

DANGEROUS LIAISONS? DEBT SUPPLY AND CONVENIENCE YIELD SPILLOVERS IN THE EURO AREA

Cristian Arcidiacono (University of Bern), Matthieu Bellon (IMF), Matthias Gnewuch (ESM)

Sveriges Riksbank – "New Challenges for Monetary-Fiscal Policy Interactions" 6 October 2025

The views expressed here are those of the authors and should not be attributed to any of the institutions with which they are affiliated.

MOTIVATION – WHAT MATTERS FOR LOW SOVEREIGN YIELDS?

- Many sovereign bonds often trade at yields below risk-free rate + default risk premium
 - "Convenience yield"-premium reflects value as collateral, for liquidity, hedge against bad times, ...
- When a country issues more sovereign bonds, its convenience yield declines
 - Krishnamurthy & Vissing-Jorgensen 2012; Jiang, Lustig, Van Nieuwerburgh, Xiaolan 2022; Reis 2022
- But does a country's convenience yield also change when another country issues bonds?
 - Spillovers of debt issuance reflect how substitutable the "conveniences" of different bonds are
 - What issuer characteristics determine these spillovers (substitutability)?

DEBT ISSUANCE SPILLOVERS – AN ILLUSTRATIVE EXAMPLE

- On 14 December 2022 at 10:00 CET, the German debt management office ("Deutsche Finanzagentur") published its debt issuance plan for 2023
- Market commentary suggests that the total amount exceeded expectations

MAIN RESULTS: A NEW TYPE OF SPILLOVER

- Two main empirical findings about spillovers of safe-country debt supply shocks
 - 1) To other "safe" countries (FR, NL, ...): Convenience yields fall in "receiving" countries as much as in issuing countries, i.e., spillovers are one-to-one
 - 2) To "riskier" countries (ES, PT, ...): Convenience yields also fall, but spillovers are weaker (around 2/3)

- We explain these findings in a two-country model with heterogeneous default risk
 - All safe bonds are useful to hedge against recessions -> high substitutability & large spillovers
 - Risky bonds are particularly risky in recessions, so not a good hedge -> low substitutability with safe bonds & small spillovers

AGENDA

- 1. Data & Empirical Strategy
- 2. Empirical Results
- 3. Theoretical Rationalization

DATA & DEFINITION: CONVENIENCE YIELDS IN EURO AREA

Convenience yield definition (Jiang et al. 2022):

$$Y_t^i = R_t + \delta_t^i - CY_t^i$$

- Y: simple (10-year) yield
- R: risk-free rate reflected in *Overnight Index Swap* rates
- δ: default risk premia reflected in *Credit Default Swap* rates
- CY: convenience yield

• Safe countries' bonds earn a premium for being reliably liquid, remaining valuable in recessions, ...

Notes: This figure plots median 10-year convenience yields and median 10-year CDS rates for each country in the main data set. Sample period: 2009-2023.

IDENTIFYING DEBT ISSUANCE SPILLOVERS

- Two key challenges...
 - Many shocks drive convenience yield correlations up (e.g., global cycles) or down (e.g., flight to safety)
 - ii. Changes in actual debt supply well-anticipated
- ... addressed with German DMO's communication & high-frequency data
 - Publications of debt issuance plans (and revisions) provide salient news about German debt supply
 - 30-minute yield changes around DMO announcements provide debt supply shocks

ESTIMATING DEBT ISSUANCE SPILLOVERS

- Method 1: 30-min yield spillovers using OLS
 - $\Delta Y_{Destination,30min,t} = \beta_0 + \beta_1 * \Delta Y_{DE,30min,t} + \epsilon_t$
- Method 2: 1-day convenience yield spillovers using IV
 - 1st stage: $\Delta CY_{DE,1-day,t} = \gamma_0 + \gamma_1 * \Delta Y_{DE,30min,t} + \delta_t$ (F-Stat: 12.6, $\gamma_1 = -0.93^{***}$)
 - 2nd stage: $\Delta CY_{Destination,1-day,t} = \beta_0 + \beta_1 * \Delta CY_{DE,1-day,t} + \epsilon_t$
- Method 3 (Robustness): 1-day convenience yield spillovers using Rigobon-Sack estimator
 - $\Delta CY_{Destination,1-day,t} = \beta_0 + \beta_1 * \Delta CY_{DE,1-day,t} + \epsilon_t$
 - Identification from elevated volatility of $\Delta CY_{DE,1-day,t}$ on DMO days vs. preceding days

AGENDA

1. Data & Empirical Strategy

- 2. Empirical Results
- 3. Theoretical Rationalization

HIGH-FREQUENCY YIELD SPILLOVERS FROM GERMANY

- In 30-min windows around news about German debt supply:
 - French (safe) yields co-move almost one-to-one
 - Italian and Spanish (riskier) yields co-move less
- But what about <u>convenience</u> yields, daily frequency, other countries?

Table 1: Intraday Yield Spillovers from Germany (Method 1: OLS)

	Safe Countries	Risky C	fountries
	$\begin{pmatrix} (1) \\ \Delta Y_{FR} \end{pmatrix}$	$\begin{array}{ c c } \hline (2) \\ \Delta Y_{IT} \\ \end{array}$	$\begin{array}{c} (3) \\ \Delta Y_{ES} \end{array}$
ΔY_{DE}	0.88*** (0.10)	0.62*** (0.21)	0.51** (0.24)
Constant	0.00 (0.00)	$\begin{array}{ c c c } 0.00 \\ (0.00) \end{array}$	$0.00 \\ (0.00)$
Observations R^2	44 0.80	43 0.20	39 0.20

Notes: Each column displays coefficients from a separate regression: $\Delta Y_{Destination,t} = \beta_0 + \beta_1 * \Delta Y_{DE,t} + \epsilon_t$. Standard errors are reported in parentheses. *p < 0.10, **p < 0.05, ***p < 0.01.

CONVENIENCE YIELD SPILLOVERS FROM GERMANY

• Spillovers to safe countries are almost 1-for-1... but smaller and insignificant to riskier countries... unless CDS rates are low

Table 2: Daily Convenience Yield Spillovers from Germany (Method 2: IV)

			Safe Co	ountries				Risk	ky Countri	es	
	$\begin{array}{ c c }\hline (1)\\ \Delta C Y_{FR}\end{array}$	$\begin{array}{c} (2) \\ \Delta C Y_{NL} \end{array}$	$\begin{array}{c} (3) \\ \Delta C Y_{FI} \end{array}$	$\begin{array}{c} (4) \\ \Delta C Y_{AT} \end{array}$	$\begin{array}{c} (5) \\ \Delta C Y_{BE} \end{array}$	(6) Pool	$\begin{array}{ c c }\hline (7)\\ \Delta CY_{IT}\\ \end{array}$	$\begin{array}{c} (8) \\ \Delta C Y_{ES} \end{array}$	$\begin{array}{c} (9) \\ \Delta C Y_{PT} \end{array}$	(10) Pool	(11) Pool
ΔCY_{DE}	0.92*** (0.23)	0.97*** (0.25)	1.19*** (0.21)	0.67*** (0.24)	1.14** (0.56)		0.79 (0.85)	-0.43 (0.90)	1.62 (1.05)		
ΔCY_{DE}						0.98*** (0.22)				$0.66 \\ (0.65)$	0.89*** (0.25)
$\Delta CY_{DE} \times \mathbb{1}\{CDS_t > 1\}$											-0.48 (1.19)
Constant	-0.00 (0.00)	$0.00 \\ (0.01)$	-0.00 (0.00)	-0.00 (0.00)	-0.00 (0.01)	-0.00 (0.00)	-0.01 (0.01)	-0.01 (0.01)	-0.01 (0.01)	-0.01 (0.01)	-0.01 (0.01)
Observations	44	44	44	44	44	220	44	44	44	132	132

Notes: Columns (1)-(10) display coefficients from separate regressions: $\Delta CY_{Destination,t} = \beta_0 + \beta_1 * \Delta CY_{DE,t} + \epsilon_t$ while column (11) is based on $\Delta CY_{Destination,t} = \beta_0 + \beta_1 * \Delta CY_{DE,t} + \beta_2 * \Delta CY_{DE,t} * \mathbb{1}\{CDS_t > 1\} + \epsilon_t$. Daily change in the German convenience yield is instrumented with the 30-minute yield change.

SIMILAR SPILLOVERS FROM DEBT ISSUANCE IN FRANCE

• Similar spillovers from France: almost 1-for-1 to other safe countries, but smaller to riskier countries

Table 3: Daily Convenience Yield Spillovers from France (Method 3: Rigobon-Sack Estimator)

		Sa	fe Countr	ies		Risky Countries			
	$\begin{array}{ c c } \hline (1) \\ \Delta C Y_{DE} \\ \end{array}$	$\begin{array}{c} (2) \\ \Delta C Y_{NL} \end{array}$	ΔCY_{FI}	ΔCY_{AT}	$\begin{array}{c} (5) \\ \Delta C Y_{BE} \end{array}$	$\begin{array}{c} (6) \\ \Delta C Y_{IT} \end{array}$	$\begin{array}{c} (7) \\ \Delta C Y_{ES} \end{array}$	$\begin{array}{c} (8) \\ \Delta C Y_{PT} \end{array}$	
ΔCY_{FR}	1.26***	0.85**	0.77*	0.91***	0.95***	-0.19	0.73	1.66	
	(0.39)	(0.35)	(0.43)	(0.27)	(0.31)	(0.54)	(0.64)	(4.14)	
Constant	0.00	0.00	-0.00	-0.00	-0.00	0.00	0.00	0.02	
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.01)	(0.00)	(0.02)	
N	44	44	44	44	44	44	44	44	
Weak IV	4.57	5.13	3.93	3.95	4.85	3.97	3.99	7.61	
Overid.	0.24	0.76	0.48	0.46	0.74	0.83	0.79	0.24	

Notes: Each column displays coefficients from a separate regression: $\Delta CY_{Destination,t} = \beta_0 + \beta_1 * \Delta CY_{FR,t} + \epsilon_t$ where we employ the RS estimator. For every column, we use the two-step GMM estimator and the two instrument variables based on the change in the variance- covariance matrix of the origin and destination country convenience yields.

ROBUSTNESS CHECKS & VALIDATING THE MECHANISM

- Robustness checks:
 - Different origin country (news about debt supply from France)
 - Different maturity (5-year instead of 10-year)
 - Longer window for high-frequency instrument (60 min instead of 30 min)
 - Control for background noise (Rigobon-Sack estimator)
- Validation: DMO announcements are interpreted as "news about debt supply" and not as "news about the state of economy"
 - No significant effects on stock prices & volatility, inflation expectations, or sovereign risk premia

SPILLOVERS BEYOND EURO AREA SOVEREIGN BOND MARKET

- Strong yield spillovers also to issuers of non-sovereign (EU, AAA corporates) or non-euro (GB, DK, SE, NO) bonds in Europe
- No significant spillovers to sovereign issuers beyond Europe (US, JP, CA, AU)

Table 4: Daily Spillovers from Germany Beyond Euro Area Sovereign Bonds (Method 2: IV)

	EA No	$on ext{-}Sov.$		Europe	ean Sove	reigns		Non-European Sovereigns			
	$\begin{pmatrix} (1) \\ \Delta Y_{EU} \end{pmatrix}$	(2) ΔY_{AAA}	(3) ΔY_{GB}	ΔY_{DK}	(5) ΔY_{SE}	(6) ΔY_{NO}	(7) ΔY_{CH}	$\left \begin{array}{c} (8) \\ \Delta Y_{US} \end{array} \right $	(9) ΔY_{JP}	(10) ΔY_{CA}	(11) ΔY_{AU}
ΔY_{DE}	0.80*** (0.12)	0.91*** (0.18)	1.03*** (0.28)	1.05*** (0.12)	1.32** (0.56)	1.35** (0.53)	0.39 (0.26)	$0.46 \ (0.37)$	0.08 (0.09)	0.32 (0.33)	0.41 (0.55)
Constant	0.00 (0.00)	0.00 (0.00)	$\begin{vmatrix} 0.00 \\ (0.00) \end{vmatrix}$	$0.00 \\ (0.00)$	0.01 (0.01)	0.01 (0.01)	-0.00 (0.00)	-0.01 (0.01)	-0.00* (0.00)	-0.01 (0.00)	-0.01 (0.01)
Observations	38	44	44	44	44	44	44	44	44	44	44

Notes: Each column displays coefficients from a separate regression: $\Delta Y_{Destination,t} = \beta_0 + \beta_1 * \Delta Y_{DE,t} + \epsilon_t$ where the daily change in the German yield is instrumented with the 30-minute change. Robust standard errors are reported in parentheses. *p < 0.10, **p < 0.05, ***p < 0.01.

AGENDA

- 1. Data & Empirical Strategy
- 2. Empirical Results
- 3. Theoretical Rationalization

BRUNNERMEIER ET AL. (2024) WITH 2 COUNTRIES & DEFAULT

- Two countries (H, F) issue bonds in t=1
 - H repays in t=3 with certainty, F potentially defaults
- Ex-ante identical households buy bonds
 - Exogenous income, low and heterogeneous if recession hits in t=2 (idiosyncratic income risk)
- Bonds can be re-traded in recessions to alleviate income losses
 - Convenience yields reflect an insurance value ("hedge against bad times")

RESULT (A): CONVENIENCE YIELD FALLS WITH DEFAULT RISK

- F potentially defaults in t=3 if and only if a recession hits in t=2
 - In recessions, price of F bonds falls...
 - ... making them less useful as a re-trading object

• Result (A): F earns a lower convenience yield & the differential increases with default risk (P_D) in F.

(A) The Role of Default Risk

RESULT (B): CONVENIENCE YIELDS FALLS WITH BOND SUPPLY

- Result (B): In response to an increase in debt supply in H, convenience yields decline (weakly) in both countries.
- <u>Intuition:</u> When more bonds are available for "insurance"
 - → households are better insured
 - → the value of further insurance falls
 - → convenience yields decline

(B) The Role of Bond Supply (at *Home*)

RESULT (C): CONVENIENCE YIELD SPILLOVERS FALL WITH DEF. RISK

- Result (C): In response to debt supply change in H, the relative change in F convenience yield (i.e., the spillover) falls with default risk (P_D) in F.
- <u>Intuition:</u> When default risk in F increases
 - → F bonds are less useful as "hedge"
 - → and hence worse substitutes for H bonds (which are a good "hedge")
 - → spillover is smaller

(B) Spillover Coefficient $(\Delta CY_F/\Delta CY_H)$

SUMMARY & POLICY IMPLICATIONS

- Spillovers of safe-country debt issuance to (convenience) yields of other safe countries are one-for-one, but weaker for riskier countries
 - In line with stylized two-country model of safe asset re-trading à la Brunnermeier et al. (2024)
- For maintaining high convenience yields (low sovereign yields) in the euro area ...
 - ... it matters how much debt is issued in total
 - ... it matters less who issues it (DE, EU, [FR], ...)
- This underscores the importance of coordinating national fiscal policies
 - Fiscal rules can address negative externalities of debt issuance

ANNEX

IV ESTIMATION – FIRST STAGE

Table A.3: Decomposition of Effect of Instrument on German Convenience Yield

	$\begin{array}{c} (1) \\ \Delta Y_{DE} \end{array}$	ΔOIS	ΔCDS_{DE}	$\begin{array}{c} (4) \\ \Delta C Y_{DE} \end{array}$
ΔY_{DE}	1.45**	0.74	-0.22**	-0.93***
	(0.66)	(0.66)	(0.10)	(0.26)
Constant	-0.01 (0.01)	-0.01 (0.01)	$0.00 \\ (0.00)$	0.00 (0.00)
Observations R^2 F	44	44	44	44
	0.13	0.06	0.06	0.18
	4.79	1.29	5.49	12.59

ROBUSTNESS: 1-DAY YIELD SPILLOVERS FROM GERMANY

Table A.4: Daily Yield Spillovers from Germany (Method 2: IV)

			Safe Co			Ris	ky Coun	tries			
	$\begin{pmatrix} (1) \\ \Delta Y_{FR} \end{pmatrix}$	ΔY_{NL}	ΔY_{FI}	ΔY_{AT}	ΔY_{BE}	(6) Pool	(7) ΔY_{IT}	ΔY_{ES}	(9) ΔY_{PT}	(10) Pool	(11) Pool
ΔY_{DE}	0.99*** (0.12)	0.98*** (0.07)	1.09*** (0.09)	1.03*** (0.11)	1.18*** (0.29)		0.53 (0.47)	0.56 (0.37)	0.88 (0.65)		
ΔY_{DE}						1.05*** (0.12)				$0.66 \\ (0.43)$	0.80*** (0.24)
$\Delta Y_{DE} \\ \times \mathbb{1}\{CDS_t > 1\}$											-0.26 (0.68)
Constant	0.00 (0.00)	$0.00 \\ (0.00)$	$0.00 \\ (0.00)$	$0.00 \\ (0.00)$	$0.01 \\ (0.01)$	$0.00 \\ (0.00)$	0.01* (0.01)	$0.01 \\ (0.01)$	$0.02 \\ (0.01)$	$0.01 \\ (0.01)$	0.01 (0.01)
Observations	44	44	44	44	44	220	44	44	44	132	132

Notes: Each column displays coefficients from a separate regression: $\Delta Y_{Destination,t} = \beta_0 + \beta_1 \times \Delta Y_{DE,t} + \epsilon_t$, for columns (1)-(5) and (7)-(9); $\Delta Y_{Destination,t} = \beta_0 + \beta_1 \times \Delta Y_{DE,t} + \beta_2 \Delta Y_{DE,t} \times \mathbb{I}\{CDS_t > 1\} + \epsilon_t$, for columns (6) and (10)-(11); where the daily change in the German convenience yield is instrumented with the 30-minute yield change and $\mathbb{I}\{CDS_t > 1\}$ is an indicator variable that take value 1 if the CDS rate is above 1 and 0 otherwise. Robust standard errors are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

ROBUSTNESS: 5-YEAR MATURITY

Table A.6: Daily Convenience Yield Spillovers from Germany (Method 2: IV) – 5-Year Maturity

			Safe Co	ountries			Risky Countries				
	(1) ΔCY_{FR}	(2) ΔCY_{NL}	ΔCY_{FI}	ΔCY_{AT}	(5) ΔCY_{BE}	(6) Pool	$\begin{array}{ c c }\hline (7) \\ \Delta C Y_{IT}\end{array}$	ΔCY_{ES}	(9) ΔCY_{PT}	(10) Pool	(11) Pool
ΔCY_{DE}	1.07*** (0.20)	1.06*** (0.18)	1.06*** (0.33)	0.60** (0.27)	0.84 (0.52)		0.77 (0.80)	0.17 (0.78)	0.81 (0.84)		
ΔCY_{DE}						0.92*** (0.18)				0.58 (0.66)	1.00** (0.44)
$\begin{split} &\Delta CY_{DE} \\ &\times \mathbb{1}\{CDS_t > 1\} \end{split}$											-0.84 (1.08)
Constant	0.00 (0.00)	0.00 (0.00)	-0.00 (0.00)	-0.00 (0.00)	$0.00 \\ (0.00)$	$0.00 \\ (0.00)$	-0.00 (0.01)	$0.00 \\ (0.01)$	-0.00 (0.01)	-0.00 (0.01)	-0.00 (0.01)
Observations	41	41	41	41	41	205	41	41	41	123	123

Notes: Each column displays coefficients from a separate regression for the 5-year maturity: $\Delta CY_{Destination,t} = \beta_0 + \beta_1 \times \Delta CY_{DE,t} + \epsilon_t$, for columns (1)-(5) and (7)-(9); $\Delta CY_{Destination,t} = \beta_0 + \beta_1 \times \Delta CY_{DE,t} + \beta_2 \Delta CY_{DE,t} \times \mathbb{I}\{CDS_t > 1\} + \epsilon_t$, for columns (6) and (10)-(11); where the daily change in the German convenience yield is instrumented with the 30-minute yield change and $\mathbb{I}\{CDS_t > 1\}$ is an indicator variable that take value 1 if the CDS rate is above 1 and 0 otherwise. Robust standard errors are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

ROBUSTNESS: LONGER HIGH-FREQUENCY WINDOW (1 HOUR)

Table OA.10: Daily Convenience Yield Spillovers from Germany (Method 2: IV) – Instrument: 1-Hour Change

			Safe Co	untries				Risk	y Countrie	es.	
	1 ΔCY_{FR}	ΔCY_{NL}	ΔCY_{FI}	ΔCY_{AT}	(5) ΔCY_{BE}	(6) Pool	$ \begin{array}{c} (7) \\ \Delta C Y_{IT} \end{array}$	ΔCY_{ES}	(9) ΔCY_{PT}	(10) Pool	(11) Pool
ΔCY_{DE}	1.07*** (0.30)	0.76 (0.52)	1.62** (0.61)	1.04* (0.56)	1.40 (1.23)		0.49 (1.25)	-0.74 (1.33)	2.14 (2.41)		
ΔCY_{DE}						1.18** (0.55)				0.63 (1.36)	0.78^* (0.42)
$\Delta CY_{DE} \times \mathbb{1}\{CDS_t > 1\}$											-0.28 (2.32)
Constant	-0.00 (0.00)	0.00 (0.01)	-0.00 (0.00)	-0.00 (0.00)	-0.00 (0.01)	-0.00 (0.00)	-0.01 (0.01)	-0.01 (0.01)	-0.01 (0.02)	-0.01 (0.01)	-0.01 (0.01)
Observations	44	44	44	44	44	220	44	44	44	132	132

Notes: Each column displays coefficients from a separate regression: $\Delta CY_{Destination,t} = \beta_0 + \beta_1 \times \Delta CY_{DE,t} + \epsilon_t$, for columns (1)-(5) and (7)-(9); $\Delta CY_{Destination,t} = \beta_0 + \beta_1 \times \Delta CY_{DE,t} + \beta_2 \Delta CY_{DE,t} \times \mathbb{1}\{CDS_t > 1\} + \epsilon_t$, for columns (6) and (10)-(11); where the daily change in the German convenience yield is instrumented with the 1-hour yield change and $\mathbb{1}\{CDS_t > 1\}$ is an indicator variable that take value 1 if the CDS rate is above 1 and 0 otherwise. Robust standard errors are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

ROBUSTNESS: RIGOBON-SACK ESTIMATOR

Table OA.5: Daily Convenience Yield Spillovers from Germany (Method 3: Rigobon-Sack Estimator)

		Sa	fe Countr	ies		Risky Countries			
	$\begin{pmatrix} (1) \\ \Delta C Y_{FR} \end{pmatrix}$	$\begin{array}{c} (2) \\ \Delta C Y_{NL} \end{array}$	$\begin{array}{c} (3) \\ \Delta C Y_{FI} \end{array}$	ΔCY_{AT}	$\begin{array}{c} (5) \\ \Delta C Y_{BE} \end{array}$	$\begin{array}{ c c } \hline (6) \\ \Delta C Y_{IT} \\ \hline \end{array}$	$\begin{array}{c} (7) \\ \Delta C Y_{ES} \end{array}$	$\begin{array}{c} (8) \\ \Delta C Y_{PT} \end{array}$	
ΔCY_{DE}	0.93*** (0.29)	2.87* (1.60)	1.09*** (0.37)	1.33** (0.53)	0.89 (1.03)	0.54 (1.00)	-0.30 (1.20)	0.08 (1.32)	
Constant	-0.00* (0.00)	-0.01 (0.01)	-0.00 (0.00)	-0.00 (0.00)	-0.00 (0.00)	-0.01 (0.01)	$0.00 \\ (0.01)$	-0.01 (0.01)	
N	88	88	88	88	88	88	88	88	
Weak IV	6.126	5.261	4.025	3.750	3.205	3.172	3.170	3.126	
Overid.	0.605	0.866	0.733	0.383	0.510	0.949	0.538	0.125	

Notes: Each column displays coefficients from a separate regression: $\Delta CY_{Destination,t} = \beta_0 + \beta_1 \times \Delta CY_{DE,t} + \epsilon_t$, where we employ the RS estimator described in Section 3.3. Each column corresponds to a different destination country. For every column, we use the two-step GMM estimator and the two instrument variables based on the change in the variance-covariance matrix of the origin and destrination country yields. Robust standard errors are reported in parentheses and stars indicate significance levels: *p < 0.10, **p < 0.05, ***p < 0.01. The before last row shows the Stock-Yogo weak IV statistics while the associated threshold for the 25% maximal IV size is estimated at 7.25. The last row reports the p-value of the Hansen J overidentification test where the null hypothesis is that the instruments are valid.

STOCK PRICES & VOLATILITY DO NOT REACT TO DEBT SUPPLY NEWS

Table A.14: Debt Supply Shocks & Stock Markets

	30	O-Minute Cho	anges	Daily Changes						
	$\begin{array}{ c c } \hline (1) \\ \Delta DAX \\ \end{array}$	Δ CAC40	$\Delta Stoxx50$	Δ DAX	Δ CAC40	$\Delta Stoxx50$	$\begin{array}{c c} (7) \\ \Delta VStoxx \end{array}$			
ΔY_{DE}	0.02 (0.04)	0.03 (0.04)	0.01 (0.02)	0.04 (0.08)	0.04 (0.10)	0.04 (0.10)	-8.60 (13.03)			
Constant	-0.00 (0.00)	-0.00 (0.00)	-0.00 (0.00)	-0.00 (0.00)	-0.00 (0.00)	-0.00 (0.00)	0.07 (0.22)			
Observations	44	44	44	44	44	44	44			

Notes: Each column displays coefficients from a separate regression: $\Delta X_t = \beta_0 + \beta_1 \times \Delta Y_{DE,t} + \epsilon_t$, where $\Delta Y_{DE,t}$ is the 30-minute change in the German yield around the German DMO announcement and outcome variables are 30-minute changes (columns 1-3) or daily changes (columns 4-7). Outcome variables are in logs (columns 1-6) or levels (column 7). VStoxx is the volatility index for the Stoxx 50. Robust standard errors are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

INFLATION EXPECTATIONS DO NOT REACT TO DEBT SUPPLY NEWS

Table A.10: Effects on Inflation Linked Swap Rates

	EA_{1Y}	$(2) \\ EA_{3Y}$	$(3) \\ EA_{5Y}$	EA_{10Y}	DE_{1Y}	DE_{3Y}	DE_{5Y}	DE_{10Y}
ΔY_{DE}	-0.22 (0.76)	-0.08 (0.60)	-0.01 (0.58)	$0.09 \\ (0.51)$	9.20 (5.51)	0.46 (0.86)	-1.33 (1.06)	-1.55 (1.10)
Constant	$0.00 \\ (0.01)$	$0.00 \\ (0.01)$	$0.00 \\ (0.00)$	-0.00 (0.00)	$0.02 \\ (0.02)$	-0.00 (0.01)	-0.01 (0.01)	-0.01 (0.01)
Observations R^2	44 0.00	44 0.00	44 0.00	44 0.00	42 0.33	44 0.01	44 0.07	44 0.18

Notes: Each column displays coefficients from a separate regression: $\Delta X_t = \beta_0 + \beta_1 \times \Delta Y_{DE,t} + \epsilon_t$, where $\Delta Y_{DE,t}$ is the 30-minute change in the German yield around the German DMO announcement and outcome variables (X_t) are daily changes in inflation linked swap rates for the euro area (columns 1-4) or for Germany (columns 5-8). Robust standard errors are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

DEFAULT RISK PREMIA DO NOT REACT TO DEBT SUPPLY NEWS

Table A.11: Effects on 5-Year Credit Default Swap Rates

	ΔCDS_{DE}	ΔCDS_{FR}	ΔCDS_{NL}	ΔCDS_{FI}	ΔCDS_{AT}	ΔCDS_{BE}	ΔCDS_{IT}	ΔCDS_{ES}	ΔCDS_{PT}
ΔY_{DE}	-0.05	0.05	-0.11	0.08	0.12	0.10	-0.81	0.09	-0.07
	(0.05)	(0.16)	(0.08)	(0.08)	(0.10)	(0.26)	(0.71)	(0.40)	(0.89)
Constant	0.00 (0.00)	0.00 (0.00)	$0.00 \\ (0.00)$	0.00 (0.00)	0.00 (0.00)	$0.00 \\ (0.01)$	$0.01 \\ (0.01)$	$0.01 \\ (0.01)$	-0.00 (0.02)
Observations \mathbb{R}^2	44	44	44	44	44	44	44	44	44
	0.00	0.00	0.01	0.01	0.01	0.00	0.03	0.00	0.00

Notes: Each column displays coefficients from a separate regression: $\Delta CDS_t = \beta_0 + \beta_1 \times \Delta Y_{DE,t} + \epsilon_t$, where $\Delta Y_{DE,t}$ is the 30-minute change in the German yield around the German DMO announcement and outcome variables are daily changes in 5-year credit default swap rates. Robust standard errors are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

DEBT QUANTITY INSTRUMENT

Table A.13: Intraday Yield Spillovers from Germany – Debt Quantity Instrument

	1	Baseline Reduced Sample		Debt Quantity Instrument		
	(1) ΔY_{FR}	ΔY_{IT}	$\begin{array}{c c} (3) & (4) \\ \Delta Y_{ES} & \Delta Y_{FR} \end{array}$		$\begin{pmatrix} (7) & (8) \\ \Delta Y_{FR} & \Delta Y_{IT} \end{pmatrix}$	ΔY_{ES}
ΔY_{DE}	0.88*** (0.10)	0.62*** (0.21)	0.51** 0.82*** (0.24) (0.14)	0.35 0.24 (0.28) (0.24)	1.00** -1.11 (0.40) (1.88)	-0.43 (1.60)
Constant	0.00 (0.00)	0.00 (0.00)	$ \begin{array}{c c} 0.00 & -0.00 \\ (0.00) & (0.00) \end{array} $	0.00 0.00 (0.00) (0.00)	-0.00 0.00 (0.00) (0.00)	0.00 (0.00)
Obs.	44	43	39 32	31 28	32 31	28

Notes: Each column displays coefficients from a separate regression: $\Delta Y_{Destination,t} = \beta_0 + \beta_1 \times \Delta Y_{DE,t} + \epsilon_t$, where changes are 30-minute changes around German DMO announcements. Robust standard errors are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. Columns (4)-(6) use the subsample of events for which a debt quantity revision is available while also excluding one outlier (June 2020) as explained in Figure A.1. In columns (7)-(9), the 30-minute change in the German yield is instrumented with the debt quantity revision. The first-stage F-stat is 4.98 (column 7).