Asset Purchases in a Monetary Union with Default and Liquidity Risks

Huixin Bia Andrew Foersterb Nora Traumc

^aFederal Reserve Bank of Kansas City

^bFederal Reserve Bank of San Francisco

^cHEC Montréal

7 October 2025

The views expressed are those of the authors and not of the Federal Reserve Banks of Kansas City or San Francisco, or the Federal Reserve System.

This Paper

- Motivation: ECB's 2012 OMT and 2022 TPI programs
 - Targeted asset purchases to counter default and liquidity risks
- How do default risks risks, when interacted with liquidity risks, impact the economy?
- How useful are asset purchases to counter them and how does anticipation of such purchases affect the economy?

This Paper

- Build a two-country monetary-union model with both default & liquidity risks and examine effects of a large increase in debt.
 - Allow cross-country holdings of gov. debt

Findings:

- Both risks dampen economic & financial conditions in the affected country, while spillovers crucially depend on cross-country holdings of government debt.
- Targeted asset purchases (or their anticipation) can help stabilize the economy.
- Expectations of a crisis and credit intervention can distort the economy in normal times, raising or lowering economic activity depending on how frequently crises occur.

Modeling a Debt Crisis

Use Italian data in 2012 debt crisis as motivation

Debt/GDP (%)

Investment (% Dev from 2010-Q1)

Model Overview

▶ Home country:

- Government
 - Sets taxes and public expenditures, and issues bonds.
 - Default risks : endogenous regime switching process
- Financial intermediaries
 - Channel funds from households to Home firms and Home & Foreign governments.
 - Liquidity risks: tightness of financial friction varies with default probability.
- Foreign country: segmented financial markets without default and liquidity risks.
- Central bank: follows Taylor rule and can purchase government bonds.

Home Government

Budget constraint:

$$\rho_{H,t}g + (1 - \Delta_t)(1 + \kappa^b Q_t^b) \frac{b_{t-1}}{\pi_t} = Q_t^b b_t + t_t + \tau^i p_t^w y_t + \tau^c c_t$$

Lump-sum tax follows fiscal rule:

$$\frac{t_{t} - t}{t} = \phi_{t} \frac{Q_{t-1}^{b} b_{t-1} - Q^{b} b}{Q^{b} b}$$

• Government may default on bonds by taking a haircut δ_b :

$$\Delta_t = egin{cases} \delta_b, & ext{if default} \\ 0, & ext{otherwise} \end{cases}$$

Modeling Default

- Modeling Default through regime switching: if default, $def_t = 1$; otherwise, $def_t = 0$.
- Transition matrix:

$$\mathbb{P}_t = \left[\begin{array}{cc} \mathbb{P}_{00,t} & \mathbb{P}_{01,t} \\ \mathbb{P}_{10,t} & \mathbb{P}_{11,t} \end{array} \right] = \left[\begin{array}{cc} 1 - \textit{pdef}_t & \textit{pdef}_t \\ 1 - \textit{pdef}_t & \textit{pdef}_t \end{array} \right],$$

where the probability of default $pdef_t$ follows a logistic function of debt-to-GDP ratio s_t and sentiment shock e_t^p :

$$P(def_t = 1 | s_{t-1}, \epsilon_t^P) = \frac{\exp[\eta_0^{FL} + \eta_s^{FL}(s_{t-1} + \epsilon_t^P)]}{1 + \exp[\eta_0^{FL} + \eta_s^{FL}(s_{t-1} + \epsilon_t^P)]}$$

- Captures the idea of a "fiscal limit":
 - ► Can arise from dynamic Laffer curves (Bi, 2012)
 - May depend on nonfundamental e_t^p (investor sentiment)

Default Risks

- Default probability increases with debt-to-GDP ratio.
- Changes in sentiment also shift the distribution of fiscal limits.

Financial Intermediary

- Extension of Gertler and Karadi (2011)
- Collect deposits and purchase government & private bonds.

$$Q_t^b b_t^{H,j} + Q_t^{b,*} b_t^{F,j} + Q_t^f t_t^j = d_t^j + n_t^j.$$

Net worth depends on realized returns on holding bonds,

$$R_t^b = (\mathbf{1} - \Delta_t) \frac{1 + \kappa^b Q_t^b}{Q_{t-1}^b}, R_t^f = \frac{1 + \kappa^f Q_t^f}{Q_{t-1}^f}$$

Financial Intermediary: Gov Bond Portfolio

- Assume domestic and foreign government bond allocations are imperfect substitutes
- Intratemporal portfolio decision from CES composite [Alpanda and Kabaca (2018), Krenz (2022)]:

$$\begin{aligned} \max \quad & E_{t} \left(R_{t+1}^{b} Q_{t}^{b} b_{t}^{H,j} + R_{t+1}^{b,*} Q_{t}^{b,*} b_{t}^{F,j} \right) \\ s.t. \quad & m_{t}^{b,j} = \left[\gamma_{b}^{\frac{1}{\sigma_{b}}} \left(Q_{t}^{b} b_{t}^{H,j} \right)^{\frac{\sigma_{b}-1}{\sigma_{b}}} + (1-\gamma_{b})^{\frac{1}{\sigma_{b}}} \left(Q_{t}^{b,*} b_{t}^{F,j} \right)^{\frac{\sigma_{b}-1}{\sigma_{b}}} \right]^{\frac{\sigma_{b}}{\sigma_{b}-1}} \end{aligned}$$

Financial Intermediaries

Maximize expected net worth with a survival rate of σ :

$$\begin{aligned} &\max \qquad V_t^j = E_t \Lambda_{t,t+1} \left((1-\sigma) n_{t+1}^j + \sigma V_{t+1}^j \right) \\ &s.t. \qquad V_t^j \geq \eta_t^{V} (Q_t^f f_t^j + \theta^b m_t^{b,j}) \end{aligned}$$

Liquidity channel: η_t^{V} can vary with default risk (Bocola, 2016)

$$\eta_t^{\nu} = \bar{\eta}^{\nu} \left[1 + \phi_{\eta} \operatorname{Pr} \left(\operatorname{\textit{def}}_t = 1 | s_{t-1}, \epsilon_t^P \right) \right]$$

The Rest: Firms and Households

- Wholesale firms:
 - Issue long-term private bonds to finance private investment with a loan-in-advance constraint (Sims and Wu, 2021).
 - Produce output using labor and private capital.
- Home investment producers: assemble investment with adjustment costs.
- Households: Hold deposits at financial intermediary as well as hold one-period cross-region bond.

The Rest of the Model

- Foreign economy:
 - Symmetric except no default/liquidity risks.
- Monetary policy:
 - Union-wide Taylor rule.
 - Unconventional policy of asset purchases:

$$b_t^{cb} = b^{cb} + \phi_{cb} \left(\ln \underbrace{R_t^{spread}}_{E_t R_{t+1}^b - R_t^d} - \ln R^{spread}
ight)$$

Solution Method & Analysis

- Our model is large: 63 equations/unknowns, 25 state variables
- Use perturbation approach for solving endogenous regime-switching models (Benigno, Foerster, Otrok & Rebucci, 2020).
- Calibrate Home country to Italy and Foreign to Germany
- Consider a case with increase in Home debt level combined with a downward shift in the fiscal limit

Increase in Debt Tightens Financial Markets

Home (solid lines) versus Foreign (dotted)

Higher Bond Substitutability (red)

Asset Purchases Lessen the Effect of Debt Increase

50% prob. vs. 0% prob. of credit intervention

- ▶ With probability p_c , agents expect a one-time large increase in debt coupled with a leftward shift in the fiscal limit \rightarrow debt crisis
- ightharpoonup Compare stochastic steady state relative to case with no crisis ($p_c=0$)

	Low Prob (10	% annual)	High Prob (20% annual)	
Variable	No Purch (A)	Purch (B)	No Purch (C)	Purch (D)
Output	0.10	0.07	-0.06	0.01
Investment	0.18	0.09	-0.39	-0.24
Consumption	0.04	-0.04	-0.06	-0.20
Net Worth	-0.07	0.14	-0.98	-0.66
Deposit	0.52	0.40	0.46	0.33
Inflation	0.02	0.02	0.05	0.05
Foreign Output	-0.10	-0.10	-0.17	-0.24
Foreign Investment	-0.32	-0.28	-0.57	-0.63

- ▶ With probability p_c , agents expect a one-time large increase in debt coupled with a leftward shift in the fiscal limit \rightarrow debt crisis
- ightharpoonup Compare stochastic steady state relative to case with no crisis ($p_c = 0$)

	Low Prob (10	% annual)	High Prob (20% annual)	
Variable	No Purch (A)	Purch (B)	No Purch (C)	Purch (D)
Output	0.10	0.07	-0.06	0.01
Investment	0.18	0.09	-0.39	-0.24
Consumption	0.04	-0.04	-0.06	-0.20
Net Worth	-0.07	0.14	-0.98	-0.66
Deposit	0.52	0.40	0.46	0.33
Inflation	0.02	0.02	0.05	0.05
Foreign Output	-0.10	-0.10	-0.17	-0.24
Foreign Investment	-0.32	-0.28	-0.57	-0.63

- ▶ With probability p_c , agents expect a one-time large increase in debt coupled with a leftward shift in the fiscal limit \rightarrow debt crisis
- ightharpoonup Compare stochastic steady state relative to case with no crisis ($p_c = 0$)

	Low Prob (10	% annual)	High Prob (20% annual)	
Variable	No Purch (A)	Purch (B)	No Purch (C)	Purch (D)
Output	0.10	0.07	-0.06	0.01
Investment	0.18	0.09	-0.39	-0.24
Consumption	0.04	-0.04	-0.06	-0.20
Net Worth	-0.07	0.14	-0.98	-0.66
Deposit	0.52	0.40	0.46	0.33
Inflation	0.02	0.02	0.05	0.05
Foreign Output	-0.10	-0.10	-0.17	-0.24
Foreign Investment	-0.32	-0.28	-0.57	-0.63

- ▶ With probability p_c , agents expect a one-time large increase in debt coupled with a leftward shift in the fiscal limit \rightarrow debt crisis
- ▶ Compare stochastic steady state relative to case with no crisis ($p_c = 0$)

	Low Prob (10	% annual)	High Prob (20% annual)	
Variable	No Purch (A)	Purch (B)	No Purch (C)	Purch (D)
Output	0.10	0.07	-0.06	0.01
Investment	0.18	0.09	-0.39	-0.24
Consumption	0.04	-0.04	-0.06	-0.20
Net Worth	-0.07	0.14	-0.98	-0.66
Deposit	0.52	0.40	0.46	0.33
Inflation	0.02	0.02	0.05	0.05
Foreign Output	-0.10	-0.10	-0.17	-0.24
Foreign Investment	-0.32	-0.28	-0.57	-0.63

- ▶ With probability p_c , agents expect a one-time large increase in debt coupled with a leftward shift in the fiscal limit \rightarrow debt crisis
- ightharpoonup Compare stochastic steady state relative to case with no crisis ($p_c = 0$)

	Low Prob (10	% annual)	High Prob (20% annual)	
Variable	No Purch (A)	Purch (B)	No Purch (C)	Purch (D)
Output	0.10	0.07	-0.06	0.01
Investment	0.18	0.09	-0.39	-0.24
Consumption	0.04	-0.04	-0.06	-0.20
Net Worth	-0.07	0.14	-0.98	-0.66
Deposit	0.52	0.40	0.46	0.33
Inflation	0.02	0.02	0.05	0.05
Foreign Output	-0.10	-0.10	-0.17	-0.24
Foreign Investment	-0.32	-0.28	-0.57	-0.63

Conclusion

Liquidity and default risks dampen Home economic & financial conditions, while spillovers depend on cross-country bond adjustments.

- Asset purchases (or anticipation of purchases) can help stabilize economy.
- Expectations of a crisis and credit intervention can distort the economy in normal times, raising or lowering economic activity depending on how frequently crises occur.

Appendix

Breaking Down A Crisis

Table: Changes Following a Debt Crisis

	Data	Baseline	No Liquidity	No FL	No Debt
			Risk	Shift	Change
Debt	6.1	7.1	5.7	5.6	2.1
Investment	-34	-10.3	-2.4	-2.2	-7.3
Yield Spread	5.0	6.5	2.2	1.5	4.9
Excess Return	5.1	5.4	1.2	1.1	4.2

Connections to Literature

Fiscal policy in a monetary union:

Erceg & Lindé (2013); Nakamura & Steinsson (2014); Farhi & Werning (2017), Maćkowiak & Schmidt (2022); Bianchi, Melosi & Rogantini-Picco (2023)

- Cross-country effects of credit policies:
 Kollmann, Enders & Muller (2011); Kollmann (2013); Dedola, Karadi & Lombardo (2013); Kirchner & Wijnbergen (2016); Auray, Eyquem & Ma (2018); Krenz (2022)
- Sovereign default and liquidity risks:
 Bocola (2016); Bianchi & Mondragon (2022)

Households

Consumption c_t aggregates Home and Foreign consumption sub-baskets, $c_{H,t}$ and $c_{F,t}$, in Armington form:

$$c_{t} = \left[\alpha_{H}^{\frac{1}{\phi}}\left(c_{H,t}\right)^{\frac{\phi-1}{\phi}} + \left(1 - \alpha_{H}\right)^{\frac{1}{\phi}}\left(c_{F,t}\right)^{\frac{\phi-1}{\phi}}\right]^{\frac{\phi}{\phi-1}}$$

Budget constraint:

$$\textit{d}_{t} + \textit{z}_{t} + \textit{c}_{t} \left(1 + \tau^{\textit{c}} \right) = \frac{\textit{R}_{t-1}^{\textit{d}} \textit{d}_{t-1}}{\pi_{t}} + \frac{\textit{R}_{t-1}^{\textit{d}} \textit{z}_{t-1}}{\pi_{t}} + \textit{w}_{t} \textit{l}_{t} + \Pi_{t}^{\textit{f}} + \textit{div}_{t} - \textit{x} - \textit{t}_{t} + T_{t}^{\textit{cb}}$$

► Endogenous discount factor ensures stationarity [Uzawa (1968); Schmitt-Grohe and Uribe (2003)]

Wholesale Firms

 Issue long-term private bonds to finance private investment with loan-in-advance constraint [Sims and Wu (2021)]

$$\begin{aligned} & (\zeta_t^1) & \qquad K_t = I_t^w + (1 - \delta) K_{t-1} \\ & (\zeta_t^2) & \qquad Q_t^f \left(f_t - \kappa^f \frac{f_{t-1}}{\tau_t} \right) \geq \eta^f \rho_t^K I_t^w \end{aligned}$$

Produce output using labor and private capital

$$y_t^w = A_t I_t^{1-\alpha} K_{t-1}^{\alpha}$$

Optimal conditions:

$$\begin{split} \zeta_t^1 &= \rho_t^k (1 + \eta^I \zeta_t^2) \\ Q_t^f (1 + \zeta_t^2) &= \beta E_t \Lambda_{t+1} \frac{1}{\pi_{t+1}} \left(1 + \kappa^f Q_{t+1}^f (1 + \zeta_{t+1}^2) \right) \\ \zeta_t^1 &= \beta E_t \Lambda_{t+1} \left(\frac{\rho_{t+1}^w \alpha y_{t+1}}{K_t} (1 - \tau_{t+1}^i) + (1 - \delta) \zeta_{t+1}^1 \right) \end{split}$$

Financial Intermediary

The first-order conditions are,

$$\begin{split} E_{t}\beta(c_{t})\Lambda_{t,t+1}\Omega_{t+1} & \frac{R_{t+1}^{f} - R_{t}^{d}}{\pi_{t+1}} = \frac{\lambda_{t}^{v}}{1 + \lambda_{t}^{v}}\eta^{v} \\ E_{t}\beta(c_{t})\Lambda_{t,t+1}\Omega_{t+1} & \frac{R_{t+1}^{b} - R_{t}^{d}}{\pi_{t+1}} = \frac{\lambda_{t}^{v}}{1 + \lambda_{t}^{v}}\eta^{v} \\ E_{t}\beta(c_{t})\Lambda_{t,t+1} & \frac{\Omega_{t+1}}{\pi_{t+1}}R_{t}^{d} = \frac{\phi_{t}}{1 + \lambda_{t}^{v}}\eta^{v} \end{split}$$

- \triangleright λ_t^v measures the tightness of the costly enforcement constraint.
- $ightharpoonup E_t R_{t+1}^b R_t^d$: excess returns
- $lackbox{} \phi_t = rac{Q_t^f f_t + Q_t^b b_t^j}{n_t}$: leverage ratio

Parameter	Value	Description
		Home Country
κ^f	$1 - 40^{-1}$	Coupon decay parameter for private bonds
κ^b	$1 - 28^{-1}$	Coupon decay parameter for government bond
η^I	0.65	Fraction of investment from debt
φ	4	Leverage ratio
η^{ν}	0.59	Recoverability parameter
η^{V} $\frac{Q^{f}f}{4y}$ $\frac{Q^{b}b}{4y}$ τ^{c}	1.1	Private bonds as share of GDP
$\frac{Q^bb}{4v}$	1.05	Government bonds as share of GDP
$ au^{c'}$	0.22	Consumption tax rate
	0.2	Income tax rate
$\frac{g^c}{v}$	0.19	Government consumption as share of GDP
		Foreign Country
$\kappa^{f,*}$	$1 - 40^{-1}$	Coupon decay parameter for private bonds
$\kappa^{b,*}$	$1 - 24^{-1}$	Coupon decay parameter for government bond
$\eta^{I,*}$	0.75	Fraction of investment from debt
ϕ^*	4	Leverage ratio
$\eta^{v,*}$	0.59	Recoverability parameter
$\frac{Q^{f,*}f^*}{4y^*}$	1.2	Private bonds as share of GDP
Q ^{b′,*} b* 4v*	1.05	Government bonds as share of GDP
$\tau^{c,*}$	0.19	Consumption tax rate
$ au^{i,*}$	0.25	Income tax rate
<u>g^{c,∗}</u> y*	0.2	Government consumption as share of GDP

Estimating Fiscal Limit

