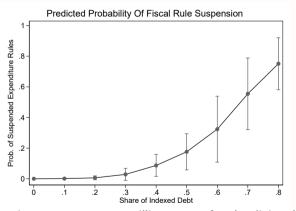
Inflation-Indexed Debt and the Risks of Fiscal Dominance

Martin Ellison Tobias Kawalec

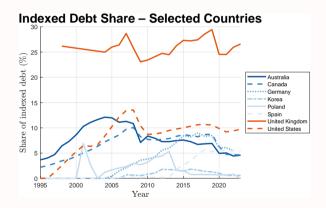
University of Oxford


New Challenges for Monetary-Fiscal Policy Interactions, Sveriges Riksbank, October 2025

Introduction

- US inflation 2021-23 coincided with large debt-financed fiscal expansion
- Theoretical and empirical papers emphasise fiscal-monetary interactions
 - Angeletos et al. (2024), Ascari et al. (2023), Bianchi et al. (2023), Cochrane (2022)
 - Barro and Bianchi (2023), Hazell and Hobler (2024), Hilscher et al. (2022)
- Unfunded fiscal expansion \rightarrow inflation needed to devalue market value of government debt and ensure the government budget constraint continues to be satisfied
- Fiscal dominance (Leeper (1991)) or Fiscally-led policy mix (Bianchi et al. (2023))

Today's motivation


- Davoodi et al. (2022) Fiscal Rules Dataset for 106 economies 1985-2021

- We interpret suspension as government willing to run fiscal policies that would normally be considered unsustainable

Today's talk

- Cross-country heterogeneity in π -indexation and fiscal-monetary interactions

- How does π -indexation affect fiscally-led inflation and risk of fiscal dominance?

Ricardian model with partially-indexed debt

- Only savings device is government bond that is partially indexed to inflation
- Household maximises utility s.t. budget constraint

$$\max_{\{c_t,b_t\}_{t=0}^{\infty}} E_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$

$$s.t.$$

$$P_t c_t + q_t b_t = (1 - \tau_t) P_t Y + \pi_t^{\theta} b_{t-1}$$

- In equilibrium $c_t = Y$ so bond pricing equation

$$q_t = \beta E_t \pi_{t+1}^{\theta-1}$$

Policy rules and log-linearisation

- Government budget constraint

$$\pi_t^{\theta} b_{t-1} = \tau_t P_t Y + q_t b_t$$

- Monetary and fiscal policy

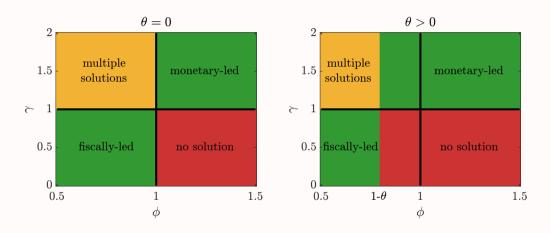
$$R_t = rac{1}{q_t} = rac{1}{eta} \pi_t^{\phi} \qquad s_t = rac{q_t b_t}{P_t Y} \qquad rac{ au_t}{ au} = \left(rac{s_{t-1}}{s}
ight)^{\gamma} e^{arphi_t}$$

- Log-linearisation \rightarrow 2 \times 2 first-difference system

$$\begin{aligned} (1-\theta)E_t\hat{\pi}_{t+1} &= \phi\hat{\pi}_t\\ (1-\beta)E_t\varphi_{t+1} + E_t\beta\hat{\mathbf{s}}_{t+1} &= (1-(1-\beta)\gamma)\hat{\mathbf{s}}_t \end{aligned}$$

Determinacy in Ricardian model

- φ_t is AR(1) fiscal disturbance with persistence ρ
- State space form


$$E_{t}\begin{pmatrix} \hat{\pi}_{t+1} \\ \hat{\mathbf{s}}_{t+1} \end{pmatrix} = \begin{pmatrix} \frac{\phi}{1-\theta} & \mathbf{0} \\ \mathbf{0} & \frac{1-\gamma(1-\beta)}{\beta} \end{pmatrix} \begin{pmatrix} \hat{\pi}_{t} \\ \hat{\mathbf{s}}_{t} \end{pmatrix} + \begin{pmatrix} \mathbf{0} \\ \frac{1-\beta}{\beta} \end{pmatrix} E_{t}\varphi_{t+1}$$

- Eigenvalues of system

$$\frac{\phi}{1-\theta}$$
, $\frac{1-\gamma(1-\beta)}{\beta}$

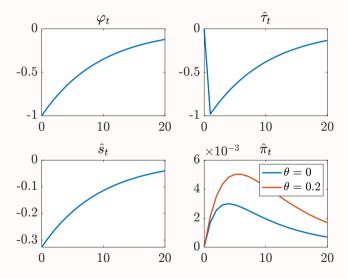
- Determinacy requires one eigenvalue outside unit circle and one inside
- Monetary-led policy mix if $\phi > 1 \theta$ and $\gamma > 1$, Fiscally-led if $\phi < 1 \theta$ and $\gamma < 1$.

Determinacy in Ricardian model

Intuition of Ricardian model

- π -indexation raises interest rate in Euler equation when $\pi \uparrow$
 - Monetary-led equilibrium more likely
 - Fiscally-led equilibrium less likely
 - Multiple solutions less likely
 - No solution more likely
- π -indexation acts as automatic stabiliser

Dynamics in Ricardian model


- Monetary-led equilibrium

$$egin{aligned} \hat{\pi}_t &= 0 \ \hat{oldsymbol{s}}_t &= rac{1 - (1 - eta) \gamma}{eta} \hat{oldsymbol{s}}_{t-1} - arphi_t \end{aligned}$$

- Fiscally-led equilibrium

$$\begin{aligned} \hat{\mathbf{s}}_t &= \left(\frac{\beta \rho}{1 - (1 - \beta)\gamma - \beta \rho}\right) \left(\frac{1 - \beta}{1 - (1 - \beta)\gamma}\right) \varphi_t \\ \hat{\pi}_t &= \frac{\phi}{1 - \theta} \hat{\pi}_{t-1} - \frac{\beta}{1 - \theta} \hat{\mathbf{s}}_t + \frac{1 - (1 - \beta)\gamma}{1 - \theta} \hat{\mathbf{s}}_{t-1} - \frac{1 - \beta}{1 - \theta} \varphi_t \end{aligned}$$

Dynamics of fiscally-led equilibrium in Ricardian model

Intuition of fiscally-led equilibrium in Ricardian model

- Dynamics of debt-to-GDP ratio independent of π -indexation
- Unexpected drop in taxes $\varphi_t \downarrow, \tau_t \downarrow \rightarrow$ fall in debt-to-GDP ratio $s_t \downarrow$

$$s_t = \frac{q_t b_t}{P_t Y}$$
 $q_t b_t = \beta \pi_t^{\theta} b_{t-1} - \tau_t P_t Y$

- For $s_t \downarrow$ need $q_t b_t \downarrow$ or $P_t \uparrow$
 - If $\theta = 0$ then for $q_t b_t \downarrow \text{need } P_t \uparrow$
 - If $\theta > 0$ then π -indexation pushes $q_t b_t$ higher \to need $P_t \uparrow \uparrow$ to rise even more
- Higher π in response to unfunded fiscal expansion when debt π -indexed

Non-Ricardian model with partially indexed debt

- Angeletos, Lian and Wolf (2024) Deficits and Inflation: HANK meets FTPL
- Monetary-fiscal interactions in NK model with finite planning horizons where monetary and fiscal policies are described by interest rate and deficit rules
- What happens when debt is partially indexed to inflation?

Aggregate demand and supply

Aggregate demand depends on financial wealth and permanent income
 Second term captures substitution and wealth effects of real interest rates

$$c_{t} = (1 - \beta\omega) \left(a_{t} + E_{t} \sum_{s=0}^{\infty} (\beta\omega)^{s} (y_{t+s} - t_{t+s}) \right)$$
$$- \beta \left(\sigma\omega - (1 - \beta\omega) \frac{A^{SS}}{Y^{SS}} \right) E_{t} \left[\sum_{s=0}^{\infty} (\beta\omega)^{s} (r_{t+s} + \theta\pi_{t+1+s}) \right]$$

Aggregate supply is standard NKPC

$$\pi_t = \kappa \sum_{k=0}^{\infty} \beta^k E_t[y_{t+k}].$$

Fiscal and monetary policy

- Log-linearised government budget constraint

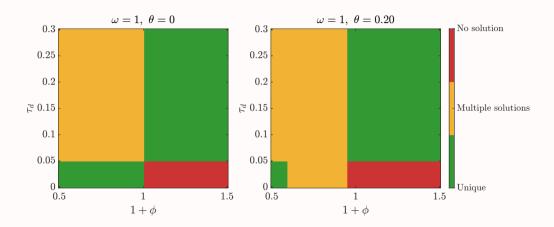
$$d_{t+1} = \frac{1}{\beta}(d_t - t_t) + \frac{D^{SS}}{Y^{SS}}r_t - \frac{D^{SS}}{Y^{SS}}\left((1 - \theta)\pi_{t+1} - \mathbb{E}_t\pi_{t+1}\right).$$

- Deficit rule

$$t_t = -\varepsilon_t + \tau_d(d_t + \varepsilon_t) + \tau_y y_t,$$

- Real interest rate rule

$$r_t = \phi y_t$$

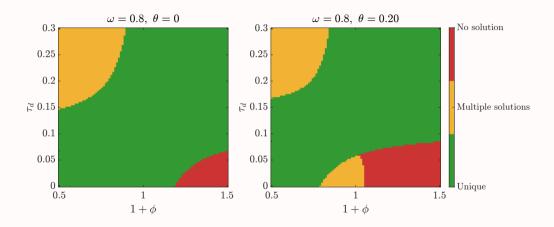

Dynamics when $\omega = 1$

- 3×3 system in output, inflation and debt
- Output-inflation block decoupled from debt block as in Ricardian case
- π -indexed debt tightens restriction for fiscally-led equilibrium

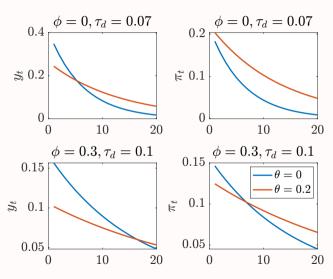
$$r_t = \phi y_t \qquad \phi < -\frac{\frac{D^{SS}}{Y^{SS}}\kappa\theta}{1-\beta}$$

- Inflation indexation does not overturn Kaplan (2025) and Rachel and Ravn (2025) results that debt block-exogenous with respect to output and inflation in RANK models

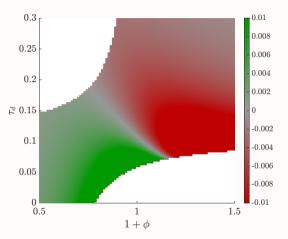
Determinacy when $\omega = 1$



Dynamics when $\omega < 1$


Proposition

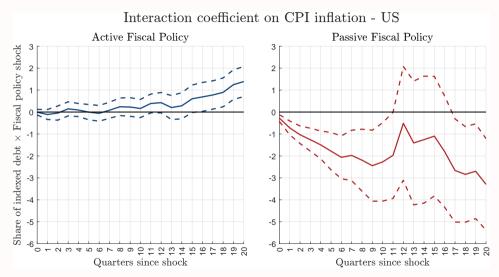
The feasible region for a unique saddle path-stable equilibrium is constrained by a band $\phi^-(\tau_d;\theta) < \phi < \phi^+(\tau_d;\theta)$ when $\tau_d^0 > \tau_d > \tau_d^*$. The band shifts with θ , with higher levels of θ making it less likely that a unique saddlepath equilibrium exists.


Determinacy when $\omega < 1$

Dynamics when $\omega < 1$

Dynamics when $\omega < 1$

- Difference in impact inflation in fiscally-led regime when debt is partially $\pi\text{-indexed}$


Empirical evidence

- Deciding whether policy is monetary-led or fiscally-led is difficult
- Chen, Leeper and Leith (2022) Strategic interactions in U.S. monetary and fiscal policies
 - Model-based identification of policy regime U.S. 1955q1-2008q3 ightarrow updated
 - Fiscally-led 91-94, 00-04, (09-12), and (16-17); otherwise Monetary-led
- Mierzwa (2024) Spillovers from tax shocks to the Euro Area
 - ε_t^F from narrative identification of U.S. tax shocks 1980q1-2018q4
- Separate local projection in each policy regime

$$\log P_{t+h} - \log P_t = \alpha_h + \frac{\beta_h \omega_t \varepsilon_t^F}{\delta_{t+h}} + \delta_{2h} \varepsilon_t^F + \Gamma_h Z_{t-1} + e_{t+h}$$

- $\{\beta_h\}$ is dependency of reaction at t+h on share of indexed debt ω_t at t

Empirical evidence from the U.S.

Conclusions

- Non-causal evidence links π -indexed debt and suspension of Fiscal Rules
- Fiscally-led equilibrium less likely in Ricardian model but inflation reacts more to unfunded fiscal shocks if equilibrium is fiscally-led and debt is π -indexed
- Non-Ricardian model broadly agrees but conclusions more nuanced
- π -indexed debt *causes* greater reaction of π when U.S. in fiscally-led regime
- Little evidence that π -indexed debt has an effect when U.S. in monetary-led regime