
The Economics of International Sanctions

OLEG ITSKHOKI itskhoki@econ.UCLA.edu

 $\begin{array}{ll} D_{MITRY} \ M_{UKHIN} \\ \text{d.mukhin@LSE.ac.uk} \end{array}$

7th Annual Macroprudential Conference Sweden, August 2023

RUB/USD Exchange Rate

This Paper

- Address positive and normative questions:
 - do sanctions work? why ruble appreciated? is the exchange rate "irrelevant"?
 - what is the optimal sanctions mix? financial and fiscal implications?

This Paper

- Address positive and normative questions:
 - do sanctions work? why ruble appreciated? is the exchange rate "irrelevant"?
 - what is the optimal sanctions mix? financial and fiscal implications?
- Build on the exchange rate model from Itskhoki-Mukhin'21,22,23
- Dual role of exchange rate (sources of FX supply and demand):
 - goods market: exports and imports
 - asset markets: FX reserves and private savings

This Paper

- Address positive and normative questions:
 - do sanctions work? why ruble appreciated? is the exchange rate "irrelevant"?
 - what is the optimal sanctions mix? financial and fiscal implications?
- Build on the exchange rate model from Itskhoki-Mukhin'21,22,23
- Dual role of exchange rate (sources of FX supply and demand):
 - goods market: exports and imports
 - asset markets: FX reserves and private savings
- Roadmap
 - Equivalence of import, export and fin. sanctions: Lerner Symmetry
 - When Lerner Symmetry fails? Optimal sanctions mix
 - 3 Equilibrium Dynamics under Financial Sanctions

Equivalence. Lerner Symmetry

country's budget constraint:

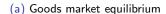
$$\frac{F_{t+1}^*}{R_t^*} - F_t^* = Y_t^* - P_t^* C_{Ft}$$

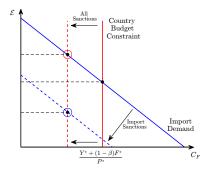
- in steady state: $(1 \beta)F^* + Y^* = P^*C_F$
- import demand (expenditure switching):

$$\frac{C_{Ft}}{Y_t} = \frac{\gamma}{1 - \gamma} \left(\frac{\mathcal{E}_t P_t^*}{P_t} \right)^{-\theta}$$

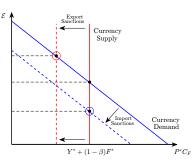
Equivalence. Lerner Symmetry

country's budget constraint:


$$\frac{F_{t+1}^*}{R_t^*} - F_t^* = Y_t^* - P_t^* C_{Ft}$$


- in steady state: $(1 \beta)F^* + Y^* = P^*C_F$
- import demand (expenditure switching):

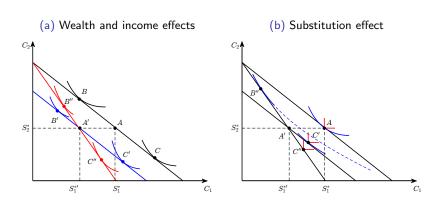
$$\frac{C_{Ft}}{Y_t} = \frac{\gamma}{1 - \gamma} \left(\frac{\mathcal{E}_t P_t^*}{P_t} \right)^{-\theta}$$


- Import, Export and Financial sanctions are equivalent in their effect on allocations, but have a differential effect on the exchange rate
 - Macro manifestation of Lerner Symmetry: equivalence between an export tax and an import tariff
 - Extends to fiscal effects and cost of living (inflation)
 - Sanctions are complementary

Illustration

(b) Currency market equilibrium

Limits of Lerner Symmetry


- Temporary sanctions or pre-announced sanctions
 - break uniformity requirement of Lerner symmetry
 - temporary import sanctions encourage savings/avoid need to borrow, and undo the effect of financial sanctions and borrowing constraints
 - in case of Russia: financial sanctions combined with import sanctions and commodity export boom

Limits of Lerner Symmetry

- Temporary sanctions or pre-announced sanctions
 - break uniformity requirement of Lerner symmetry
 - temporary import sanctions encourage savings/avoid need to borrow, and undo the effect of financial sanctions and borrowing constraints
 - in case of Russia: financial sanctions combined with import sanctions and commodity export boom

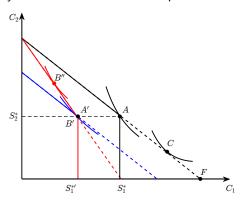

- Financial + export sanctions can trigger a credit crunch when domestic contracts are written in foreign currency (dollarization)
 - exchange rate depreciates increasing FX debt burden
 - may trigger tightened borrowing constraints and defaults on FX debt
 - in case of Russia: little dollarization of the economy or external debt

Illustration 1

Illustration 2

• Complementarity between financial and export sanctions

• TFP effect from foreign currency debt: $Y_t = Y\left(\frac{D_{t-1} + \mathcal{E}_t D_{t-1}^*}{P_t}\right)$

Demand for currency:

$$\beta \textit{\textit{R}}_{\textit{Ht}}^* \mathbb{E}_t \Big\{ \frac{\textit{\textit{P}}_t^*}{\textit{\textit{P}}_{t+1}^*} \Big[\Big(\underbrace{\frac{\textit{\textit{C}}_{\textit{Ft}}}{\textit{\textit{C}}_{\textit{Ft}+1}}}_{\text{imports}} \Big)^{1/\theta} + \tilde{\kappa} \textit{\textit{C}}_{\textit{Ft}}^{1/\theta} \Big(\underbrace{\underbrace{\Psi_t - \frac{\textit{\textit{B}}_{t+1}^*}{\textit{\textit{P}}_{t+1}^*}}_{\text{savings}} \Big) \Big] \Big\} = 1$$

Demand for currency:

$$\beta R_{Ht}^* \mathbb{E}_t \Big\{ \frac{P_t^*}{P_{t+1}^*} \Big[\Big(\underbrace{\frac{C_{Ft}}{C_{Ft+1}}}_{\text{imports}} \Big)^{1/\theta} + \tilde{\kappa} C_{Ft}^{1/\theta} \Big(\underbrace{\Psi_t - \frac{B_{t+1}^*}{P_{t+1}^*}}_{\text{savings}} \Big) \Big] \Big\} = 1$$

Three policy options:

- **1** Passive gov't: no FXI, no financial repression $(R_{Ht}^* = R_t^*)$
 - imports fall $C_{Ft} \downarrow$ to accommodate accumulation of FX
 - exchange rate depreciates $\mathcal{E}_t \uparrow$, gradually mean reverts

Demand for currency:

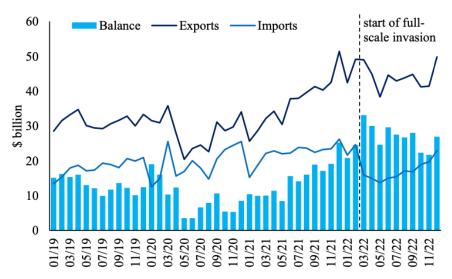
$$\beta \textit{\textit{R}}_{\textit{Ht}}^* \mathbb{E}_t \Big\{ \frac{\textit{\textit{P}}_t^*}{\textit{\textit{P}}_{t+1}^*} \Big[\Big(\underbrace{\frac{\textit{\textit{C}}_{\textit{Ft}}}{\textit{\textit{C}}_{\textit{Ft}+1}}}_{\text{imports}} \Big)^{1/\theta} + \tilde{\kappa} \textit{\textit{C}}_{\textit{Ft}}^{1/\theta} \Big(\underbrace{\underbrace{\Psi_t - \frac{\textit{\textit{B}}_{t+1}^*}{\textit{\textit{P}}_{t+1}^*}}_{\text{savings}} \Big) \Big] \Big\} = 1$$

Three policy options:

- Passive gov't: no FXI, no financial repression $(R_{Ht}^* = R_t^*)$
 - imports fall $C_{Ft}\downarrow$ to accommodate accumulation of FX
 - exchange rate depreciates $\mathcal{E}_t \uparrow$, gradually mean reverts
- § FXI: full accommodation of currency demand by selling FX reserves
 - leaves unchanged the path of imports and exchange rate
 - in Russia: infeasible under financial sanctions

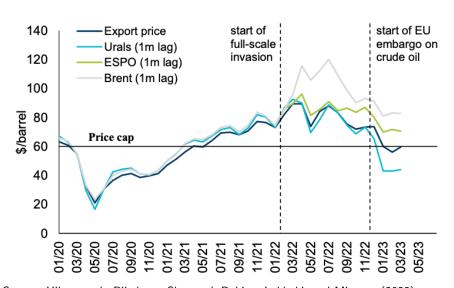
Demand for currency:

$$\beta R_{Ht}^* \mathbb{E}_t \Big\{ \frac{P_t^*}{P_{t+1}^*} \Big[\Big(\underbrace{\frac{C_{Ft}}{C_{Ft+1}}}_{\text{imports}} \Big)^{1/\theta} + \tilde{\kappa} C_{Ft}^{1/\theta} \Big(\underbrace{\Psi_t - \frac{B_{t+1}^*}{P_{t+1}^*}}_{\text{savings}} \Big) \Big] \Big\} = 1$$

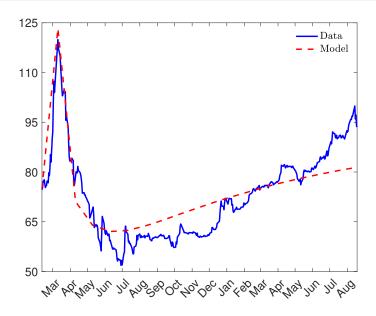

Three policy options:

- **1** Passive gov't: no FXI, no financial repression $(R_{Ht}^* = R_t^*)$
 - imports fall $C_{Ft} \downarrow$ to accommodate accumulation of FX
 - exchange rate depreciates $\mathcal{E}_t \uparrow$, gradually mean reverts
- § FXI: full accommodation of currency demand by selling FX reserves
 - leaves unchanged the path of imports and exchange rate
 - in Russia: infeasible under financial sanctions
- **3** Financial repression: capital controls or taxes on FX, $R_{Ht}^* < R_t^*$
 - prevents depreciation; redistributes from savers to consumers
 - in Russia: a full spectrum of financial repression

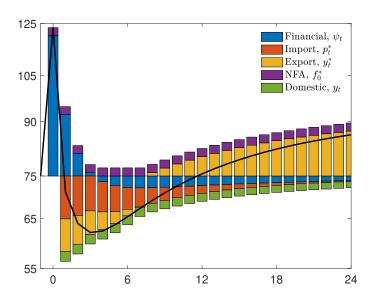
Quantitative Evaluation


Russian Trade in 2022

Source: Babina, Hilgenstock, Itskhoki, Mironov, and Ribakova (2023)


Quantitative Evaluation

Russian Crude Discount



Source: Hilgenstock, Ribakova, Shapoval, Babina, Itskhoki, and Mironov (2023)

Model vs Data: USD/RUB Exchange Rate

Exchange Rate Decomposition

Conclusion

- Economics sanctions are working, but have limited capacity without more decisive export restrictions
- Exchange rate is allocative, even under financial sanctions and financial repression, yet it is not a sufficient statistic
- Export, import and financial sanctions can have equivalent effects, yet they are complementary
- Combination of financial and export sanctions maximizes the chance of a currency and financial crisis, in particular in FX debtor countries
 - import sanctions can undo this effect of financial sanctions by relaxing the need for borrowing/borrowing constraints/FX debt burden
 - can a financial crisis be triggered in a country without government and external debt and no dollarization of domestic debt contracts?
- Financial sanctions complicate FX management and force the use of financial repression, a crude and costly policy tool

APPENDIX

- SOE w/ T & NT endowment and demand for foreign currency
- Households:

$$\max \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \left[u(C_{Ht}, C_{Ft}) + v\left(\frac{B_{t+1}^{*}}{P_{t+1}^{*}}; \psi_{t}\right) \right]$$
s.t. $P_{t}C_{Ht} + \mathcal{E}_{t}P_{t}^{*}C_{Ft} + \frac{\mathcal{E}_{t}B_{t+1}^{*}}{R_{Ht}^{*}} + \frac{B_{t+1}}{R_{t}} \leq W_{t} + \mathcal{E}_{t}B_{t}^{*} + B_{t}$

precautionary savings (Diamond'65, Aiyagari'94, CFG'08)

Model

- SOE w/ T & NT endowment and demand for foreign currency
- Households:

$$\begin{aligned} \max \quad \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \left[u(C_{Ht}, C_{Ft}) + v\left(\frac{B_{t+1}^{*}}{P_{t+1}^{*}}; \psi_{t}\right) \right] \\ \text{s.t.} \quad P_{t} C_{Ht} + \mathcal{E}_{t} P_{t}^{*} C_{Ft} + \frac{\mathcal{E}_{t} B_{t+1}^{*}}{R_{Ht}^{*}} + \frac{B_{t+1}}{R_{t}} \leq W_{t} + \mathcal{E}_{t} B_{t}^{*} + B_{t} \\ - u(C_{H}, C_{F}) = (1 - \gamma)^{\frac{1}{\theta}} C_{H}^{\frac{\theta - 1}{\theta}} + \gamma^{\frac{1}{\theta}} C_{F}^{\frac{\theta - 1}{\theta}}, \quad v(b; \psi) = -\frac{\kappa}{2} \cdot (b - \psi)^{2} \end{aligned}$$

- SOE w/ T & NT endowment and demand for foreign currency
- Households:

$$\begin{aligned} &\max \quad \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[u(C_{Ht}, C_{Ft}) + v\left(\frac{B_{t+1}^*}{P_{t+1}^*}; \psi_t\right) \right] \\ &\text{s.t.} \quad P_t C_{Ht} + \mathcal{E}_t P_t^* C_{Ft} + \frac{\mathcal{E}_t B_{t+1}^*}{R_{Ht}^*} + \frac{B_{t+1}}{R_t} \leq W_t + \mathcal{E}_t B_t^* + B_t \end{aligned}$$

- precautionary savings (Diamond'65, Aiyagari'94, CFG'08)
- Government, Firms & Financial sector:

$$\underbrace{\mathcal{E}_{t}\left(\frac{F_{t+1}^{*}}{R_{t}^{*}} - F_{t}^{*}\right)}_{\Delta \text{NFA}} - \underbrace{\mathcal{E}_{t}\left(\frac{B_{t+1}^{*}}{R_{Ht}^{*}} - B_{t}^{*}\right)}_{\Delta \text{FC-deposits}} - \underbrace{\left(\frac{B_{t+1}}{R_{t}} - B_{t}\right)}_{\Delta \text{LC-debt}} = \underbrace{\mathcal{E}_{t}Y_{t}^{*} + P_{t}Y_{t} - W_{t}}_{\text{primary surplus}}$$

- nominal wage commitment W_t , foreign reserves $F_t^* B_t^*$
- segmented currency markets R_t^* vs. R_{Ht}^*

- SOE w/ T & NT endowment and demand for foreign currency
- Households:

$$\max \quad \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} \left[u(C_{Ht}, C_{Ft}) + v\left(\frac{B_{t+1}^{*}}{P_{t+1}^{*}}; \psi_{t}\right) \right]$$
s.t.
$$P_{t}C_{Ht} + \mathcal{E}_{t}P_{t}^{*}C_{Ft} + \frac{\mathcal{E}_{t}B_{t+1}^{*}}{R_{Ht}^{*}} + \frac{B_{t+1}}{R_{t}} \leq W_{t} + \mathcal{E}_{t}B_{t}^{*} + B_{t}$$

- precautionary savings (Diamond'65, Aiyagari'94, CFG'08)
- Government, Firms & Financial sector:

$$\underbrace{\mathcal{E}_{t}\left(\frac{F_{t+1}^{*}}{R_{t}^{*}}-F_{t}^{*}\right)}_{\Delta \text{NFA}} - \underbrace{\mathcal{E}_{t}\left(\frac{B_{t+1}^{*}}{R_{Ht}^{*}}-B_{t}^{*}\right)}_{\Delta \text{FC-deposits}} - \underbrace{\left(\frac{B_{t+1}}{R_{t}}-B_{t}\right)}_{\Delta \text{LC-debt}} = \underbrace{\mathcal{E}_{t}Y_{t}^{*}+P_{t}Y_{t}-W_{t}}_{\text{primary surplus}}$$

15 / 13

- nominal wage commitment W_t , foreign reserves $F_t^* B_t^*$
- segmented currency markets R_t^* vs. R_{Ht}^*
- Market clearing: $C_{Ht} = Y_t$ and $\frac{F_{t+1}^*}{R_t^*} F_t^* = Y_t^* P_t^* C_{Ft}$

Shocks

Sanctions:

- export sanctions $Y_t^* \downarrow$
- import sanctions $P_t^* \uparrow$
- exit of multinationals $Y_t \downarrow$
- foreign asset freeze $F_0^* \downarrow$
- exclusion from financial markets $R_t^*=1,\ F_t^*\geq 0$
- limited access to safe assets $\psi_t \uparrow$

Shocks

Sanctions:

- export sanctions $Y_t^* \downarrow$
- import sanctions $P_t^* \uparrow$
- exit of multinationals $Y_t \downarrow$
- foreign asset freeze $F_0^* \downarrow$
- exclusion from financial markets $R_t^* = 1, F_t^* \ge 0$
- limited access to safe assets $\psi_t \uparrow$

Policy:

- fiscal W_t, B_t
- monetary R_t, P_t
- FX reserves $F_t^* B_t^*$
- financial repression R_{Ht}^*

Stationary Equilibrium

- ullet Assume $R_{Ht}^*=R_t^*=1/eta$ and $\psi_t=0$
- Import expenditure (FX demand) & country budget constr.(FX supply):

$$\mathcal{E}P^*C_F = \frac{\gamma - \delta}{1 - \gamma} \left(\frac{\mathcal{E}\bar{P}^*}{P}\right)^{1 - \theta} P_{\mathbf{Y}},$$

$$P^*C_F = \mathbf{Y}^* + (1 - \beta)F^*,$$

where $P^* = \left(rac{\gamma}{\gamma - \delta}
ight)^{rac{1}{ heta - 1}} ar{P}^*$ and δ is measure of imports excluded

Stationary Equilibrium

- ullet Assume $R_{Ht}^*=R_t^*=1/eta$ and $\psi_t=0$
- Import expenditure (FX demand) & country budget constr.(FX supply):

$$\mathcal{E}P^*C_F = \frac{\gamma - \delta}{1 - \gamma} \left(\frac{\mathcal{E}\bar{P}^*}{P}\right)^{1 - \theta} P_{\mathbf{Y}},$$

$$P^*C_F = \mathbf{Y}^* + (1 - \beta)F^*,$$

where $P^* = \left(rac{\gamma}{\gamma - \delta}
ight)^{rac{1}{ heta - 1}} ar{P}^*$ and δ is measure of imports excluded

• Real (welfare-relevant) import consumption:

$$C_{Ft} = \left(\frac{\gamma - \delta}{\gamma}\right)^{\frac{1}{\theta - 1}} \frac{Y^* + (1 - \beta)F^*}{\bar{P}^*}$$

Stationary Equilibrium

- Assume $R_{Ht}^* = R_t^* = 1/\beta$ and $\psi_t = 0$
- Import expenditure (FX demand) & country budget constr.(FX supply):

$$\mathcal{E}P^*C_F = \frac{\gamma - \delta}{1 - \gamma} \left(\frac{\mathcal{E}\bar{P}^*}{P}\right)^{1 - \theta} P_{\mathbf{Y}},$$

$$P^*C_F = \mathbf{Y}^* + (1-\beta)\mathbf{F}^*,$$

where $P^*=\left(rac{\gamma}{\gamma-\delta}
ight)^{rac{1}{ heta-1}}ar{P}^*$ and δ is measure of imports excluded

• Real (welfare-relevant) import consumption:

$$C_{Ft} = \left(\frac{\gamma - \delta}{\gamma}\right)^{\frac{1}{\theta - 1}} \frac{Y^* + (1 - \beta)F^*}{\bar{P}^*}$$

• Equilibrium exchange rate – allocative, but not a sufficient statistic:

$$\mathcal{E}^{\theta} = \frac{\gamma - \delta}{1 - \gamma} \left(\frac{\bar{P}^*}{P}\right)^{1 - \theta} \frac{PY}{Y^* + (1 - \beta)F^*}$$

Proposition

- i) sanctions on exports with partial freeze of foreign assets $\{Y_t^*,F_0^*\}\!\downarrow$ and
- ii) sanctions on imports $\{P_t^*\} \uparrow$

Proposition

- i) sanctions on exports with partial freeze of foreign assets $\{Y_t^*, F_0^*\}\downarrow$ and
- ii) sanctions on imports $\{P_t^*\} \uparrow$ result in
 - **1** same allocation and welfare, including reduced imports $\{C_{Ft}\}\downarrow$

$$\frac{1}{R_t^*} \cdot \frac{F_{t+1}^*}{P_{t+1}^*} = \frac{F_t^*}{P_t^*} + \frac{Y_t^*}{P_t^*} - C_{Ft}$$

Proposition

- i) sanctions on exports with partial freeze of foreign assets $\{Y_t^*,F_0^*\}\!\downarrow$ and
- ii) sanctions on imports $\{P_t^*\} \uparrow$ result in
 - **1** same allocation and welfare, including reduced imports $\{C_{Ft}\}\downarrow$

$$\frac{1}{R_t^*} \cdot \frac{F_{t+1}^*}{P_{t+1}^*} = \frac{F_t^*}{P_t^*} + \frac{Y_t^*}{P_t^*} - C_{Ft}$$

— another manifestation of Lerner symmetry (BFGI 2019)

Proposition

- i) sanctions on exports with partial freeze of foreign assets $\{Y_t^*, F_0^*\} \downarrow$ and
- ii) sanctions on imports $\{P_t^*\} \uparrow$ result in
 - **1** same allocation and welfare, including reduced imports $\{C_{Ft}\}\downarrow$

$$\frac{1}{R_t^*} \cdot \frac{F_{t+1}^*}{P_{t+1}^*} = \frac{F_t^*}{P_t^*} + \frac{Y_t^*}{P_t^*} - C_{Ft}$$

- another manifestation of Lerner symmetry (BFGI 2019)
- opposite changes in the exchange rate

$$\mathcal{E}_{t} = \frac{P_{t}}{P_{t}^{*}} \left(\frac{\gamma}{1 - \gamma} \frac{Y_{t}}{C_{Ft}} \right)^{\frac{1}{\theta}}$$

- export sanctions $Y_t^* \downarrow \Rightarrow \mathsf{FC}$ supply $\downarrow \Rightarrow$ depreciation $\mathcal{E}_t \uparrow$
- import sanctions $P_t^* \uparrow \Rightarrow \mathsf{FC} \mathsf{demand} \downarrow \Rightarrow \mathsf{appreciation} \; \mathcal{E}_t \downarrow$

Proposition

- i) sanctions on exports with partial freeze of foreign assets $\{Y_t^*, F_0^*\} \downarrow$ and
- ii) sanctions on imports $\{P_t^*\} \uparrow$ result in
 - **1** same allocation and welfare, including reduced imports $\{C_{Ft}\}\downarrow$

$$\frac{1}{R_t^*} \cdot \frac{F_{t+1}^*}{P_{t+1}^*} = \frac{F_t^*}{P_t^*} + \frac{Y_t^*}{P_t^*} - C_{Ft}$$

- another manifestation of Lerner symmetry (BFGI 2019)
- opposite changes in the exchange rate

$$\mathcal{E}_t = \frac{P_t}{P_t^*} \left(\frac{\gamma}{1 - \gamma} \frac{Y_t}{C_{Ft}} \right)^{\frac{1}{\theta}}$$

- export sanctions $Y_t^* \downarrow \Rightarrow \mathsf{FC}$ supply $\downarrow \Rightarrow$ depreciation $\mathcal{E}_t \uparrow$
- import sanctions $P_t^* \uparrow \Rightarrow \mathsf{FC} \mathsf{ demand} \downarrow \Rightarrow \mathsf{ appreciation } \mathcal{E}_t \downarrow$
- $\Rightarrow \mathcal{E}_t$ is not sufficient statistic for effectiveness of sanctions

 Corollary: the import and export sanctions have identical effects on gov't revenues as well as on costs of living (CPI)

- Corollary: the import and export sanctions have identical effects on gov't revenues as well as on costs of living (CPI)
- Lerner symmetry for fiscal revenues:
 - export sanctions

$$(Y_t^*\downarrow \Rightarrow \mathcal{E}_t^*\uparrow \Rightarrow \mathrm{d}\log(\mathcal{E}_tY_t^*) = \left(1-rac{1}{ heta}
ight)\mathrm{d}\log Y_t^*$$

- Corollary: the import and export sanctions have identical effects on gov't revenues as well as on costs of living (CPI)
- Lerner symmetry for fiscal revenues:
 - export sanctions

$$(Y_t^*\downarrow \Rightarrow \mathcal{E}_t^*\uparrow \Rightarrow \mathrm{d}\log(\mathcal{E}_tY_t^*) = \left(1-rac{1}{ heta}
ight)\mathrm{d}\log Y_t^*$$

import sanctions

$$P_t^* \uparrow \Rightarrow \mathcal{E}_t^* \downarrow \Rightarrow \operatorname{d} \log(\mathcal{E}_t Y_t^*) = -\left(1 - \frac{1}{\theta}\right) \operatorname{d} \log P_t^*$$

• Symmetrically, direct effect of P_t^* and indirect of Y_t^* on CPI

- Corollary: the import and export sanctions have identical effects on gov't revenues as well as on costs of living (CPI)
- Lerner symmetry for fiscal revenues:
 - export sanctions

$$(Y_t^*\downarrow \Rightarrow \mathcal{E}_t^*\uparrow \Rightarrow \mathrm{d}\log(\mathcal{E}_tY_t^*) = \left(1-rac{1}{ heta}
ight)\mathrm{d}\log Y_t^*$$

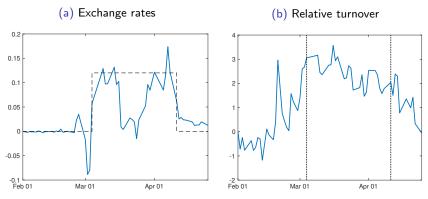
2 import sanctions

$$P_t^* \uparrow \Rightarrow \mathcal{E}_t^* \downarrow \Rightarrow \operatorname{d} \log(\mathcal{E}_t Y_t^*) = -\left(1 - \frac{1}{\theta}\right) \operatorname{d} \log P_t^*$$

- Symmetrically, direct effect of P_t^* and indirect of Y_t^* on CPI
- Other implications (Itskhoki and Mukhin AEA'2023):

figure

- import & export sanctions are **complements** as both have limited scope
- **frontloading** of $Y_t^* \downarrow$ has larger effect than $P_t^* \uparrow$ for countries w/ CA> 0
- **frontloading** of $Y_t^*\downarrow$ has larger effect than $P_t^*\uparrow$ if combined w/ $F_t^*\geq 0$ 19/13


Multiple Foreign Currencies

- March 4 April 11: 12% tax on purchasing dollars, euros, pounds in Russia
 - ⇒ overvalued Swiss franc relative to foreign exchanges
 - ⇒ larger purchases of Swiss franc as a safe asset

Multiple Foreign Currencies

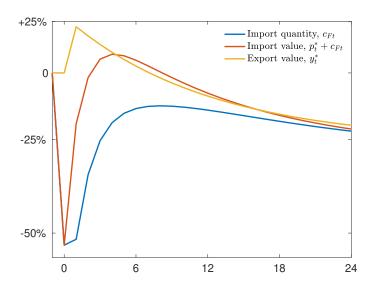
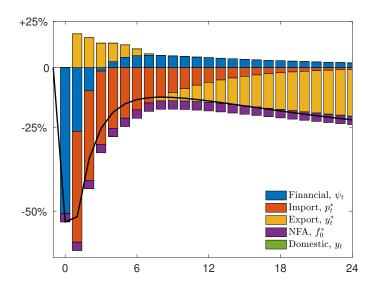
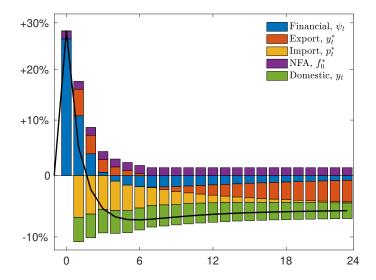

- March 4 April 11: 12% tax on purchasing dollars, euros, pounds in Russia
 - ⇒ overvalued Swiss franc relative to foreign exchanges
 - ⇒ larger purchases of Swiss franc as a safe asset

Figure: Swiss franc vs U.S. dollar


Note: (a) exchange rate at the Moscow Exchange relative to its international value, (b) Swiss franc turnover relative to the dollar at the Moscow Exchange.

Trade Balance



Trade Balance

FISCAL REVENUES

Fiscal Revenues

• A strong ruble is a problem for the gov't budget

$$TR_t = P_t Y_t + \mathcal{E}_t Y_t^*$$

• A strong ruble is a problem for the gov't budget

$$TR_t = P_t Y_t + \mathcal{E}_t Y_t^*$$

- What can the central bank do to finance the deficit?
 - lacktriangledown monetary depreciation $\mathcal{E}_t \uparrow$

• A strong ruble is a problem for the gov't budget

$$TR_t = P_t Y_t + \mathcal{E}_t Y_t^*$$

- What can the central bank do to finance the deficit?
 - **1** monetary depreciation $\mathcal{E}_t \uparrow \Rightarrow$ inflation

A strong ruble is a problem for the gov't budget

$$TR_t = P_t Y_t + \mathcal{E}_t Y_t^*$$

- What can the central bank do to finance the deficit?
 - **1** monetary depreciation $\mathcal{E}_t \uparrow \Rightarrow$ inflation
 - 2 real depreciation via FX interventions

$$\mathcal{E}_{t} \underbrace{\left(\frac{F_{t+1}^{*} - B_{t+1}^{*}}{R_{t}^{*}} - (F_{t}^{*} - B_{t}^{*})\right)}_{\Delta \text{FX reserves} \uparrow} - \underbrace{\left(\frac{B_{t+1}}{R_{t}} - B_{t}\right)}_{\Delta \text{LC-debt} \uparrow} = \underbrace{\mathcal{E}_{t} Y_{t}^{*} + P_{t} Y_{t} - W_{t}}_{\text{RER} \uparrow}$$

A strong ruble is a problem for the gov't budget

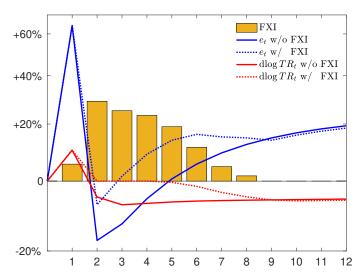
$$TR_t = P_t Y_t + \mathcal{E}_t Y_t^*$$

- What can the central bank do to finance the deficit?
 - **1** monetary depreciation $\mathcal{E}_t \uparrow \Rightarrow$ inflation
 - real depreciation via FX interventions

$$\mathcal{E}_{t}\underbrace{\left(\frac{F_{t+1}^{*}-B_{t+1}^{*}}{R_{t}^{*}}-(F_{t}^{*}-B_{t}^{*})\right)}_{\Delta \text{FX reserves} \uparrow} -\underbrace{\left(\frac{B_{t+1}}{R_{t}}-B_{t}\right)}_{\Delta \text{LC-debt} \uparrow} =\underbrace{\mathcal{E}_{t} \, Y_{t}^{*} + P_{t} Y_{t} - W_{t}}_{\text{RER} \uparrow}$$

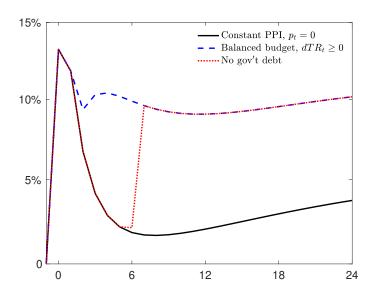
• **Proposition**: FXI can temporary increase gov't revenues, but do not change permanent revenues $\sum_{t=0}^{\infty} \beta^t TR_t$

A strong ruble is a problem for the gov't budget


$$TR_t = P_t Y_t + \mathcal{E}_t Y_t^*$$

- What can the central bank do to finance the deficit?
 - **1** monetary depreciation $\mathcal{E}_t \uparrow \Rightarrow$ inflation
 - real depreciation via FX interventions

$$\mathcal{E}_{t} \underbrace{\left(\frac{F_{t+1}^{*} - B_{t+1}^{*}}{R_{t}^{*}} - (F_{t}^{*} - B_{t}^{*})\right)}_{\Delta \text{FX reserves} \uparrow} - \underbrace{\left(\frac{B_{t+1}}{R_{t}} - B_{t}\right)}_{\Delta \text{LC-debt} \uparrow} = \underbrace{\mathcal{E}_{t} Y_{t}^{*} + P_{t} Y_{t} - W_{t}}_{\text{RER} \uparrow}$$


- **Proposition**: FXI can temporary increase gov't revenues, but do not change permanent revenues $\sum_{t=0}^{\infty} \beta^t TR_t$
 - FXI require borrowing in local currency
 - accumulating FX reserves might be risky

Government Revenues

Note: FXI close the budget deficit over the first year and gradually increase the deficit over the second year. One period corresponds to a quarter.

CPI Inflation

- Which exchange rate policy is **optimal**?
 - FX interventions restore efficient allocation, but might be not feasible
 - can financial repression be optimal?

- Which exchange rate policy is optimal?
 - FX interventions restore efficient allocation, but might be not feasible
 - can financial repression be optimal?
- Consider extension with two types of agents:
 - i) **hand-to-mouth** receive $\alpha P_t Y_t$, no access to financial markets
 - ii) Ricardian agents receive $(1-\alpha)P_tY_t + \mathcal{E}_tY_t^*$, can hold foreign currency, subject to ψ_t shocks

- Which exchange rate policy is optimal?
 - FX interventions restore efficient allocation, but might be not feasible
 - can financial repression be optimal?
- Consider extension with two types of agents:
 - i) **hand-to-mouth** receive $\alpha P_t Y_t$, no access to financial markets
 - ii) Ricardian agents receive $(1 \alpha)P_tY_t + \mathcal{E}_tY_t^*$, can hold foreign currency, subject to ψ_t shocks
- **Proposition**: Assume $\theta = 1$ and constant α . Then
 - **1** aggregate dynamics does not depend on α (cf. Werning'15, ARSS'21)

- Which exchange rate policy is optimal?
 - FX interventions restore efficient allocation, but might be not feasible
 - can financial repression be optimal?
- Consider extension with two types of agents:
 - i) **hand-to-mouth** receive $\alpha P_t Y_t$, no access to financial markets
 - ii) Ricardian agents receive $(1 \alpha)P_tY_t + \mathcal{E}_tY_t^*$, can hold foreign currency, subject to ψ_t shocks
- **Proposition**: Assume $\theta = 1$ and constant α . Then
 - **4** aggregate dynamics does not depend on α (cf. Werning'15, ARSS'21)
 - 2 financial repression reduces welfare in RA economy

- Which exchange rate policy is optimal?
 - FX interventions restore efficient allocation, but might be not feasible
 - can financial repression be optimal?
- Consider extension with two types of agents:
 - i) **hand-to-mouth** receive $\alpha P_t Y_t$, no access to financial markets
 - ii) Ricardian agents receive $(1 \alpha)P_tY_t + \mathcal{E}_tY_t^*$, can hold foreign currency, subject to ψ_t shocks
- **Proposition**: Assume $\theta = 1$ and constant α . Then
 - **1** aggregate dynamics does not depend on α (cf. Werning'15, ARSS'21)
 - g financial repression reduces welfare in RA economy
 - financial repression redistributes from RA to HtM (cf. Fanelli-Straub'21)

$$R_{Ht}^* < R_t^* \quad \Rightarrow \quad \mathcal{E}_t \downarrow \quad \Rightarrow \quad C_t^{HtM} \uparrow$$

Calibration

• Parameters: $\beta=0.96^{\frac{1}{12}}$, $\theta=1.5$, $\bar{\kappa}=0.5$

Shocks:

	Financial		Impo			Domestic
	f_0^*	ψ_{t}	p_t^*	Temp., y_{1t}^*	Perm., y_{2t}^*	recession, y_t
Initial shock, ε_{t_0} — arrives in period, t_0	-12 0	1.5 0	0.5 1	0.5 1	-0.3 1	-0.05 1
Persistence, $ ho$ — half life (months)	$_{\infty}^{1}$	0.94 12	0.84 4	0.92 8	$1 \\ \infty$	0.98 36

Conclusion

- Why did the ruble depreciate initially?
 - overnight freeze of gov't reserves + threat of blocking exports
 - high home demand for foreign currency as a store of value
- Why did the exchange rate reverse in mid-March?
 - tougher sanctions on imports than exports \Rightarrow supply of FC \uparrow
 - capital controls + financial repression \Rightarrow demand for FC \downarrow
- Are sanctions "not working"?
 - effectiveness cannot be inferred from exchange rate dynamics
 - equivalence of import & export sanctions for welfare & gov't revenues
- Is the exchange rate "irrelevant"?
 - affects imports and gov't revenues
 - financial repression benefits consumers at the expense of savers