Single Family Dataset and Greenwald (2017).

Cox and Ludvigson

• Smooth shape of PTI, rather than spike, likely stems from **search frictions**.

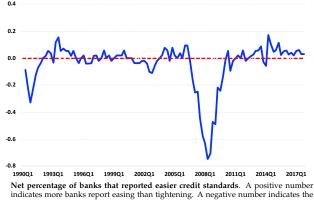
Distribution of combined LTV (CLTV) and PTI ratios on newly issued conventional fixed-rate mortgages securitized by Fannie Mae. Panel (a) presents CLTV, the ratio of total mortgage debt to the value of the house, summing over multiple mortgages against the same property. Panel (b) displays the distribution of PTI ratios, weighted by loan balance. Source: Fannie Mae Single Family Dataset and Greenwald (2017).

- Prime borrowers include many *higher-income* households.
- Higher income and prime borrowers with greater borrowing capacity take out *larger mortgages* but are not necessarily less *constrained* than lower-income/sub-prime households.

- Prime borrowers include many *higher-income* households.
- Higher income and prime borrowers with greater borrowing capacity take out *larger mortgages* but are not necessarily less *constrained* than lower-income/sub-prime households.
- **Relationship between income and mortgage growth** at individual level may be no more (or no less) informative about credit constraints than about beliefs.

- Prime borrowers include many *higher-income* households.
- Higher income and prime borrowers with greater borrowing capacity take out *larger mortgages* but are not necessarily less *constrained* than lower-income/sub-prime households.
- **Relationship between income and mortgage growth** at individual level may be no more (or no less) informative about credit constraints than about beliefs.
- **Missing** from the analysis is **direct measures** of credit conditions and beliefs.

- Posit some simple empirical exercises using **direct measures** of credit conditions and beliefs.
- Consider their potentially distinct empirical roles for house price fluctuations at **aggregate level**.


- Posit some simple empirical exercises using **direct measures** of credit conditions and beliefs.
- Consider their potentially distinct empirical roles for house price fluctuations at **aggregate level**.
- **Credit Conditions**: Senior Loan Officer Opinion Survey (**SLOOS**) measures *lending standards for purchase mortgages* at banks.
 - Information considered highly reliable because surveys carried out by **bank regulators**.

- Posit some simple empirical exercises using **direct measures** of credit conditions and beliefs.
- Consider their potentially distinct empirical roles for house price fluctuations at **aggregate level**.
- Credit Conditions: Senior Loan Officer Opinion Survey (SLOOS) measures *lending standards for purchase mortgages* at banks.
 - Information considered highly reliable because surveys carried out by **bank regulators**.
- Banks indicate **easing**, **tightening**, or **no change** in lending **standards on mortgages** *compared to previous three months*.

- Posit some simple empirical exercises using **direct measures** of credit conditions and beliefs.
- Consider their potentially distinct empirical roles for house price fluctuations at **aggregate level**.
- Credit Conditions: Senior Loan Officer Opinion Survey (SLOOS) measures *lending standards for purchase mortgages* at banks.
 - Information considered highly reliable because surveys carried out by **bank regulators**.
- Banks indicate **easing**, **tightening**, or **no change** in lending **standards on mortgages** *compared to previous three months*.
- SLOOS used previously by Faviluks, Kohn, Ludvigson, Van Neiuwerbugh (2015) (FKLV). We extend sample, add beliefs data.

Net Percentage of U.S. Banks: Easier Credit Standards

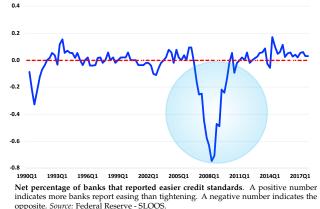
• Quarterly data on **net percentage banks** reporting *easier* lending standards (ΔCS_t) => rise in ΔCS indicates a *slackening*.

opposite. Source: Federal Reserve - SLOOS.

Cox and Ludvigson

Net Percentage of U.S. Banks: Easier Credit Standards

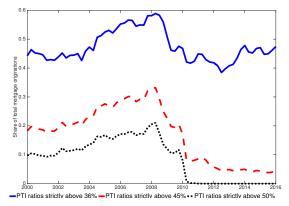
• String obs. starting in 2002-2006 show standards were *easy or easing*. Could => substantial relaxation underwriting standards, cumulated.



opposite. Source: Federal Reserve - SLOOS.

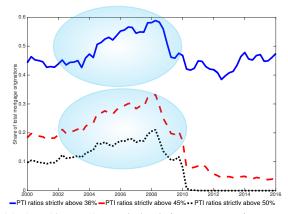
Cox and Ludvigson

Net Percentage of U.S. Banks: Easier Credit Standards


• Marked broad tightening beginning in 2006, reversed in a few years.

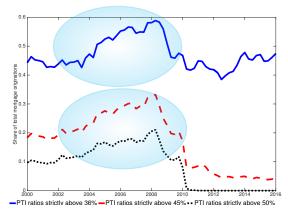
opposite. Source: Federal Reserve -

Cox and Ludvigson


• Other measures of credit standards even for *prime* borrowers indicate relaxation in boom and tightening in bust.

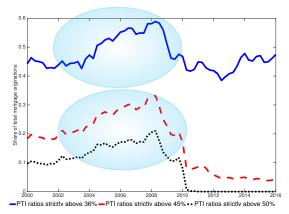
Share of originations with PTI> X%. Figure displays the fraction, over time, of mortgage originations purchased by Fannie Mae with PTI ratios > 36%, 45%, and 50%, weighted by loan balance. Sample: 2000-2016. *Source:* Annual data from Fannie Mae Single Family Dataset.

Cox and Ludvigson


• Monthly PTI ratios increased dramatically 2002-2006.

Share of originations with PTI> X%. Figure displays the fraction, over time, of mortgage originations purchased by Fannie Mae with PTI ratios > 36%, 45%, and 50%, weighted by loan balance. Sample: 2000 - 2016. Source: Annual data from Fannie Mae Single Family Dataset.

Cox and Ludvigson


• Largest increase for the share that exceeded 50%, which \uparrow 85%.

Share of originations with PTI> X%. Figure displays the fraction, over time, of mortgage originations purchased by Fannie Mae with PTI ratios > 36%, 45%, and 50%, weighted by loan balance. Sample: 2000-2016. *Source:* Annual data from Fannie Mae Single Family Dataset.

Cox and Ludvigson

• Greenwald (2017): GE model where time-variation in PTI limits has large effects on home price variation.

Share of originations with PTI> X%. Figure displays the fraction, over time, of mortgage originations purchased by Fannie Mae with PTI ratios > 36%, 45%, and 50%, weighted by loan balance. Sample: 2000-2016. *Source:* Annual data from Fannie Mae Single Family Dataset.

Cox and Ludvigson

Three household survey measures from U of Michigan **Survey of Consumers (SOC)** and one **Media Index**.

• Overall **buying conditions index**: *Is now a good or bad time to buy?*

- Overall **buying conditions index**: *Is now a good or bad time to buy?*
- Those optimistic about future home values: fraction say buying conditions good because home prices expected to rise/stay high.

- Overall **buying conditions index**: *Is now a good or bad time to buy?*
- Those optimistic about future home values: fraction say buying conditions good because home prices expected to rise/stay high.
- Survey point forecast of house price changes over the next year (available since 2007).

- Overall **buying conditions index**: *Is now a good or bad time to buy?*
- Those optimistic about future home values: fraction say buying conditions good because home prices expected to rise/stay high.
- Survey **point forecast** of house price changes over the next year (available since 2007).
- National version of Soo's (2018) housing media sentiment index created from textual analysis of newspapers coverage of housing (2000-2013).

Buying Condition for Houses (SOC)

• Net buying conditions index BCI (left) similar to *fraction* (right) that say now is a **good time** to buy.

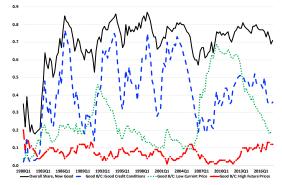
Buying Condition for Houses. Panel (a) presents the buying condition index constructed by taking the number of good answers, subtracting the number of bad answers and adding 100. Panel (b) presents the share of respodents who answer that now is a good time to buy a house. *Source:* SoC, University of Michigan.

Buying Condition for Houses (SOC)

• Study relation bet. *log difference of house prices* and covariates, so use log difference in BCI Δbci_t as our empirical measure.

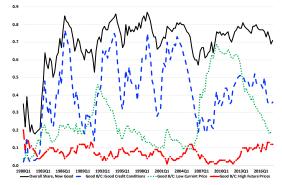
Buying Condition for Houses. Panel (a) presents the buying condition index constructed by taking the number of good answers, subtracting the number of bad answers and adding 100. Panel (b) presents the share of respodents who answer that now is a good time to buy a house. *Source:* SoC, University of Michigan.

Buying Condition for Houses (SOC)


• An *increase* in Δbci_t implies a shift toward *optimism*.

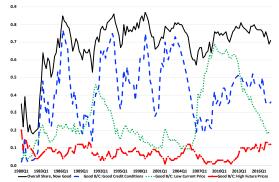
Buying Condition for Houses. Panel (a) presents the buying condition index constructed by taking the number of good answers, subtracting the number of bad answers and adding 100. Panel (b) presents the share of respodents who answer that now is a good time to buy a house. *Source:* SoC, University of Michigan.

Cox and Ludvigson


• Open-ended follow-up question: *why* now good time to buy?

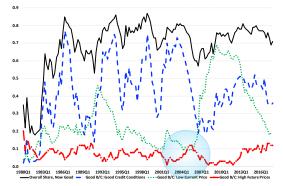
Why is now good time to buy a house? Black line is share of all respondents who say now is a good time to buy. Blue line is the share whose reason is *favorable credit conditions*. Green line is the share whose reason is *current prices are low*. Red line is the share whose reason is *higher future prices*. Source: SoC, University of Michigan.

Cox and Ludvigson


• Most common reason for positive view: credit conditions good.

Why is now good time to buy a house? Black line is share of all respondents who say now is a good time to buy. Blue line is the share whose reason is *favorable credit conditions*. Green line is the share whose reason is *current prices are low*. Red line is the share whose reason is *higher future prices*. Source: SoC, University of Michigan.

Cox and Ludvigson


• Future prices high of interest b/c hones in on *expectations* component of beliefs central, in some theories, to driving home prices (e.g., Kaplan et. al. '17).

Why is now good time to buy a house? Black line is share of all respondents who say now is a good time to buy. Blue line is the share whose reason is *favorable credit conditions*. Green line is the share whose reason is *current prices are low*. Red line is the share whose reason is *higher future prices*. Source: SoC, University of Michigan.

Cox and Ludvigson

• Piazzesi and Schneider '09: search frictions => a **few optimists** can drive transaction prices without a large trading volume.

Why is now good time to buy a house? Black line is share of all respondents who say now is a good time to buy. Blue line is the share whose reason is *favorable credit conditions*. Green line is the share whose reason is *current prices are low*. Red line is the share whose reason is *higher future prices*. Source: SoC, University of Michigan.

Cox and Ludvigson

All measures constructed so *increase* => shift toward *optimism*.

All measures constructed so *increase* => shift toward *optimism*.

• Overall **buying conditions index BCI**; use the log difference Δbci_t .

All measures constructed so *increase* => shift toward *optimism*.

- Overall **buying conditions index BCI**; use the log difference Δbci_t .
- **2** Fraction who say **buying conditions good because future home prices high/higher**; use log difference in this fraction Δbci_t^{highFP} .

All measures constructed so *increase* => shift toward *optimism*.

- Overall **buying conditions index BCI**; use the log difference Δbci_t .
- Fraction who say **buying conditions good because future home prices high/higher**; use log difference in this fraction Δbci_t^{highFP} .
- Survey **point forecast** of house price changes over the next year (available since 2007):

$$\Delta p_t^{e,med} = E_t^{med} \Delta \log P_{t+4} - E_t^{med} \pi_{t+4},$$

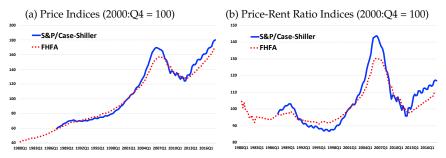
$$\Delta p_t^{e,avg} = E_t^{avg} \Delta \log P_{t+4} - E_t^{avg} \pi_{t+4},$$

" E_t^{med} "/" E_t^{avg} " = median/mean values of survey expectation SOC.

All measures constructed so *increase* => shift toward *optimism*.

- Overall **buying conditions index BCI**; use the log difference Δbci_t .
- Fraction who say **buying conditions good because future home prices high/higher**; use log difference in this fraction Δbci_t^{highFP} .
- Survey **point forecast** of house price changes over the next year (available since 2007):

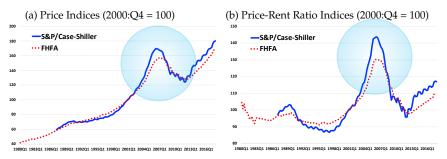
$$\Delta p_t^{e,med} = E_t^{med} \Delta \log P_{t+4} - E_t^{med} \pi_{t+4},$$


 $\Delta p_t^{e,avg} = E_t^{avg} \Delta \log P_{t+4} - E_t^{avg} \pi_{t+4},$

" E_t^{med} "/" E_t^{avg} " = median/mean values of survey expectation SOC.

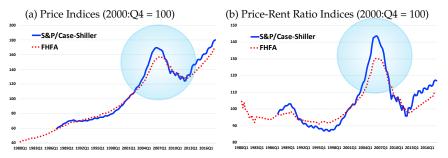
 National version of Soo's (2018) housing media sentiment index (2000-2013) [(#PosWords – #NegWords) / (TotalWords) + 100]; use log difference in index (following Soo) Δhmit.

Cox and Ludvigson

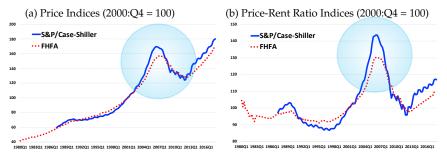

• Two repeat-sale indexes: S&P Case-Shiller U.S. (CSUS) and FHFA

House Price Indices. Panel (a) plots the S&P/Case-Shiller home price index (solid line) and the FHFA home price index (dotted line), both by deflated by CPI. Panel (b) presents price-rent ratio indices, constructed by dividing the real price in Panel (a) by the shelter CPI for all urban consumers. Source: Federal House Finance Agency, S&P Dow Jones Indices LLC, and U.S. Bureau of Labor Statistics.

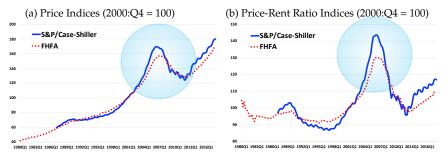
Cox and Ludvigson


• Boom-Bust cycle more pronounced in CSUS than in FHFA.

House Price Indices. Panel (a) plots the S&P/Case-Shiller home price index (solid line) and the FHFA home price index (dotted line), both by deflated by CPI. Panel (b) presents price-rent ratio indices, constructed by dividing the real price in Panel (a) by the shelter CPI for all urban consumers. Source: Federal House Finance Agency, S&P Dow Jones Indices LLC, and U.S. Bureau of Labor Statistics.


Cox and Ludvigson

• FHFA only for homes purchased with *conforming debt* (Fannie Mae and Freddie Mac eligible).


House Price Indices. Panel (a) plots the S&P/Case-Shiller home price index (solid line) and the FHFA home price index (dotted line), both by deflated by CPI. Panel (b) presents price-rent ratio indices, constructed by dividing the real price in Panel (a) by the shelter CPI for all urban consumers. Source: Federal House Finance Agency, S&P Dow Jones Indices LLC, and U.S. Bureau of Labor Statistics.

• CSUS measures *all available transactions* single family homes purchased, incl. *non-conforming* debt (subprime, Alt-A, jumbo).

House Price Indices. Panel (a) plots the S&P/Case-Shiller home price index (solid line) and the FHFA home price index (dotted line), both by deflated by CPI. Panel (b) presents price-rent ratio indices, constructed by dividing the real price in Panel (a) by the shelter CPI for all urban consumers. Source: Federal House Finance Agency, S&P Dow Jones Indices LLC, and U.S. Bureau of Labor Statistics.

• Because of its breadth & out-sized role of non-conforming debt in GHC, CSUS/CPI is our main measure *log price changes* Δp_t .

House Price Indices. Panel (a) plots the S&P/Case-Shiller home price index (solid line) and the FHFA home price index (dotted line), both by deflated by CPI. Panel (b) presents price-rent ratio indices, constructed by dividing the real price in Panel (a) by the shelter CPI for all urban consumers. Source: Federal House Finance Agency, S&P Dow Jones Indices LLC, and U.S. Bureau of Labor Statistics.

Hypothesis 1: Credit conditions, beliefs and mortgage composition

• If net *easing* => relaxation of underwriting standards, expect easings to be associated with a shift in the *composition of mortgages*, **away from conforming debt and toward non-conforming**.

- If net *easing* => relaxation of underwriting standards, expect easings to be associated with a shift in the *composition of mortgages*, **away from conforming debt and toward non-conforming**.
- Little reason to expect belief-driven change in *demand* for mortgages to affect loan composition, since presumably demand for all types would change in rough proportion.

- If net *easing* => relaxation of underwriting standards, expect easings to be associated with a shift in the *composition of mortgages*, **away from conforming debt and toward non-conforming**.
- Little reason to expect belief-driven change in *demand* for mortgages to affect loan composition, since presumably demand for all types would change in rough proportion.
- => Look at how changes in **credit standards** relate to mortgage growth and its composition over time.

- If net *easing* => relaxation of underwriting standards, expect easings to be associated with a shift in the *composition of mortgages*, **away from conforming debt and toward non-conforming**.
- Little reason to expect belief-driven change in *demand* for mortgages to affect loan composition, since presumably demand for all types would change in rough proportion.
- => Look at how changes in **credit standards** relate to mortgage growth and its composition over time.
- Related hypothesis: *lenders' beliefs* altered their willingness to bear mortgage credit risk.

Hypothesis 1: Credit conditions, beliefs and mortgage composition

- If net *easing* => relaxation of underwriting standards, expect easings to be associated with a shift in the *composition of mortgages*, **away from conforming debt and toward non-conforming**.
- Little reason to expect belief-driven change in *demand* for mortgages to affect loan composition, since presumably demand for all types would change in rough proportion.
- => Look at how changes in **credit standards** relate to mortgage growth and its composition over time.
- Related hypothesis: *lenders' beliefs* altered their willingness to bear mortgage credit risk.
- => Look at whether **beliefs** are related to shifts in the composition of mortgages.

Cox and Ludvigson

- Do beliefs or credit conditions or both have explanatory power for home price growth independent of that in the other and in economic fundamentals?
- If the two are correlated, but true explanatory power lies more with one or other, should be revealed by *multivariate regression*.

- Do beliefs or credit conditions or both have explanatory power for home price growth independent of that in the other and in economic fundamentals?
- If the two are correlated, but true explanatory power lies more with one or other, should be revealed by *multivariate regression*.
- => Ask whether credit standards contain information about Δp_t not contained in beliefs, vice-versa.

- Do beliefs or credit conditions or both have explanatory power for home price growth independent of that in the other and in economic fundamentals?
- If the two are correlated, but true explanatory power lies more with one or other, should be revealed by *multivariate regression*.
- => Ask whether credit standards contain information about Δp_t not contained in beliefs, vice-versa.
- Important question for **behavioral biases literature**: Did beliefs push house prices *beyond* that **justified by fundamentals** alone?

Hypothesis 2: What explains contemporaneous home price changes?

- Do beliefs or credit conditions or both have explanatory power for home price growth independent of that in the other and in economic fundamentals?
- If the two are correlated, but true explanatory power lies more with one or other, should be revealed by *multivariate regression*.
- => Ask whether credit standards contain information about Δp_t not contained in beliefs, vice-versa.
- Important question for **behavioral biases literature**: Did beliefs push house prices *beyond* that **justified by fundamentals** alone?
- => Ask whether beliefs contain information for Δp_t not contained in ΔCS_t and other economic *fundamentals*.

Cox and Ludvigson

Hypothesis 3: What predicts future home price changes?

Hypothesis 3: What predicts future home price changes?

• Idea that beliefs drive house prices often rests on premise that it is beliefs about *future* house prices, or expectations, that matter.

Hypothesis 3: What predicts future home price changes?

- Idea that beliefs drive house prices often rests on premise that it is beliefs about *future* house prices, or expectations, that matter.
- Example: Soo '18 motivated by behavioral idea that sentiment **persistently pushes prices** away from fundamentals, thereby **forecasting** *future* house price changes.

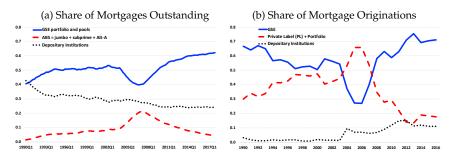
Hypothesis 3: What predicts future home price changes?

- Idea that beliefs drive house prices often rests on premise that it is beliefs about *future* house prices, or expectations, that matter.
- Example: Soo '18 motivated by behavioral idea that sentiment **persistently pushes prices** away from fundamentals, thereby **forecasting** *future* house price changes.
- Example: in Kaplan et. al., '17 (KMV) beliefs modeled as a *news* shock about future housing demand; beliefs forecast future Δp_t.
- KMV model, beliefs should drive out credit standards as a competing predictor variable.

Hypothesis 3: What predicts future home price changes?

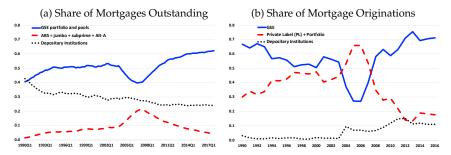
- Idea that beliefs drive house prices often rests on premise that it is beliefs about *future* house prices, or expectations, that matter.
- Example: Soo '18 motivated by behavioral idea that sentiment **persistently pushes prices** away from fundamentals, thereby **forecasting** *future* house price changes.
- Example: in Kaplan et. al., '17 (KMV) beliefs modeled as a *news* shock about future housing demand; beliefs forecast future Δp_t.
- KMV model, beliefs should drive out credit standards as a competing predictor variable.
- => Ask whether *beliefs predict future* Δp_{t+h} once ΔCS_t , economic fundamentals, **lagged** Δp_t are controlled for.

Cox and Ludvigson


Hypothesis 4: Credit's effect on home values: no genuine causality

• Prior empirical analyses silent on causality.

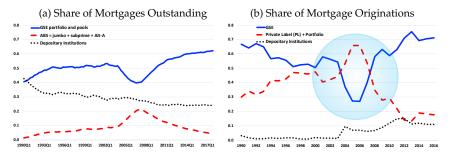
- Prior empirical analyses silent on causality.
- Final hypothesis: no genuine **causality running from** ΔCS_t **to** Δp_t even if the two are positively *correlated*.


- Prior empirical analyses silent on causality.
- Final hypothesis: no genuine **causality running from** ΔCS_t **to** Δp_t even if the two are positively *correlated*.
- Address question using bivariate structural VAR in ΔCS_t and Δp_t using the **shock-restricted identification** approach of Ludvigson, Ma, and Ng (2015, 2016).
 - Set identification of exogenous variation in SVAR under assumptions weaker than that required for *point identification*.

- Prior empirical analyses silent on causality.
- Final hypothesis: no genuine **causality running from** ΔCS_t to Δp_t even if the two are positively *correlated*.
- Address question using bivariate structural VAR in ΔCS_t and Δp_t using the **shock-restricted identification** approach of Ludvigson, Ma, and Ng (2015, 2016).
 - Set identification of exogenous variation in SVAR under assumptions weaker than that required for *point identification*.
- => Ask whether *shocks to* ΔCS_t that are mutually uncorrelated with Δp_t shocks have any dynamic causal impact on Δp_t .


Share of mortgages by mortgage type. Panel (a) Blue line is GSE and Agency and GSE-backed mortgages, Red line is ABS, Black line is U.S.-chartered depository institutions. Panel (b) Blue line is GSE, Red line is private label (PL) and portfolio: private securitization, affiliate institutions, life insurance companies, credit unions, mortgage banks, and finance companies, Black line is depositary institutions. Source: Federal Reserve and Federal Financial Institutions Examination Council.

• Natural to expect an *easing* of standards be associated with increase in share of *non*-conforming debt.


Share of mortgages by mortgage type. Panel (a) Blue line is GSE and Agency and GSE-backed mortgages, Red line is ABS, Black line is U.S.-chartered depository institutions. Panel (b) Blue line is GSE, Red line is private label (PL) and portfolio: private securitization, affiliate institutions, life insurance companies, credit unions, mortgage banks, and finance companies, Black line is depositary institutions. Source: Federal Reserve and Federal Financial Institutions Examination Council.

• From 2002-2006 the *share* of ABS in total mortgages rises sharply, mirrors decline in GSE share.

Share of mortgages by mortgage type. Panel (a) Blue line is GSE and Agency and GSE-backed mortgages, Red line is ABS, Black line is U.S.-chartered depository institutions. Panel (b) Blue line is GSE, Red line is private label (PL) and portfolio: private securitization, affiliate institutions, life insurance companies, credit unions, mortgage banks, and finance companies, Black line is depositary institutions. Source: Federal Reserve and Federal Financial Institutions Examination Council.

• Analogy to ABS share in *originations* space is PL+Porfolio. Similar pattern appears in the PL+Portfolio share of originations.

Share of mortgages by mortgage type. Panel (a) Blue line is GSE and Agency and GSE-backed mortgages, Red line is ABS, Black line is U.S.-chartered depository institutions. Panel (b) Blue line is GSE, Red line is private label (PL) and portfolio: private securitization, affiliate institutions, life insurance companies, credit unions, mortgage banks, and finance companies, Black line is depositary institutions. Source: Federal Reserve and Federal Financial Institutions Examination Council.

			Full sample				
Holder	1991:Q4-2017:Q4			2000:Q1-2013:Q4	2007:Q1-2017:Q4		
	Δ_4CS	$\Delta_4 bci$	$\Delta_4 bci^{highFP}$	$\Delta_4 hmi$	$\Delta p_t^{e, med}$	$\Delta p_t^{e, avg}$	
$\Delta_4 \log All$	0.003	-0.133	-0.013	-1.446	0.006	0.007	
t-stat	(1.517)	(-1.613)	(-0.994)	(-1.167)	(0.582)	(1.431)	
\bar{R}^2	[0.024]	[0.043]	[0.013]	[0.029]	[-0.004]	[0.094]	
$\Delta_4 \log ABS$	0.013**	-0.037	-0.054	-6.313	-0.002	0.009	
t-stat	(2.270)	(-0.072)	(-0.957)	(-1.437)	(-0.202)	(1.201)	
\bar{R}^2	[0.044]	[-0.009]	[0.013]	[0.059]	[-0.023]	[0.003]	
$\Delta_4 \log GSE$	-0.005***	0.131**	-0.030***	-0.493	-0.018	-0.009	
t-stat	(-3.362)	(2.363)	(-3.942)	(-0.460)	(-1.232)	(-1.209)	
\bar{R}^2	[0.157]	[0.071]	[0.165]	[-0.008]	[0.091]	[0.100]	
$\Delta_4 \log \left(\frac{ABS}{GSE} \right)$	0.018***	-0.168	-0.025	-5.819	0.016	0.018**	
t-stat	(3.587)	(-0.337)	(-0.435)	(-1.304)	(1.597)	(2.539)	
\bar{R}^2	[0.101]	[-0.004]	[-0.004]	[0.049]	[0.001]	[0.113]	

Regressions of 4-quarter log change of each mortgage type. Δ_4 CS (four quarter sum of Δ CS). Δ_4 bci (annual change in buying condition index). Δ_4 bci^{highPP} (annual change in good time b/c prices will increase). Δ_4 hmi_t (annual change in house media index). $\Delta_4 p_c^{f,mod}$ (median house price growth). Newey-West corrected *t*-statistics in parentheses (lags = 4). * Sig. 10%. ** Sig. 5%. *** Sig. '0%. Full sample spans available data in each case.

• Δ*CS positively* related to growth in **ABS**; *negatively* related to growth in **GSE** mortgages.

			Full sample				
Holder	1	991:Q4-2017		2000:Q1-2013:Q4	2007:Q1-2017:Q4		
	$\Delta_4 CS$	$\Delta_4 bci$	$\Delta_4 bci^{highFP}$	$\Delta_4 hmi$	$\Delta p_t^{e, med}$	$\Delta p_t^{e,avg}$	
$\Delta_4 \log All$	0.003	-0.133	-0.013	-1.446	0.006	0.007	
t-stat	(1.517)	(-1.613)	(-0.994)	(-1.167)	(0.582)	(1.431)	
\bar{R}^2	[0.024]	[0.043]	[0.013]	[0.029]	[-0.004]	[0.094]	
$\Delta_4 \log ABS$	0.013**	-0.037	-0.054	-6.313	-0.002	0.009	
t-stat	(2.270)	(-0.072)	(-0.957)	(-1.437)	(-0.202)	(1.201)	
\bar{R}^2	[0.044]	[-0.009]	[0.013]	[0.059]	[-0.023]	[0.003]	
	0.005444		0.000444	0.400			
$\Delta_4 \log GSE$	-0.005***	0.131**	-0.030***	-0.493	-0.018	-0.009	
t-stat	(-3.362)	(2.363)	(-3.942)	(-0.460)	(-1.232)	(-1.209)	
\bar{R}^2	[0.157]	[0.071]	[0.165]	[-0.008]	[0.091]	[0.100]	
/ \							
$\Delta_4 \log \left(\frac{ABS}{GSE} \right)$	0.018***	-0.168	-0.025	-5.819	0.016	0.018**	
t-stat	(3.587)	(-0.337)	(-0.435)	(-1.304)	(1.597)	(2.539)	
R ²	[0.101]	[-0.004]	[-0.004]	[0.049]	[0.001]	[0.113]	

Regressions of 4-quarter log change of each mortgage type. Δ_4 CS (four quarter sum of Δ CS). $\Delta_4 bci$ (annual change in buying condition index). $\Delta_4 bci_i^{highFP}$ (annual change in good time b/c prices will increase). $\Delta_4 hmi_t$ (annual change in house media index). $\Delta_p f_c^{f,mad}$ (median house price growth). $\Delta p f_c^{harg}$ (average house price growth). Newey-West corrected *t*-statistics in parentheses (lags = 4). * Sig. 10%. ** Sig. 10%.

• Δ*CS positively* related to growth in **ratio of ABS/GSE**.

			Full sample			
Holder	1991:Q4-2017:Q4			2000:Q1-2013:Q4	2007:Q1	-2017:Q4
	$\Delta_4 CS$	$\Delta_4 bci$	$\Delta_4 bci^{highFP}$	$\Delta_4 hmi$	$\Delta p_t^{e, med}$	$\Delta p_t^{e, avg}$
$\Delta_4 \log All$	0.003	-0.133	-0.013	-1.446	0.006	0.007
t-stat	(1.517)	(-1.613)	(-0.994)	(-1.167)	(0.582)	(1.431)
\bar{R}^2	[0.024]	[0.043]	[0.013]	[0.029]	[-0.004]	[0.094]
$\Delta_4 \log ABS$	0.013**	-0.037	-0.054	-6.313	-0.002	0.009
t-stat	(2.270)	(-0.072)	(-0.957)	(-1.437)	(-0.202)	(1.201)
\bar{R}^2	[0.044]	[-0.009]	[0.013]	[0.059]	[-0.023]	[0.003]
$\Delta_4 \log GSE$	-0.005***	0.131**	-0.030***	-0.493	-0.018	-0.009
t-stat	(-3.362)	(2.363)	(-3.942)	(-0.460)	(-1.232)	(-1.209)
\bar{R}^2	[0.157]	[0.071]	[0.165]	[-0.008]	[0.091]	[0.100]
$\Delta_4 \log \left(\frac{ABS}{GSE} \right)$	0.018***	-0.168	-0.025	-5.819	0.016	0.018**
t-stat	(3.587)	(-0.337)	(-0.435)	(-1.304)	(1.597)	(2.539)
\bar{R}^2	[0.101]	[-0.004]	[-0.004]	[0.049]	[0.001]	[0.113]

Regressions of 4-quarter log change of each mortgage type. Δ_4 CS (four quarter sum of Δ CS). Δ_4 bci (annual change in buying condition index). Δ_4 bci^{highPP} (annual change in good time b/c prices will increase). Δ_4 hmi_t (annual change in house media index). $\Delta_4 p_c^{f,mod}$ (median house price growth). Newey-West corrected *t*-statistics in parentheses (lags = 4). * Sig. 10%. ** Sig. 5%. *** Sig. '0%. Full sample spans available data in each case.

• Little evidence shifts in **composition of credit** associated with **beliefs** *in a sample containing housing boom-bust*.

			Full sample			
Holder	1	991:Q4-2017		2000:Q1-2013:Q4 2007:Q1-2		-2017:Q4
	$\Delta_4 CS$	$\Delta_4 bci$	$\Delta_4 bci^{highFP}$	$\Delta_4 hmi$	$\Delta p_t^{e, med}$	$\Delta p_t^{e,avg}$
$\Delta_4 \log All$	0.003	-0.133	-0.013	-1.446	0.006	0.007
t-stat	(1.517)	(-1.613)	(-0.994)	(-1.167)	(0.582)	(1.431)
\bar{R}^2	[0.024]	[0.043]	[0.013]	[0.029]	[-0.004]	[0.094]
$\Delta_4 \log ABS$	0.013**	-0.037	-0.054	-6.313	-0.002	0.009
t-stat	(2.270)	(-0.072)	(-0.957)	(-1.437)	(-0.202)	(1.201)
\bar{R}^2	[0.044]	[-0.009]	[0.013]	[0.059]	[-0.023]	[0.003]
$\Delta_4 \log GSE$	-0.005***	0.131**	-0.030***	-0.493	-0.018	-0.009
t-stat	(-3.362)	(2.363)	(-3.942)	(-0.460)	(-1.232)	(-1.209)
\bar{R}^2	[0.157]	[0.071]	[0.165]	[-0.008]	[0.091]	[0.100]
$\Delta_4 \log \left(\frac{ABS}{GSE} \right)$	0.018***	-0.168	-0.025	-5.819	0.016	0.018**
t-stat	(3.587)	(-0.337)	(-0.435)	(-1.304)	(1.597)	(2.539)
R ²	[0.101]	[-0.004]	[-0.004]	[0.049]	[0.001]	[0.113]

Regressions of 4-quarter log change of each mortgage type. Δ_4 CS (four quarter sum of Δ CS). $\Delta_4 bci$ (annual change in buying condition index). $\Delta_4 bci_i^{highFP}$ (annual change in good time b/c prices will increase). $\Delta_4 hmi_t$ (annual change in house media index). $\Delta_p f_c^{f,mad}$ (median house price growth). $\Delta p f_c^{harg}$ (average house price growth). Newey-West corrected *t*-statistics in parentheses (lags = 4). * Sig. 10%. ** Sig. 10%.

• One measure of beliefs does, but *since* 2007.

			Full sample			
Holder	1	991:Q4-2017		2000:Q1-2013:Q4	2000:Q1-2013:Q4 2007:Q1-203	
	$\Delta_4 CS$	$\Delta_4 bci$	$\Delta_4 bci^{highFP}$	$\Delta_4 hmi$	$\Delta p_t^{e, med}$	$\Delta p_t^{e, avg}$
$\Delta_4 \log All$	0.003	-0.133	-0.013	-1.446	0.006	0.007
t-stat	(1.517)	(-1.613)	(-0.994)	(-1.167)	(0.582)	(1.431)
\bar{R}^2	[0.024]	[0.043]	[0.013]	[0.029]	[-0.004]	[0.094]
$\Delta_4 \log ABS$	0.013**	-0.037	-0.054	-6.313	-0.002	0.009
t-stat	(2.270)	(-0.072)	(-0.957)	(-1.437)	(-0.202)	(1.201)
\bar{R}^2	[0.044]	[-0.009]	[0.013]	[0.059]	[-0.023]	[0.003]
$\Delta_4 \log GSE$	-0.005***	0.131**	-0.030***	-0.493	-0.018	-0.009
t-stat	(-3.362)	(2.363)	(-3.942)	(-0.460)	(-1.232)	(-1.209)
\bar{R}^2	[0.157]	[0.071]	[0.165]	[-0.008]	[0.091]	[0.100]
$\Delta_4 \log \left(\frac{ABS}{GSE}\right)$	0.018***	-0.168	-0.025	-5.819	0.016	0.018**
t-stat	(3.587)	(-0.337)	(-0.435)	(-1.304)	(1.597)	(2.539)
\bar{R}^2	[0.101]	[-0.004]	[-0.004]	[0.049]	[0.001]	[0.113]

Regressions of 4-quarter log change of each mortgage type. Δ_4 CS (four quarter sum of Δ CS). Δ_4 bci (annual change in buying condition index). Δ_4 bci^{highPP} (annual change in good time b/c prices will increase). Δ_4 hmi_t (annual change in house media index). $\Delta_4 p_c^{f,mod}$ (median house price growth). Newey-West corrected *t*-statistics in parentheses (lags = 4). * Sig. 10%. ** Sig. 5%. *** Sig. '0%. Full sample spans available data in each case.

• Δ*CS more positively* related to growth in **ratio of ABS/GSE** in GHC subsample, underscoring role **easier credit** during boom.

	GH	C subsamp	le 2000:Q1-2010	:Q4
Holder	$\Delta_4 CS$	$\Delta_4 bci$	$\Delta_4 bci^{highFP}$	$\Delta_4 hmi$
$\Delta_4 \log All$	0.007***	-0.239**	0.001	-0.545
t-stat	(4.713)	(-2.285)	(0.039)	(-0.397)
\bar{R}^2	[0.389]	[0.149]	[-0.024]	[-0.017]
$\Delta_4 \log ABS$	0.028***	-0.986**	0.034	-3.939
t-stat	(4.568)	(-2.169)	(0.418)	(-0.815)
\bar{R}^2	[0.427]	[0.189]	[-0.013]	[0.009]
$\Delta_4 \log GSE$	-0.003**	0.177***	-0.030***	0.495
t-stat	(-2.215)	(2.803)	(-3.372)	(0.553)
\bar{R}^2	[0.150]	[0.186]	[0.250]	[-0.009]
$\Delta_4 \log \left(\frac{ABS}{GSE} \right)$	0.032***	-1.162**	0.064	-4.434
t-stat	(4.700)	(-2.508)	(0.742)	(-0.881)
\bar{R}^2	[0.472]	[0.239]	[0.012]	[0.013]

Regressions of 4-quarter log change of each mortgage type. Δ_4 CS (four quarter sum of Δ CS). Δ_4 bci (annual change in buying condition index). Δ_4 bcl₁^{hightP} (annual change in good time b/c prices will increase). Δ_4 hmi_t (annual change in house media index). Newey-West corrected t-statistics in parentheses (lags = 4). * Sig. 10%. ** Sig. 5%. *** Sig. 1%. The GHC sample spans 2000-Q1 - 2010-Q4.

 Only one measure of beliefs, Δ₄bci, related to credit composition during GHC subperiod; has wrong (negative) sign.

	GH	IC subsample	e 2000:Q1-2010	:Q4
Holder	$\Delta_4 CS$	$\Delta_4 bci$	$\Delta_4 bci^{highFP}$	$\Delta_4 hmi$
$\Delta_4 \log All$	0.007***	-0.239**	0.001	-0.545
t-stat	(4.713)	(-2.285)	(0.039)	(-0.397)
\bar{R}^2	[0.389]	[0.149]	[-0.024]	[-0.017]
$\Delta_4 \log ABS$	0.028***	-0.986**	0.034	-3.939
t-stat	(4.568)	(-2.169)	(0.418)	(-0.815)
\bar{R}^2	[0.427]	[0.189]	[-0.013]	[0.009]
$\Delta_4 \log GSE$	-0.003**	0.177***	-0.030***	0.495
t-stat	(-2.215)	(2.803)	(-3.372)	(0.553)
\bar{R}^2	[0.150]	[0.186]	[0.250]	[-0.009]
$\Delta_4 \log \left(\frac{ABS}{GSE} \right)$	0.032***	-1.162**	0.064	-4.434
t-stat	(4.700)	(-2.508)	(0.742)	(-0.881)
\bar{R}^2	[0.472]	[0.239]	[0.012]	[0.013]

Regressions of 4-quarter log change of each mortgage type. Δ_4CS (four quarter sum of ΔCS). Δ_4bci (annual change in buying condition index). $\Delta_4bcl_i^{highFP}$ (annual change in good time b/c prices will increase). Δ_4hml_i (annual change in house media index). Newey-West corrected *t*-statistics in parentheses (lags = 4).* Sig. 10%. ** Sig. 5%. *** Sig. 1%. The GHC sample spans 2000:Q1 - 2010:Q4.

• Possible *lenders' beliefs* altered willingness to bear mortgage credit risk, with optimistic beliefs associated with growth in ABS/GSE.

	GI	HC subsample	e 2000:Q1-2010):Q4
Holder	$\Delta_4 CS$	$\Delta_4 bci$	$\Delta_4 bci^{highFP}$	$\Delta_4 hmi$
$\Delta_4 \log All$	0.007***	-0.239**	0.001	-0.545
t-stat	(4.713)	(-2.285)	(0.039)	(-0.397)
\bar{R}^2	[0.389]	[0.149]	[-0.024]	[-0.017]
$\Delta_4 \log ABS$	0.028***	-0.986**	0.034	-3.939
t-stat	(4.568)	(-2.169)	(0.418)	(-0.815)
\bar{R}^2	[0.427]	[0.189]	[-0.013]	[0.009]
$\Delta_4 \log GSE$	-0.003**	0.177***	-0.030***	0.495
t-stat	(-2.215)	(2.803)	(-3.372)	(0.553)
\bar{R}^2	[0.150]	[0.186]	[0.250]	[-0.009]
<i>(</i>)				
$\Delta_4 \log \left(\frac{ABS}{GSE} \right)$	0.032***	-1.162**	0.064	-4.434
t-stat	(4.700)	(-2.508)	(0.742)	(-0.881)
\bar{R}^2	[0.472]	[0.239]	[0.012]	[0.013]

Regressions of 4-quarter log change of each mortgage type. Δ_4CS (four quarter sum of ΔCS). Δ_4bci (annual change in buying condition index). $\Delta_4bcl_i^{highFP}$ (annual change in good time b/c prices will increase). Δ_4hml_i (annual change in house media index). Newey-West corrected *t*-statistics in parentheses (lags = 4).* Sig. 10%. ** Sig. 5%. *** Sig. 1%. The GHC sample spans 2000:Q1 - 2010:Q4.

• Lenders beliefs would need **differ** from those captured by the measures here, else evidence unsupportive.

	GH	IC subsample	e 2000:Q1-2010	:Q4
Holder	$\Delta_4 CS$	$\Delta_4 bci$	$\Delta_4 bci^{highFP}$	$\Delta_4 hmi$
$\Delta_4 \log All$	0.007***	-0.239**	0.001	-0.545
t-stat	(4.713)	(-2.285)	(0.039)	(-0.397)
\bar{R}^2	[0.389]	[0.149]	[-0.024]	[-0.017]
$\Delta_4 \log ABS$	0.028***	-0.986**	0.034	-3.939
t-stat	(4.568)	(-2.169)	(0.418)	(-0.815)
\bar{R}^2	[0.427]	[0.189]	[-0.013]	[0.009]
$\Delta_4 \log GSE$	-0.003**	0.177***	-0.030***	0.495
t-stat	(-2.215)	(2.803)	(-3.372)	(0.553)
\bar{R}^2	[0.150]	[0.186]	[0.250]	[-0.009]
()				
$\Delta_4 \log \left(\frac{ABS}{GSE} \right)$	0.032***	-1.162**	0.064	-4.434
t-stat	(4.700)	(-2.508)	(0.742)	(-0.881)
\bar{R}^2	[0.472]	[0.239]	[0.012]	[0.013]

Regressions of 4-quarter log change of each mortgage type. Δ_4CS (four quarter sum of ΔCS). Δ_4bci (annual change in buying condition index). $\Delta_4bcl_i^{highFP}$ (annual change in good time b/c prices will increase). Δ_4hml_i (annual change in house media index). Newey-West corrected *t*-statistics in parentheses (lags = 4).* Sig. 10%. ** Sig. 5%. *** Sig. 1%. The GHC sample spans 2000:Q1 - 2010:Q4.

Summary of Evidence on Hypothesis 1

- Foregoing analysis pertinent to hypothesis 1 on mortgage composition, credit conditions, beliefs.
- Easing of credit standards positively related to fraction of riskier non-conforming debt in total mortgage lending.
- Measures of beliefs, unrelated to this ratio.
- Underscores role of **easier credit** in proliferation of non-conforming debt during boom and its subsequent reversal during bust.

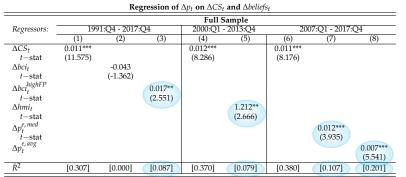
		Reg	gression of	Δp_t on ΔCS_t	and ∆belief	s _t			
	Full Sample								
Regressors:	199	1:Q4 - 2017:	Q4	2000:Q1 -	2013:Q4	200)7:Q1 - 2017:	Q4	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
ΔCS_t	0.011***			0.012***		0.011***			
t-stat	(11.575)			(8.286)		(8.176)			
Δbci_t		-0.043							
t-stat		(-1.362)							
Δbci_t^{highFP}			0.017**						
t-stat			(2.551)						
Δhmi_t			(2.001)		1.212**				
t_stat					(2.666)				
$\Delta p_t^{e, med}$					(2.000)		0.01.0***		
Δp_t							0.012***		
t-stat							(3.935)		
$\Delta p_t^{e,avg}$								0.007***	
								(5.541)	
\bar{R}^2	[0.307]	[0.000]	[0.087]	[0.370]	[0.079]	[0.380]	[0.107]	[0.201]	

Notes: Regressions of Δp_t on ΔCS_t and beliefs. Newey-West corrected t-statistics in parentheses (lags = 4). *Sig. at 10%. **Sig. at 5%. ***Sig. at 1%. Full sample spans all the available data in each case.

• ΔCS explains quantitatively **large magnitudes** of Δp_t

		Reg	gression of	Δp_t on ΔCS_t	and ∆belief	s _t			
	Full Sample								
Regressors:	199	1:Q4 - 2017:	Q4	2000:Q1 -	2013:Q4	200)7:Q1 - 2017:	Q4	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
ΔCS_t	0.011***			0.012***		0.011***			
t-stat	(11.575)			(8.286)		(8.176)			
Δbci_t		-0.043							
t-stat		(-1.362)							
Δbci_t^{highFP}			0.017**						
t-stat			(2.551)						
Δhmi_t			(2.001)		1.212**				
t_stat					(2.666)				
$\Delta p_t^{e, med}$					()		0.012***		
f_ctat							(3.935)		
$\Delta p_t^{e,avg}$							(0.900)	0.007***	
Δp_t									
=2	(f = 3	f	(a. a	((a. a. a. a.)	f	(5.541)	
\bar{R}^2	[0.307]	[0.000]	[0.087]	[0.370]	[0.079]	[0.380]	[0.107]	[0.201]	

Notes: Regressions of Δp_t on ΔCS_t and beliefs. Newey-West corrected t-statistics in parentheses (lags = 4). *Sig. at 10%. **Sig. at 5%. ***Sig. at 1%. Full sample spans all the available data in each case.


Cox and Ludvigson

• Coeff of $0.01 => a \ 1$ St. Dev $\uparrow \Delta CS \rightarrow 100 bp \uparrow quart.$ real HP growth $\approx 4\%$ at annual rate $\approx \frac{1}{2}$ of 1 St. Dev change in Δp_t .

		Reg	gression of	Δp_t on ΔCS_t	and ∆beliefs	s _t			
	Full Sample								
Regressors:	1991	l:Q4 - 2017:	Q4	2000:Q1 ·	2013:Q4	200	07:Q1 - 2017:	Q4	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
ΔCS_t	0.011***			0.012***		0.011***			
t-stat	(11.575)			(8.286)		(8.176)			
Δbci_t		-0.043							
t-stat		(-1.362)							
Δbci_t^{highFP}			0.017**						
t-stat			(2.551)						
Δhmi_t			(2.001)		1.212**				
t_stat					(2.666)				
$\Delta p_t^{e, med}$					(2.000)		0.010***		
Δp_t							0.012***		
t-stat							(3.935)		
$\Delta p_t^{e,avg}$								0.007***	
								(5.541)	
\bar{R}^2	[0.307]	[0.000]	[0.087]	[0.370]	[0.079]	[0.380]	[0.107]	[0.201]	

Notes: Regressions of Δp_t on ΔCS_t and beliefs. Newey-West corrected t-statistics in parentheses (lags = 4). *Sig. at 10%. **Sig. at 5%. ***Sig. at 1%. Full sample spans all the available data in each case.

• Several measures of beliefs do as well, though fraction variation explained is more modest.

Notes: Regressions of Δp_t on ΔCS_t and beliefs. Newey-West corrected t-statistics in parentheses (lags = 4). *Sig. at 10%. **Sig. at 5%. ***Sig. at 1%. Full sample spans all the available data in each case.

Cox and Ludvigson

Δ*CS* explains even larger magnitudes of Δ*p_t* in the GHC subsample.

Reg	Regressions of Δp_t on ΔCS_t and $\Delta beliefs_t$							
	GHC	Subsample	2000:Q1-20	10:Q4				
Regressors:	(1)	(2)	(3)	(4)				
ΔCS_t	0.013***							
t-stat	(9.704)							
Δbci_t		-0.075						
t-stat		(-1.562)						
Δbci_t^{highFP}			-0.004					
t_stat			(-0.638)					
Δhmi_t			. ,	1.021**				
t-stat				(2.310)				
$\Delta p_t^{e, med}$								
$\Delta p_t^{e,avg}$								
t-stat								
\bar{R}^2	[0.535]	[-0.001]	[-0.014]	[0.061]				

Notes: Regressions of Δp_t on ΔCS_t and beliefs. Newey-West corrected *t*-statistics in parentheses (lags = 4). * Sig. at 10%. ** Sig. at 5%. *** Sig. at 1%. GHC sample spans the period 2000:Q1 - 2010:Q4.

• In GHC subsample, only Soo's **housing media index** is significant as measure of beliefs.

Reg	Regressions of Δp_t on ΔCS_t and $\Delta beliefs_t$									
	GHC Subsample 2000:Q1-2010:Q4									
Regressors:	(1)	(2)	(3)	(4)						
ΔCS_t	0.013***									
t-stat	(9.704)									
Δbci_t		-0.075								
t-stat		(-1.562)								
Δbci_t^{highFP}			-0.004							
t_stat			(-0.638)							
Δhmi_t				1.021**						
t-stat				(2.310)						
$\Delta p_t^{e, med}$										
$\Delta p_t^{e,avg}$										
t-stat										
\bar{R}^2	[0.535]	[-0.001]	[-0.014]	[0.061]						

Notes: Regressions of Δp_t on ΔCS_t and beliefs. Newey-West corrected *t*-statistics in parentheses (lags = 4). * Sig. at 10%. ** Sig. at 5%. *** Sig. at 1%. GHC sample spans the period 2000:Q1 - 2010:Q4.

• Control simultaneously for credit conditions, beliefs, economic fundamentals.

		Regie	5510115 01 <i>Δp</i>		a Boenejst						
		Full Sample									
Regressors:	19	91:Q4 - 2017:	:Q4	2000:Q1	- 2013:Q4	200	7:Q1 - 2017:	Q4			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
ΔCS_t	0.009***	0.009***	0.009***	0.009***	0.009***	0.009***	0.008**	0.006			
t-stat	(6.820)	(6.690)	(7.977)	(4.604)	(4.656)	(4.772)	(2.230)	(1.599)			
Δbci_t		0.002									
t-stat		(0.078)									
Δbci_t^{highFP}			0.012**								
t_stat			(2.026)								
Δhmi_t					0.930**						
t-stat					(2.383)						
$\Delta p_t^{e, med}$							0.002				
t-stat							(0.360)				
$\Delta p_t^{e, avg}$								0.003			
								(1.247)			
Fundamentals	\checkmark	\checkmark	\checkmark	 ✓ 	\checkmark	 ✓ 	\checkmark	` ë			
\bar{R}^2	[0.341]	[0.334]	[0.384]	[0.395]	[0.443]	[0.360]	[0.345]	[0.372]			

Regressions of Δp_t on ΔCS_t and $\Delta beliefs_t$

Notes: Regressions of Δp_t on CS, beliefs. Fundamentals: 10-year bond yield minus median SPF 10-year inflation forecast, and the median SPF forecast, of real GDP growth between t and t + 4. Newey-West corrected t-statistics in parentheses (lags = 4). * Sig. at 10%. ** Sig. at 5%. ** Sig. at 1%.

• ΔCS_t strongly significant; \overline{R}^2 column (1) about same as in **univariate regression** of Δp_t on ΔCS_t alone.

		negre	ззібніз бі <u>д</u> р	i on neol in	a Boomejer				
	Full Sample								
Regressors:	199	1:Q4 - 2017:	:Q4	2000:Q1	- 2013:Q4	200	7:Q1 - 2017:	Q4	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
ΔCS_t	0.009***	0.009***	0.009***	0.009***	0.009***	0.009***	0.008**	0.006	
t-stat	(6.820)	(6.690)	(7.977)	(4.604)	(4.656)	(4.772)	(2.230)	(1.599)	
Δbci_t		0.002							
t-stat		(0.078)							
Δbci_t^{highFP}			0.012**						
t-stat			(2.026)						
Δhmi_t			. ,		0.930**				
t-stat					(2.383)				
$\Delta p_t^{e, med}$							0.002		
t-stat							(0.360)		
$\Delta p_t^{e, avg}$								0.003	
								(1.247)	
Fundamentals	\checkmark	\checkmark	\checkmark	 ✓ 	\checkmark	√	\checkmark	`ë	
\bar{R}^2	[0.341]	[0.334]	[0.384]	[0.395]	[0.443]	[0.360]	[0.345]	[0.372]	

Regressions of Δp_t **on** ΔCS_t and $\Delta beliefs_t$

Notes: Regressions of Δp_i on CS, beliefs. Fundamentals: 10-year bond yield minus median SPF 10-year inflation forecast, and the median SPF forecast, of real GDP growth between t and t + 4. Newey-West corrected t-statistics in parentheses (lags = 4). * Sig. at 10%. ** Sig. at 5%. ** Sig. at 1%.

Cox and Ludvigson

• Two measures of beliefs have statistically significant explanatory power, add modestly to \overline{R}^2 compared to regression w/o beliefs.

	Full Sample										
Regressors:	19	91:Q4 - 2017	:Q4	2000:Q1	- 2013:Q4	200	7:Q1 - 2017:	Q4			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
ΔCS_t	0.009***	0.009***	0.009***	0.009***	0.009***	0.009***	0.008**	0.006			
t-stat	(6.820)	(6.690)	(7.977)	(4.604)	(4.656)	(4.772)	(2.230)	(1.599)			
Δbci_t		0.002									
t-stat		(0.078)									
Δbci_t^{highFP}			0.012**								
t-stat			(2.026)								
Δhmi_{t}			(2.020)		0.930**						
t_etat					(2.383)						
$\Delta p_t^{e, med}$					(2.000)		0.000				
Δp_t							0.002				
t-stat							(0.360)				
$\Delta p_t^{e,avg}$								0.003			
								(1.247)			
Fundamentals	\checkmark										
\bar{R}^2	[0.341]	[0.334]	[0.384]	[0.395]	[0.443]	[0.360]	[0.345]	[0.372]			

Regressions of Δp_t **on** ΔCS_t and $\Delta beliefs_t$

Notes: Regressions of Δp_i on CS, beliefs. Fundamentals: 10-year bond yield minus median SPF 10-year inflation forecast, and the median SPF forecast, of real GDP growth between t and t + 4. Newey-West corrected t-statistics in parentheses (lags = 4). * Sig. at 10%. ** Sig. at 5%. ** Sig. at 1%.

Cox and Ludvigson

• Two measures of beliefs previously significant no longer are, once ΔCS , fundamentals included.

		Kegie	3510113 01 <i>Δp</i>	f on BCof u	a Boenejst				
	Full Sample								
Regressors:	19	91:Q4 - 2017:	:Q4	2000:Q1	- 2013:Q4	200	07:Q1 - 2017:	Q4	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
ΔCS_t	0.009***	0.009***	0.009***	0.009***	0.009***	0.009***	0.008**	0.006	
t-stat	(6.820)	(6.690)	(7.977)	(4.604)	(4.656)	(4.772)	(2.230)	(1.599)	
Δbci_t		0.002							
t-stat		(0.078)							
Δbci_t^{highFP}			0.012**						
t-stat			(2.026)						
Δhmi_t					0.930**				
t-stat					(2.383)				
$\Delta p_t^{e, med}$							0.002		
t_stat							(0.360)		
$\Delta p_t^{e,avg}$								0.003	
11								(1.247)	
Fundamentals	\checkmark	\checkmark	\checkmark	√	\checkmark	~	\checkmark	V	
\bar{R}^2	[0.341]	[0.334]	[0.384]	[0.395]	[0.443]	[0.360]	[0.345]	[0.372]	

Regressions of Δp_t on ΔCS_t and $\Delta beliefs_t$

Notes: Regressions of Δp_t on CS, beliefs. Fundamentals: 10-year bond yield minus median SPF 10-year inflation forecast, and the median SPF forecast, of real GDP growth between t and t + 4. Newey-West corrected t-statistics in parentheses (lags = 4). * Sig. at 10%. ** Sig. at 5%. ** Sig. at 1%.

Cox and Ludvigson

• GHC subsample, marginal explanatory power of credit standards larger.

Regr	Regressions of Δp_t on ΔCS_t and $\Delta beliefs_t$								
	GHC Subsample 2000:Q1-2010:Q4								
Regressors:	(1)	(2)	(3)	(4)					
ΔCS_t	0.008***	0.008***	0.008***	0.008***					
t-stat	(3.292)	(3.401)	(3.611)	(3.542)					
Δbci_t		0.029							
t-stat		(0.750)							
Δbci_t^{highFP}			0.007						
t-stat			(1.166)						
Δhmi_t				0.659*					
t-stat				(1.914)					
$\Delta p_t^{e, med}$									
t-stat									
$\Delta p_t^{e, avg}$									
t-stat									
Fundamentals	\checkmark	\checkmark	\checkmark	\checkmark					
\bar{R}^2	[0.581]	[0.573]	[0.585]	[0.607]					

Notes: Regressions of Δp_t on CS, beliefs. Fundamentals: 10-year bond yield-median SPF 10-year inflation forecast, and the median SPF forecast of real GDP growth between t and t + 4. Newey-West corrected t-statistics in parentheses (lags = 4). * Sig. at 10%. ** Sig. at 5%. *** Sig. at 5%. ***

• One measure of beliefs is marginally significant; adds small amount to \overline{R}^2 compared to regression w/o Δhmi .

Regro	Regressions of Δp_t on ΔCS_t and $\Delta beliefs_t$								
	GHC Subsample 2000:Q1-2010:Q4								
Regressors:	(1)	(2)	(3)	(4)					
ΔCS_t	0.008***	0.008***	0.008***	0.008***					
t-stat	(3.292)	(3.401)	(3.611)	(3.542)					
Δbci_t		0.029							
t-stat		(0.750)							
Δbci_t^{highFP}			0.007						
t-stat			(1.166)						
Δhmi_t				0.659*					
t-stat				(1.914)					
$\Delta p_t^{e, med}$									
t-stat									
$\Delta p_t^{e,avg}$									
t-stat									
Fundamentals	\checkmark	\checkmark	\checkmark	\checkmark					
\bar{R}^2	[0.581]	[0.573]	[0.585]	[0.607]					

Notes: Regressions of Δp_t on CS, beliefs. Fundamentals: 10-year bond yield-median SPF 10-year inflation forecast, and the median SPF forecast of real GDP growth between t and t + 4. Newey-West corrected t-statistics in parentheses (lags = 4). * Sig. at 10%. ** Sig. at 5%. *** Sig. at 5%. ***

Summary of Evidence on Hypothesis 2

- Foregoing analysis pertinent to hypothesis 2 on explaining contemporaneous house price changes.
- ΔCS_t strong explanatory power controlling for fundamentals and beliefs.
- Two measures of beliefs have explanatory power controlling for fundamentals and ΔCS_t , but fraction variation explained smaller.
- Did beliefs push house prices beyond that justified by fundamentals and credit standards in boom/bust? Only Δhmi has marginal explanatory power for Δpt in GHC subsample.
- This measure explains $\approx 2.6\%$ more of variation compared to regression without Δhmi .

• Predict HP growth from *h* = 1 to *h* = 4 quarters ahead, controlling for **lagged house price** changes, **fundamentals**.

F	Regressions of $\Delta p_{t+h,t}$ on ΔCo_t and $\Delta beneficial$							
	Sample: 1991:Q4 - 2017:Q4							
Regressor:			orecast horiz					
	h = 1	h = 1	h = 2	h = 3	h = 4			
ΔCS_t	0.009***	0.006***	0.016***	0.021***	0.021***			
t-stat	(5.025)	(3.539)	(3.989)	(3.421)	(2.688)			
Δp_t		0.320***	0.205	0.539**	1.386***			
t-stat		(4.352)	(1.091)	(2.000)	(4.234)			
Fundamentals	\checkmark	\checkmark	\checkmark	~	~			
\bar{R}^2	[0.262]	[0.323]	[0.308]	[0.380]	[0.505]			
ΔCS_t	0.009***	0.007***	0.017***	0.021***	0.021***			
t-stat	(5.025)	(3.934)	(4.131)	(3.461)	(2.750)			
Δbci_t		0.073**	0.085	0.052	0.068			
t-stat		(2.067)	(1.398)	(0.774)	(0.800)			
Δp_t		0.319***	0.203	0.537*	1.381***			
t-stat		(4.063)	(1.052)	(1.968)	(4.177)			
Fundamentals	\checkmark	\checkmark	\checkmark	~	~			
\bar{R}^2	[0.262]	[0.344]	[0.314]	[0.377]	[0.503]			
ΔCS_t	0.009***	0.006***	0.016***	0.021***	0.021**			
t-stat	(5.025)	(3.525)	(3.881)	(3.308)	(2.627)			
Δbci_t^{highFP}		0.003	0.000	-0.004	-0.001			
t-stat		(0.559)	(0.016)	(-0.427)	(-0.086)			
Δp_t		0.301***	0.204	0.560*	1.391***			
t-stat		(3.507)	(1.007)	(1.947)	(4.000)			
Fundamentals	\checkmark	 Image: A second s	 Image: A second s	 ✓ 	 ✓ 			
\bar{R}^2	[0.262]	[0.320]	[0.301]	[0.375]	[0.500]			

Regressions of $\Delta p_{t+h,t}$ on ΔCS_t and $\Delta beliefs_t$

Notes: Regressions of $\Delta p_{t+h,l}$ (*h* in quarters) on ΔCS_t and $\Delta beliefs_t$. Fundamentals: 10-year bond yield-median SPF 10-year inflation forecast, and the median SPF forecast of real GDP growth between *t* and *t* + 4. Newey-West corrected *t*-statistics in parentheses (lags = 4). * Sig. at 10%. ** Sig. at 1%.

Cox and Ludvigson

• ΔCS_t strong marginal predictor of $\Delta p_{t+h,t}$, for h = 1, ..., 4. Adding *lagged* Δp_t adds modest amount to the \overline{R}^2 with ΔCS_t alone.

	Regressions of $\Delta p_{t+h,t}$ on ΔCS_t and $\Delta beliefs_t$								
Regressor:			orecast horiz						
	h = 1	h = 1	h = 2	h = 3	h = 4				
ΔCS_t	0.009***	0.006***	0.016***	0.021***	0.021***				
t-stat	(5.025)	(3.539)	(3.989)	(3.421)	(2.688)				
Δp_t		0.320***	0.205	0.539**	1.386***				
t-stat		(4.352)	(1.091)	(2.000)	(4.234)				
Fundamentals	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
\bar{R}^2	[0.262]	[0.323]	[0.308]	[0.380]	[0.505]				
ΔCS_t	0.009***	0.007***	0.017***	0.021***	0.021***				
t-stat	(5.025)	(3.934)	(4.131)	(3.461)	(2.750)				
Δbci_t		0.073**	0.085	0.052	0.068				
t-stat		(2.067)	(1.398)	(0.774)	(0.800)				
Δp_t		0.319***	0.203	0.537*	1.381***				
t-stat		(4.063)	(1.052)	(1.968)	(4.177)				
Fundamentals	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
\bar{R}^2	[0.262]	[0.344]	[0.314]	[0.377]	[0.503]				
ΔCS_t	0.009***	0.006***	0.016***	0.021***	0.021**				
t-stat	(5.025)	(3.525)	(3.881)	(3.308)	(2.627)				
Δbci_t^{highFP}		0.003	0.000	-0.004	-0.001				
t-stat		(0.559)	(0.016)	(-0.427)	(-0.086)				
Δp_t		0.301***	0.204	0.560*	1.391***				
t-stat		(3.507)	(1.007)	(1.947)	(4.000)				
Fundamentals	\checkmark	~	 Image: A second s	 Image: A start of the start of	 Image: A second s				
\bar{R}^2	[0.262]	[0.320]	[0.301]	[0.375]	[0.500]				

Regressions of $\Delta p_{t+h,t}$ on ΔCS_t and $\Delta beliefs_t$

Notes: Regressions of $\Delta p_{t+h,l}$ (*h* in quarters) on ΔCS_t and $\Delta beliefs_t$. Fundamentals: 10-year bond yield-median SPF 10-year inflation forecast, and the median SPF forecast of real GDP growth between *t* and *t* + 4. Newey-West corrected *t*-statistics in parentheses (lags = 4). * Sig. at 10%. ** Sig. at 1%.

Cox and Ludvigson

• Beliefs have little quantitatively important predictive power.

1	Regressions of $\Delta p_{t+h,t}$ on ΔCS_t and $\Delta bellefs_t$								
	Sample: 1991:Q4 - 2017:Q4								
Regressor:		Fo	orecast horiz	on					
	h = 1	h = 1	h = 2	h = 3	h = 4				
ΔCS_t	0.009***	0.006***	0.016***	0.021***	0.021***				
t-stat	(5.025)	(3.539)	(3.989)	(3.421)	(2.688)				
Δp_t		0.320***	0.205	0.539**	1.386***				
t-stat		(4.352)	(1.091)	(2.000)	(4.234)				
Fundamentals	\checkmark	~	\checkmark	\checkmark	~				
\bar{R}^2	[0.262]	[0.323]	[0.308]	[0.380]	[0.505]				
ΔCS_t	0.009***	0.007***	0.017***	0.021***	0.021***				
t-stat	(5.025)	(3.934)	(4.131)	(3.461)	(2.750)				
Δbci_t		0.073**	0.085	0.052	0.068				
t-stat		(2.067)	(1.398)	(0.774)	(0.800)				
Δp_t		0.319***	0.203	0.537*	1.381***				
t-stat		(4.063)	(1.052)	(1.968)	(4.177)				
Fundamentals	~	~	\checkmark	\checkmark	~				
\bar{R}^2	[0.262]	[0.344]	[0.314]	[0.377]	[0.503]				
ΔCS_t	0.009***	0.006***	0.016***	0.021***	0.021**				
t-stat	(5.025)	(3.525)	(3.881)	(3.308)	(2.627)				
Δbci_{t}^{highFP}		0.003	0.000	-0.004	-0.001				
t-stat		(0.559)	(0.016)	(-0.427)	(-0.086)				
Δp_t		0.301***	0.204	0.560*	1.391***				
t-stat		(3.507)	(1.007)	(1.947)	(4.000)				
Fundamentals	~	` < `	· 🗸	` < ´	` √ `				
\bar{R}^2	[0.262]	[0.320]	[0.301]	[0.375]	[0.500]				

Notes: Regressions of $\Delta p_{t+h,t}$ (*t* in quarters) on ΔCS_t and $\Delta beliefs_t$. Fundamentals: 10-year bond yield-median SPF 10-year inflation forecast, and the median SPF forecast of real GDP growth between *t* and *t* + 4. Newey-West corrected *t*-statistics in parentheses (lags = 4). * Sig. at 10%. ** Sig. at 15%.

Cox and Ludvigson

• **One specification** => Δbci_t significant for predicting Δp_{t+1} .

Regressions of $\Delta p_{t+h,t}$ on ΔCS_t and $\Delta benefs_t$									
	Sample: 1991:Q4 - 2017:Q4								
Regressor:	Forecast horizon								
	h = 1	h = 1	h = 2	h = 3	h = 4				
ΔCS_t	0.009***	0.006***	0.016***	0.021***	0.021***				
t-stat	(5.025)	(3.539)	(3.989)	(3.421)	(2.688)				
Δp_t		0.320***	0.205	0.539**	1.386***				
t-stat		(4.352)	(1.091)	(2.000)	(4.234)				
Fundamentals	\checkmark	\checkmark	~	~	~				
\bar{R}^2	[0.262]	[0.323]	[0.308]	[0.380]	[0.505]				
ΔCS_t	0.009***	0.007***	0.017***	0.021***	0.021***				
t-stat	(5.025)	(3.934)	(4.131)	(3.461)	(2.750)				
Δbci_t		0.073**	0.085	0.052	0.068				
t-stat		(2.067)	(1.398)	(0.774)	(0.800)				
Δp_t		0.319***	0.203	0.537*	1.381***				
t-stat		(4.063)	(1.052)	(1.968)	(4.177)				
Fundamentals	\checkmark	\checkmark	~	~	~				
\bar{R}^2	[0.262]	[0.344]	[0.314]	[0.377]	[0.503]				
ΔCS_t	0.009***	0.006***	0.016***	0.021***	0.021**				
t-stat	(5.025)	(3.525)	(3.881)	(3.308)	(2.627)				
Δbci_t^{highFP}		0.003	0.000	-0.004	-0.001				
t-stat		(0.559)	(0.016)	(-0.427)	(-0.086)				
Δp_t		0.301***	0.204	0.560*	1.391***				
t-stat		(3.507)	(1.007)	(1.947)	(4.000)				
Fundamentals	\checkmark	 Image: A second s	 ✓ 	 ✓ 	 ✓ 				
\bar{R}^2	[0.262]	[0.320]	[0.301]	[0.375]	[0.500]				

Regressions of $\Delta p_{t+h,t}$ on ΔCS_t and $\Delta beliefs_t$

Notes: Regressions of $\Delta p_{t+h,t}$ (*h* in quarters) on ΔCS_t and $\Delta beliefs_t$. Fundamentals: 10-year bond yield-median SPF 10-year inflation forecast, and the median SPF forecast of real GDP growth between *t* and *t* + 4. Newey-West corrected *t*-statistics in parentheses (lags = 4). * Sig. at 10%. ** Sig. at 15%.

Cox and Ludvigson

Predicting House Price Growth $\Delta p_{t+h,t}$ • Adds little to \overline{R}^2 over specification w/o Δbci_t .

Regressions of $\Delta p_{t+h,t}$ on ΔCS_t and $\Delta benefs_t$									
	Sample: 1991:Q4 - 2017:Q4								
Regressor:	Forecast horizon								
	h = 1	h = 1	h = 2	h = 3	h = 4				
ΔCS_t	0.009***	0.006***	0.016***	0.021***	0.021***				
t-stat	(5.025)	(3.539)	(3.989)	(3.421)	(2.688)				
Δp_t		0.320***	0.205	0.539**	1.386***				
t-stat		(4.352)	(1.091)	(2.000)	(4.234)				
Fundamentals	\checkmark	~	~	~	~				
\bar{R}^2	[0.262]	[0.323]	[0.308]	[0.380]	[0.505]				
ΔCS_t	0.009***	0.007***	0.017***	0.021***	0.021***				
t-stat	(5.025)	(3.934)	(4.131)	(3.461)	(2.750)				
Δbci_t		0.073**	0.085	0.052	0.068				
t-stat		(2.067)	(1.398)	(0.774)	(0.800)				
Δp_t		0.319***	0.203	0.537*	1.381***				
t-stat		(4.063)	(1.052)	(1.968)	(4.177)				
Fundamentals	\checkmark	\checkmark	~	~	~				
\bar{R}^2	[0.262]	[0.344]	[0.314]	[0.377]	[0.503]				
ΔCS_t	0.009***	0.006***	0.016***	0.021***	0.021**				
t-stat	(5.025)	(3.525)	(3.881)	(3.308)	(2.627)				
Δbci_t^{highFP}		0.003	0.000	-0.004	-0.001				
t-stat		(0.559)	(0.016)	(-0.427)	(-0.086)				
Δp_t		0.301***	0.204	0.560*	1.391***				
t-stat		(3.507)	(1.007)	(1.947)	(4.000)				
Fundamentals	~	· √	· ✓	· 🗸	 Image: A second s				
\bar{R}^2	[0.262]	[0.320]	[0.301]	[0.375]	[0.500]				

Regressions of $\Delta p_{t+h,t}$ on ΔCS_t and $\Delta beliefs_t$

Notes: Regressions of $\Delta p_{t+h,i}$ (*h* in quarters) on ΔCS_t and $\Delta beliefs_t$. Fundamentals: 10-year bond yield-median SPF 10-year inflation forecast, and the median SPF forecast of real GDP growth between *t* and *t* + 4. Newey-West corrected *t*-statistics in parentheses (lags = 4). * Sig. at 10%. ** Sig. at 15%.

Cox and Ludvigson

• No predictive power for h = 2, ..., 4.

Regressions of $\Delta p_{t+h,t}$ on ΔCS_t and $\Delta benefs_t$									
	Sample: 1991:Q4 - 2017:Q4								
Regressor:	Forecast horizon								
	h = 1	h = 1	h = 2	h = 3	h = 4				
ΔCS_t	0.009***	0.006***	0.016***	0.021***	0.021***				
t-stat	(5.025)	(3.539)	(3.989)	(3.421)	(2.688)				
Δp_t		0.320***	0.205	0.539**	1.386***				
t-stat		(4.352)	(1.091)	(2.000)	(4.234)				
Fundamentals	\checkmark	\checkmark	\checkmark	~	~				
\bar{R}^2	[0.262]	[0.323]	[0.308]	[0.380]	[0.505]				
ΔCS_t	0.009***	0.007***	0.017***	0.021***	0.021***				
t-stat	(5.025)	(3.934)	(4.131)	(3.461)	(2.750)				
Δbci_t		0.073**	0.085	0.052	0.068				
t-stat		(2.067)	(1.398)	(0.774)	(0.800)				
Δp_t		0.319***	0.203	0.537*	1.381***				
t-stat		(4.063)	(1.052)	(1.968)	(4.177)				
Fundamentals	√	√	~	~	~				
\bar{R}^2	[0.262]	[0.344]	[0.314]	[0.377]	[0.503]				
ΔCS_t	0.009***	0.006***	0.016***	0.021***	0.021**				
t-stat	(5.025)	(3.525)	(3.881)	(3.308)	(2.627)				
Δbci_t^{highFP}		0.003	0.000	-0.004	-0.001				
t-stat		(0.559)	(0.016)	(-0.427)	(-0.086)				
Δp_t		0.301***	0.204	0.560*	1.391***				
t-stat		(3.507)	(1.007)	(1.947)	(4.000)				
Fundamentals	\checkmark	\checkmark	\checkmark	~	\checkmark				
R ²	[0.262]	[0.320]	[0.301]	[0.375]	[0.500]				

Regressions of $\Delta p_{t+h,t}$ on ΔCS_t and $\Delta beliefs_t$

Notes: Regressions of $\Delta p_{t+h,t}$ (*h* in quarters) on ΔCS_t and $\Delta beliefs_t$. Fundamentals: 10-year bond yield-median SPF 10-year inflation forecast, and the median SPF forecast of real GDP growth between *t* and *t* + 4. Newey-West corrected *t*-statistics in parentheses (lags = 4). * Sig. at 10%. ** Sig. at 15%.

Cox and Ludvigson

Predicting House Price Growth $\Delta p_{t+h,t}$ • ΔCS_t strong marginal predictor of $\Delta p_{t+h,t}$ for h = 1, ..., 4.

Regressions of $\Delta p_{t+h,t}$ on ΔCS_t and $\Delta beliefs_t$									
	Panel A: 2000:Q1 - 2013:Q4								
Regressor:	Forecast horizon								
	h = 1	h = 1	h = 2	h = 3	h = 4				
ΔCS_t	0.010***	0.008***	0.020***	0.022***	0.019*				
t-stat	(4.742)	(3.472)	(3.750)	(2.742)	(1.955)				
Δhmi_t		0.109	0.076	-0.112	0.253				
t-stat		(0.451)	(0.134)	(-0.148)	(0.319)				
Δp_t		0.282***	0.171	0.542	1.320***				
t-stat		(2.983)	(0.762)	(1.570)	(3.033)				
Fundamentals	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
\bar{R}^2	[0.309]	[0.337]	[0.340]	[0.400]	[0.506]				
		Panel	B: 2007:Q1 - 2	2017:Q4					
ΔCS_t	0.010***	0.009***	0.022***	0.023***	0.024***				
t-stat	(4.699)	(2.508)	(4.972)	(3.590)	(4.197)				
$\Delta p_t^{e, med}$		0.001	0.002	0.001	-0.014				
t-stat		(0.226)	(0.319)	(0.093)	(-1.488)				
Δp_t		0.111	-0.400**	-0.359**	0.410**				
t-stat		(1.203)	(-2.656)	(-2.289)	(2.478)				
Fundamentals	\checkmark	1	~	1	1				
\bar{R}^2	[0.319]	[0.293]	[0.542]	[0.750]	[0.835]				
ΔCS_t	0.010***	0.008***	0.020***	0.018***	0.017**				
t-stat	(4.699)	(2.848)	(6.176)	(3.451)	(2.654)				
$\Delta p_t^{e, avg}$		0.001	0.005	0.006	0.000				
t-stat		(0.759)	(1.262)	(1.248)	(0.089)				
Δp_t		0.095	-0.463***	-0.442***	0.411**				
t-stat		(1.126)	(-3.237)	(-2.940)	(2.312)				
Fundamentals	\checkmark	1	· ✓	` <	✓				
\bar{R}^2	[0.319]	[0.297]	[0.561]	[0.769]	[0.823]				

Regressions of $\Delta p_{t+h,t}$ on ΔCS_t and $\Delta beliefs_t$

Notes: Regressions of $\Delta p_{t+h,t}$ (*h* in quarters) on ΔCS_t and beliefs. Fundamentals: 10-year bond yield-median SPF 10-year inflation forecast, and the median SPF forecast of real GDP growth between *t* and *t* + 4. Newey-West corrected *t*-statistics in parentheses (lags = 4). * Sig. at 10% * Sig. at 1%

Cox and Ludvigson

Predicting House Price Growth $\Delta p_{t+h,t}$ • Beliefs have no predictive power.

Regressions of $\Delta p_{t+h,t}$ on ΔCS_t and $\Delta beliefs_t$									
	Panel A: 2000:Q1 - 2013:Q4								
Regressor:	Forecast horizon								
	h = 1	h = 1	h = 2	h = 3	h = 4				
ΔCS_t	0.010***	0.008***	0.020***	0.022***	0.019*				
t-stat	(4.742)	(3.472)	(3.750)	(2.742)	(1.955)				
Δhmi_t		0.109 (0.451)	0.076 (0.134)	-0.112	0.253				
t-stat		(-0.148)	(0.319)						
Δp_t		0.282***	0.171	0.542	1.320***				
t-stat		(2.983)	(0.762)	(1.570)	(3.033)				
Fundamentals	~	~	\checkmark	√	~				
\bar{R}^2	[0.309]	[0.337]	[0.340]	[0.400]	[0.506]				
	Panel B: 2007:Q1 - 2017:Q4								
ΔCS_t	0.010***	0.009***	0.022***	0.023***	0.024***				
t-stat	(4.699)	(2.508)	(4.972)	(3.590)	(4.197)				
$\Delta p_t^{e, med}$		0.001	0.002	0.001	-0.014				
t-stat		(0.226)	(0.319)	(0.093)	(-1.488)				
Δp_t		0.111	-0.400**	-0.359**	0.410**				
t-stat		(-2.289)	(2.478)						
Fundamentals	~	\checkmark	\checkmark	√	✓				
\bar{R}^2	[0.319]	[0.293]	[0.542]	[0.750]	[0.835]				
ΔCS_t	0.010***	0.008***	0.020***	0.018***	0.017**				
t-stat	(4.699)	(2.848)	(6.176)	(3.451)	(2.654)				
$\Delta p_t^{e, avg}$		0.001	0.005	0.006	0.000				
t-stat		(0.759)	(1.262)	(1.248)	(0.089)				
Δp_t		0.095	-0.463***	-0.442***	0.411**				
t-stat		(1.126)	(-3.237)	(-2.940)	(2.312)				
Fundamentals	~	\checkmark	\checkmark	√	~				
\bar{R}^2	[0.319]	[0.297]	[0.561]	[0.769]	[0.823]				

Pageagaione of An ... on ACC, and Abaliata

Notes: Regressions of $\Delta p_{t+h,t}$ (*h* in quarters) on ΔCS_t and beliefs. Fundamentals: 10-year bond yield-median SPF 10-year inflation forecast, and the median SPF forecast of real GDP growth between *t* and *t* + 4. Newey-West corrected *t*-statistics in parentheses (lags = 4). * Sig. at 10% ** Sig. at 1%

Cox and Ludvigson

Predicting House Price Growth $\Delta p_{t+h,t}$ in the GHC

• ΔCS_t strong marginal predictor of $\Delta p_{t+h,t}$, for h = 1, ..., 3.

Forecast horizon							Forecast horizon				
Regressor:	h = 1	h = 1	h = 2	h = 3	h = 4	Regressor:	h = 1	h = 1	h = 2	h = 3	h = 4
ΔCS_t t-stat Δp_t t-stat Fund. R ²	0.010*** (2.865) (0.430]	0.006** (2.090) 0.435*** (2.795) (0.493]	0.015** (2.661) 0.554* (1.880) (0.472]	0.016* (1.975) 1.072** (2.421) (0.490]	$\begin{array}{c} 0.009 \\ (1.101) \\ 2.198^{***} \\ (4.264) \\ \checkmark \\ [0.572] \end{array}$	$\begin{array}{c} \Delta CS_t \\ t\text{-stat} \\ \Delta bcl_t \\ t\text{-stat} \\ \Delta p_t \\ t\text{-stat} \\ Fund. \\ \bar{R}^2 \end{array}$	0.010*** (2.865)	0.006** (2.063) -0.002 (-0.283) 0.445*** (2.824) √ [0.481]	$\begin{array}{c} 0.015^{**}\\ (2.625)\\ -0.003\\ (-0.390)\\ 0.568^{*}\\ (1.915)\\ \checkmark\\ [0.459]\end{array}$	0.015* (1.928) -0.003 (-0.397) 1.089** (2.371) \checkmark [0.477]	$\begin{array}{c} 0.009 \\ (1.043) \\ -0.004 \\ (-0.376) \\ 2.219^{***} \\ (4.167) \\ \checkmark \\ [0.561] \end{array}$
	Forecast horizon				Forecast horizon						
Regressor:	h = 1	h = 1	h = 2	h = 3	h = 4	Regressor:	h = 1	h = 1	h = 2	h = 3	h = 4
$\begin{array}{l} \Delta CS_t \\ t\text{-stat} \\ \Delta bci_t \\ t\text{-stat} \\ \Delta p_t \\ t\text{-stat} \\ Fund. \end{array}$	0.010*** (2.865)	0.006** (2.121) 0.056 (1.222) 0.420** (2.543)	0.016*** (2.713) 0.079 (0.947) 0.532* (1.750)	0.016* (2.003) 0.078 (0.600) 1.051** (2.352) ✓	0.010 (1.181) 0.115 (0.617) 2.167*** (4.076) √	ΔCS_t t-stat Δhmi_t t-stat Δp_t t-stat Fund.	0.010*** (2.865)	0.006* (1.925) -0.123 (-0.540) 0.461*** (2.993) ✓	0.015** (2.613) -0.025 (-0.039) 0.571** (2.253)	0.014* (1.839) -0.378 (-0.431) 1.145*** (2.975)	0.008 (0.958) -0.307 (-0.313) 2.267*** (4.662) ✓
\bar{R}^2	[0.430]	[0.493]	[0.466]	[0.480]	[0.565]	\bar{R}^2	[0.430]	[0.473]	[0.452]	[0.476]	[0.561]

Regressions of $\Delta p_{t+h,t}$ on ΔCS_t and $\Delta beliefs_t$ 2000:Q1-2010:Q4

Notes: Regressions of $\Delta p_{t+h,l}$ (h in quarters) on ΔCS_l and beliefs. Fundamentals: 10-year bond yield-median SPF 10-year inflation forecast, and the median SPF forecast of real GDP growth between t and t + 4. Newey-West corrected t-statistics in parentheses (lags = 4). * Sig. at 10%. ** Sig. at 1%.

Cox and Ludvigson

Predicting House Price Growth $\Delta p_{t+h,t}$ in the GHC

• ΔCS_t & *fundamentals*_t highly correlated, drive other out h = 4.

Forecast horizon					Forecast horizon				on		
Regressor:	h = 1	h = 1	h = 2	h = 3	h = 4	Regressor:	h = 1	h = 1	h = 2	h = 3	h = 4
$\begin{array}{l} \Delta CS_t \\ t\text{-stat} \\ \Delta p_t \\ t\text{-stat} \\ Fund. \\ R^2 \end{array}$	0.010*** (2.865) (0.430]	0.006** (2.090) 0.435*** (2.795) √ [0.493]	0.015** (2.661) 0.554* (1.880) ✓ [0.472]	$\begin{array}{c} 0.016^{*} \\ (1.975) \\ 1.072^{**} \\ (2.421) \\ \checkmark \\ [0.490] \end{array}$	0.009 (1.101) 2.198*** (4.264) \checkmark [0.572]	$\begin{array}{l} \Delta CS_t \\ t\text{-stat} \\ \Delta bcl_t \\ t\text{-stat} \\ \Delta p_t \\ t\text{-stat} \\ Fund. \\ \bar{R}^2 \end{array}$	0.010*** (2.865) √ [0.430]	$\begin{array}{c} 0.006^{**} \\ (2.063) \\ -0.002 \\ (-0.283) \\ 0.445^{***} \\ (2.824) \\ \checkmark \\ [0.481] \end{array}$	$\begin{array}{c} 0.015^{**} \\ (2.625) \\ -0.003 \\ (-0.390) \\ 0.568^{*} \\ (1.915) \\ \checkmark \\ [0.459] \end{array}$	$\begin{array}{c} 0.015^{*} \\ (1.928) \\ -0.003 \\ (-0.397) \\ 1.089^{**} \\ (2.371) \\ \checkmark \\ [0.477] \end{array}$	$\begin{array}{c} 0.009 \\ (1.043) \\ -0.004 \\ (-0.376) \\ 2.219^{***} \\ (4.167) \\ \checkmark \\ [0.561] \end{array}$
		Fc	recast horiz	on				Fc	recast horiz	on	
Regressor:	h = 1	h = 1	h = 2	h = 3	h = 4	Regressor:	h = 1	h = 1	h = 2	h = 3	h = 4
$\begin{array}{l} \Delta CS_t \\ t\text{-stat} \\ \Delta bci_t \\ t\text{-stat} \\ \Delta p_t \\ t\text{-stat} \\ Fund. \\ \bar{R}^2 \end{array}$	0.010*** (2.865) √ [0.430]	0.006** (2.121) 0.056 (1.222) 0.420** (2.543) ✓ [0.493]	0.016^{***} (2.713) 0.079 (0.947) 0.532^{*} (1.750) \checkmark [0.466]	0.016^{*} (2.003) 0.078 (0.600) 1.051^{**} (2.352) \checkmark [0.480]	0.010 (1.181) 0.115 (0.617) 2.167*** (4.076) ✓ [0.565]	$\begin{array}{l} \Delta CS_t \\ t\text{-stat} \\ \Delta hmi_t \\ t\text{-stat} \\ \Delta p_t \\ t\text{-stat} \\ Fund. \\ R^2 \end{array}$	0.010*** (2.865) √ [0.430]	0.006* (1.925) -0.123 (-0.540) 0.461*** (2.993) ✓ [0.473]	0.015** (2.613) -0.025 (-0.039) 0.571** (2.253) ✓ [0.452]	0.014^{*} (1.839) -0.378 (-0.431) 1.145 ^{***} (2.975) \checkmark [0.476]	0.008 (0.958) -0.307 (-0.313) 2.267*** (4.662) ✓ [0.561]

Regressions of $\Delta p_{t+h,t}$ on ΔCS_t and $\Delta beliefs_t$ 2000:Q1-2010:Q4

Notes: Regressions of $\Delta p_{t+h,l}$ (*h* in quarters) on ΔCS_l and beliefs. Fundamentals: 10-year bond yield-median SPF 10-year inflation forecast, and the median SPF forecast of real GDP growth between *l* and *t* + 4. Newey-West corrected *l*-statistics in parentheses (lags = 4). * Sig. at 10%. ** Sig. at 1%.

Predicting House Price Growth $\Delta p_{t+h,t}$ in the GHC

• Beliefs have no predictive power.

Forecast horizon					Forecast horizon						
Regressor:	h = 1	h = 1	h = 2	h = 3	h = 4	Regressor:	h = 1	h = 1	h = 2	h = 3	h = 4
$\begin{array}{l} \Delta CS_t \\ t\text{-stat} \\ \Delta p_t \\ t\text{-stat} \\ Fund. \\ \mathbb{R}^2 \end{array}$	0.010*** (2.865) ✓ [0.430]	0.006** (2.090) 0.435*** (2.795) ✓ [0.493]	0.015** (2.661) 0.554* (1.880) ✓ [0.472]	0.016^{*} (1.975) 1.072^{**} (2.421) \checkmark [0.490]	$\begin{array}{c} 0.009 \\ (1.101) \\ 2.198^{***} \\ (4.264) \\ \checkmark \\ [0.572] \end{array}$	$\begin{array}{c} \Delta CS_t \\ t\text{-stat} \\ \Delta bct_t^{highFP} \\ t\text{-stat} \\ \Delta p_t \\ t\text{-stat} \\ Fund. \\ \bar{R}^2 \end{array}$	0.010*** (2.865) √ [0.430]	0.006** (2.063) -0.002 (-0.283) 0.445*** (2.824) ✓ [0.481]	$\begin{array}{c} 0.015^{**} \\ (2.625) \\ -0.003 \\ (-0.390) \\ 0.568^{*} \\ (1.915) \\ \checkmark \\ [0.459] \end{array}$	0.015* (1.928) -0.003 (-0.397) 1.089** (2.371) ✓ [0.477]	$\begin{array}{c} 0.009 \\ (1.043) \\ \hline -0.004 \\ (-0.376) \\ 2.219^{***} \\ (4.167) \\ \checkmark \\ [0.561] \end{array}$
	Forecast horizon					Forecast horizon					
Regressor:	h = 1	h = 1	h = 2	h = 3	h = 4	Regressor:	h = 1	h = 1	h = 2	h = 3	h = 4
$\begin{array}{l} \Delta CS_t \\ t\text{-stat} \\ \Delta bci_t \\ t\text{-stat} \\ \Delta p_t \\ t\text{-stat} \\ Fund. \\ \bar{R}^2 \end{array}$	0.010*** (2.865) √ [0.430]	0.006** (2.121) 0.056 (1.222) 0.420** (2.543) ✓ [0.493]	$\begin{array}{c} 0.016^{***} \\ (2.713) \\ 0.079 \\ (0.947) \\ 0.532^{*} \\ (1.750) \\ \checkmark \\ [0.466] \end{array}$	0.016* (2.003) 0.078 (0.600) 1.051** (2.352) √ [0.480]	0.010 (1.181) 0.115 (0.617) 2.167*** (4.076) \checkmark [0.565]	$\begin{array}{l} \Delta CS_t \\ t\text{-stat} \\ \Delta hmi_t \\ t\text{-stat} \\ \Delta p_t \\ t\text{-stat} \\ Fund. \\ \mathbb{R}^2 \end{array}$	0.010**** (2.865) √ [0.430]	0.006* (1.925) -0.123 (-0.540) 0.461*** (2.993) ✓ [0.473]	0.015^{**} (2.613) -0.025 (-0.039) 0.571^{**} (2.253) \checkmark [0.452]	0.014^{*} (1.839) -0.378 (-0.431) 1.145 ^{***} (2.975) \checkmark [0.476]	0.008 (0.958) -0.307 (-0.313) 2.267*** (4.662) ✓ [0.561]

Regressions of $\Delta p_{t+h,t}$ on ΔCS_t and $\Delta beliefs_t$ 2000:Q1-2010:Q4

Notes: Regressions of $\Delta p_{t+h,l}$ (h in quarters) on ΔCs_l and beliefs. Fundamentals: 10-year bond yield-median SPF 10-year inflation forecast, and the median SPF forecast of real GDP growth between t and t + 4. Newey-West corrected t-statistics in parentheses (lags = 4). * Sig. at 10%. ** Sig. at 1%.

Summary of Evidence on Hypothesis 3

- Foregoing analysis pertinent to hypothesis 3 on predicting future house price changes.
- ΔCS_t strong predictive power controlling for fundamentals and beliefs at horizons from h = 1 to h = 4 quarters ahead.
- Beliefs, exhibit little meaningful predictive power controlling for fundamentals and ΔCS_t .

• Maybe causality runs the other way. **Exuberant beliefs** about house prices might have been the **singular driving force** behind rising home values and relaxed credit, with shift to **pessimism driving the bust**.

- Maybe causality runs the other way. **Exuberant beliefs** about house prices might have been the **singular driving force** behind rising home values and relaxed credit, with shift to **pessimism driving the bust**.
- If so, *shocks* to ΔCS_t that are **mutually uncorrelated** with *shocks* to Δp_t should have no impact on house price growth.

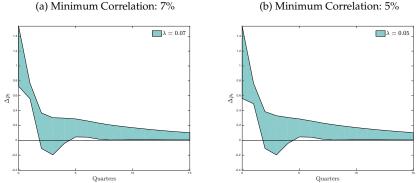
- Maybe causality runs the other way. **Exuberant beliefs** about house prices might have been the **singular driving force** behind rising home values and relaxed credit, with shift to **pessimism driving the bust**.
- If so, *shocks* to ΔCS_t that are **mutually uncorrelated** with *shocks* to Δp_t should have no impact on house price growth.
- Strategy: use a **structural VAR (SVAR)** in ΔCS_t and Δp_t .
- To identify **exogenous variation**, use the *shock-restricted* identification approach of Ludvigson, Ma, Ng (2015, 2016).
- *Set identification* of exogenous variation in SVAR under assumptions weaker than that required for *point identification*.

• Structural shocks of interest are **mutually uncorrelated** innovations in ΔCS_t and Δp_t .

- Structural shocks of interest are **mutually uncorrelated** innovations in ΔCS_t and Δp_t .
- Focus on identifying *shock to* ΔCS_t and tracing out effects on Δp_t .

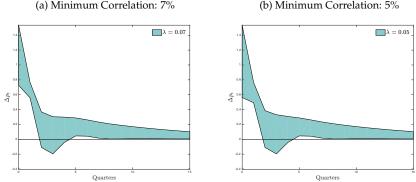
- Structural shocks of interest are **mutually uncorrelated** innovations in ΔCS_t and Δp_t .
- Focus on identifying *shock to* ΔCS_t and tracing out effects on Δp_t .
- **Identifying assumption**: shifts in **composition of mortgages**, an *external variable (EV)*, are informative about ΔCS shocks.

- Structural shocks of interest are **mutually uncorrelated** innovations in ΔCS_t and Δp_t .
- Focus on identifying *shock to* ΔCS_t and tracing out effects on Δp_t .
- **Identifying assumption**: shifts in **composition of mortgages**, an *external variable (EV)*, are informative about ΔCS shocks.
- Implemented by requiring *positive* ΔCS_t *shocks* (an easing) to exhibit a minimum correlation $\lambda > 0$ with $\Delta \ln(ABS/GSE)$.

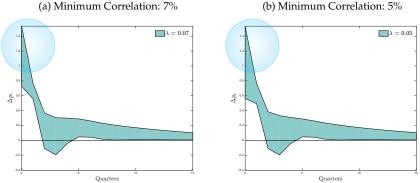

- Structural shocks of interest are **mutually uncorrelated** innovations in ΔCS_t and Δp_t .
- Focus on identifying *shock to* ΔCS_t and tracing out effects on Δp_t .
- **Identifying assumption**: shifts in **composition of mortgages**, an *external variable (EV)*, are informative about ΔCS shocks.
- Implemented by requiring *positive* ΔCS_t *shocks* (an easing) to exhibit a minimum correlation $\lambda > 0$ with $\Delta \ln(ABS/GSE)$.
- Has flavor of External IV or proxy VAR (Stock and Watson '08, Mertens and Ravn '14) but assumptions are weaker:

- Structural shocks of interest are **mutually uncorrelated** innovations in ΔCS_t and Δp_t .
- Focus on identifying *shock to* ΔCS_t and tracing out effects on Δp_t .
- **Identifying assumption**: shifts in **composition of mortgages**, an *external variable (EV)*, are informative about ΔCS shocks.
- Implemented by requiring *positive* ΔCS_t *shocks* (an easing) to exhibit a minimum correlation $\lambda > 0$ with $\Delta \ln(ABS/GSE)$.
- Has flavor of External IV or proxy VAR (Stock and Watson '08, Mertens and Ravn '14) but assumptions are weaker:
- Here the EV only required to exhibit minimum degree of *relevance*, *not required to be exogenous* as for valid IV.

- Structural shocks of interest are **mutually uncorrelated** innovations in ΔCS_t and Δp_t .
- Focus on identifying *shock to* ΔCS_t and tracing out effects on Δp_t .
- **Identifying assumption**: shifts in **composition of mortgages**, an *external variable (EV)*, are informative about ΔCS shocks.
- Implemented by requiring *positive* ΔCS_t *shocks* (an easing) to exhibit a minimum correlation $\lambda > 0$ with $\Delta \ln(ABS/GSE)$.
- Has flavor of External IV or proxy VAR (Stock and Watson '08, Mertens and Ravn '14) but assumptions are weaker:
- Here the EV only required to exhibit minimum degree of *relevance*, *not required to be exogenous* as for valid IV.
- Because our **assumptions are weaker**, we do not achieve point identification. But bounds may still be informative.


Cox and Ludvigson

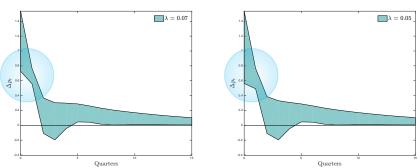
• Effects of a 1-StDev *increase* in ΔCS_t shock => *easing* of standards.


Dynamic Responses of Δp_t to a positive one standard deviation ΔCS_t shock. Panel (a) reports the identified set of responses of Δp_t to a one standard deviation shock in ΔCS with a correlation constraint that sets the minimum correlation between ΔCS and $\Delta \ln(\frac{ABS}{CSE})$ at $\lambda = 7\%$. Panel (b) reports the set of responses when $\lambda = 5\%$. The sample spans the period 1991:Q4-2017.Q4.

• Bounds of identified set are informative about impact effect.

Dynamic Responses of Δp_t to a positive one standard deviation ΔCS_t shock. Panel (a) reports the identified set of responses of Δp_t to a one standard deviation shock in ΔCS with a correlation constraint that sets the minimum correlation between ΔCS and $\Delta \ln(\frac{ABS}{CSE})$ at $\lambda = 7\%$. Panel (b) reports the set of responses when $\lambda = 5\%$. The sample spans the period 1991:Q4-2017:Q4.

• **High end**: 1-StDev shock increases *quarterly* Δp_t by 1.4% on impact, or 5.7% at annual rate.

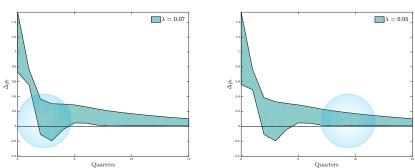


Dynamic Responses of Δp_t to a positive one standard deviation ΔCS_t shock. Panel (a) reports the identified set of responses of Δp_t to a one standard deviation shock in ΔCS with a correlation constraint that sets the minimum correlation between ΔCS and $\Delta \ln(\frac{ABS}{CSE})$ at $\lambda = 7\%$. Panel (b) reports the set of responses when $\lambda = 5\%$. The sample spans the period 1991:Q4-2017:Q4.

(a) Minimum Correlation: 7%

• Low end: 1-StDev shock increases quarterly Δp_t by 0.8% or 0.6% on impact (3.2% or 2.4% at annual rate).

(b) Minimum Correlation: 5%



Dynamic Responses of Δp_t to a positive one standard deviation ΔCS_t shock. Panel (a) reports the identified set of responses of Δp_t to a one standard deviation shock in ΔCS with a correlation constraint that sets the minimum correlation between ΔCS and $\Delta \ln(\frac{ABS}{CSE})$ at $\lambda = 7\%$. Panel (b) reports the set of responses when $\lambda = 5\%$. The sample spans the period 1991:Q4-2017.Q4.

(a) Minimum Correlation: 7%

• **Magnitudes are substantial** and well determined, but *persistence* of effects less well determined.

(b) Minimum Correlation: 5%

Dynamic Responses of Δp_t to a positive one standard deviation ΔCS_t shock. Panel (a) reports the identified set of responses of Δp_t to a one standard deviation shock in ΔCS with a correlation constraint that sets the minimum correlation between ΔCS and $\Delta \ln(\frac{ABS}{CSE})$ at $\lambda = 7\%$. Panel (b) reports the set of responses when $\lambda = 5\%$. The sample spans the period 1991;024-2017;Q4.

Cox and Ludvigson

Summary of Evidence on Hypothesis 4

- Foregoing analysis pertinent to hypothesis 4 on do credit standards cause house price changes?
- Shocks to ΔCS_t exhibit quantitatively important dynamic causal effects on Δp_t .
- Positive shocks => an easing of credit, increase home values; negative shocks => a tightening decrease them.

Conclusion

- Consider two potential driving forces of home price fluctuations: credit conditions and beliefs using direct measures of both spanning a range of time periods.
- A relaxation of credit standards positively related to the fraction of riskier non-conforming debt in total mortgage lending. Beliefs bear no relation to this fraction.
- Credit conditions have statistically and economically important explanatory and predictive power for aggregate house price changes.
- Two measures of beliefs have modest **explanatory power**, but **none have meaningful predictive power**.
- Structural VAR => credit standards shocks have **quantitatively** large dynamic causal effects on house price changes.

Appendix

Mortgage originations, credit supply, and beliefs

		r 1	11 -				
	Full sample						
Holder	ΔCS^{MA}	$\Delta_4 bci$	$\Delta_4 bci^{highFP}$	$\Delta_4 hmi$			
$\Delta_4 \log All$	0.057	2.059***	-0.117	17.986***			
t-stat	(1.274)	(3.003)	(-0.871)	(6.592)			
\bar{R}^2	[-0.020]	[0.274]	[0.011]	[0.295]			
$\Delta_4 \log PL$	0.187**	1.021	-0.177**	3.970			
t-stat	(2.722)	(0.890)	(-2.305)	(0.430)			
\bar{R}^2	[0.124]	[0.012]	[0.042]	[-0.082]			
$\Delta_4 \log GSE$	-0.057	2.565***	-0.171	17.066***			
t-stat	(-1.374)	(3.917)	(-1.106)	(5.830)			
\mathbb{R}^2	[-0.024]	[0.352]	[0.048]	[0.169]			
$\Delta_4 \log \left(\frac{PL}{GSE} \right)$	0.244***	-1.544	-0.006	-13.096			
t-stat	(5.706)	(-1.517)	(-0.043)	(-1.290)			
\bar{R}^2	[0.291]	[0.104]	[-0.042]	[-0.013]			

Regressions of the anual log change of each mortgage type. ΔCS^{MA} (four quarter moving average of credit supply). $\Delta_4 bci$ (anual change in buying condition index). $\Delta_4 bci_{t_1}^{highEP}$ (anual change in good time b/c prices will increase). $\Delta_4 hmi_t$ (anual change in house media index). Newey-West corrected *t*-statistics in parentheses (lags = 4). * Sig. 10%. ** Sig. 5%. *** Sig. 1%. Full sample spans available data in each case.

Mortgage originations, credit supply, and beliefs

	Full sample							
Holder	ΔCS^{MA}	$\Delta_4 bci$	$\Delta_4 bci^{highFP}$	$\Delta_4 hmi$				
$\Delta_4 \log All$	0.057	2.059***	-0.117	17.986***				
t-stat	(1.274)	(3.003)	(-0.871)	(6.592)				
\bar{R}^2	[-0.020]	[0.274]	[0.011]	[0.295]				
$\Delta_4 \log PL$	0.187**	1.021	-0.177**	3.970				
t-stat	(2.722)	(0.890)	(-2.305)	(0.430)				
\bar{R}^2	[0.124]	[0.012]	[0.042]	[-0.082]				
$\Delta_4 \log GSE$	-0.057	2.565***	-0.171	17.066***				
t-stat	(-1.374)	(3.917)	(-1.106)	(5.830)				
\bar{R}^2	[-0.024]	[0.352]	[0.048]	[0.169]				
<i>(</i>)								
$\Delta_4 \log \left(\frac{PL}{GSE} \right)$	0.244***	-1.544	-0.006	-13.096				
t-stat	(5.706)	(-1.517)	(-0.043)	(-1.290)				
\bar{R}^2	[0.291]	[0.104]	[-0.042]	[-0.013]				

Regressions of the anual log change of each mortgage type. ΔCS^{MA} (four quarter moving average of credit supply). $\Delta_4 bci$ (anual change in buying condition index). $\Delta_4 bci_{t_1}^{highEP}$ (anual change in good time b/c prices will increase). $\Delta_4 hmi_t$ (anual change in house media index). Newey-West corrected *t*-statistics in parentheses (lags = 4). * Sig. 10%. ** Sig. 5%. *** Sig. 1%. Full sample spans available data in each case.

Explanatory power of Δp_t for Δp_{t+h}

			nel A			
			ecast Horizon	n <i>h</i>		
Regressor	h = 1	h = 2	h = 3	h = 4		
Δp_t	0.519***	0.706**	1.160***	1.949***		
t-stat	(4.825)	(2.527)	(3.083)	(4.733)		
\bar{R}^2	[0.265]	[0.158]	[0.242]	[0.425]		
	Panel B					
	Δp_{t+h} on Forecast Horizon h					
Regressor	h = 1	h = 2	h = 3	h = 4		
$\Delta p_t^{\perp\Delta CS}$	0.336***	0.234	0.568*	1.368***		
t-stat	(3.672)	(1.053)	(1.826)	(3.778)		
\bar{R}^2	[0.069]	[0.003]	[0.031]	[0.137]		

Regressions of Δp_{t+h} **on** Δp_t **and** $\Delta p_t^{\perp\Delta CS}$. Panel A reports regressions of Δp_{t+h} on Δp_t . Panel B presents regression of Δp_{t+h} on the residual from a regression of Δp_t on ΔCS_t , $(e_t^{\perp\Delta CS})$. Newey-West corrected *t*-statistics in parentheses (lags = 4). * Sig, 10%. ** Sig, 5%. *** Sig, 1%. Sample spans 1991:Q4 - 2017:Q4.