Brothers in Arms: Monetary-Fiscal Interactions Without Ricardian Equivalence

Morten Ravn, with Lukasz Rachel

Discussion: Stéphane Dupraz*

Riksbank October 6, 2025

^{*}The views expressed do not necessarily represent those of the Banque de France, the ECB or the Eurosystem

Summary: If the Ricardian Equivalence is Broken, Fix the Model

Perpetual-Youth set-up: Public debt is net wealth and enters the IS curve

$$C_t = \frac{1}{\beta} \frac{\pi_{t+1}}{I_t} C_{t+1} + \chi \left(\frac{B_{t-1}}{P_t} - S_t \right)$$

- Makes a lot of change to monetary-fiscal interactions
 - 1. Monetary-Dominance/Fiscal-Dominance dichotomy lost
 - 2. Determinacy (and absence of bounded solution) obtains more easily
 - 3. Deficits are inflationary eveywhere

...and much more!

• Leeper (1991): Ricardian HH with monetary policy $i_t = \phi_\pi \pi_t$

• Dupraz Rogantini Picco (2024): Non-Ricardian HH with $i_t = \phi_\pi \pi_t$

• Dupraz Rogantini Picco (2024): Non-Ricardian HH with $i_t = \phi_\pi \pi_t$

• Dupraz Rogantini Picco (2024): Non-Ricardian HH with $i_t = \phi_\pi \pi_t$

• Dupraz Rogantini Picco (2024): Non-Ricardian HH with $i_t = \phi_\pi \pi_t + \eta(b_{t-1} - \tau_t)$

Central bank can deliver price stability if responds directly to debt

$$i_t = \phi_\pi \pi_t + \eta (b_{t-1} - \tau_t)$$

Allows to track natural rate, which depends on debt when HH are not Ricardian

$$i_t = r_t^n + \phi_\pi \pi_t$$

$$r_t^n = \eta(b_{t-1} - \tau_t).$$

- Restores a notion of monetary dominance (insulates inflation from public debt)
- Yet threshold of α_b for monetary dominance is now higher $(\tau_t = \alpha_b b_{t-1} + \nu_t)$

$$\alpha_b > \alpha_b^* = 1 - \frac{1}{R + \frac{b}{\nu} \eta}$$

- Rachel Ravn, Section 4.2: α_b^* is very large!
- $\sim 0.35!$ vs. $\simeq r \simeq 0.0025$ for Ricardian HH
- Monetary dominance only for narrow set of strongly debt-stabilizing fiscal policies
- So is central bank control over inflation doomed after all?

#2: Why is α_b threshold higher?

$$\alpha_b > \alpha_b^* = 1 - \frac{1}{R + \frac{b}{y}\eta}$$

- Where does threshold α_b^* come from?
 - ullet Gvt FBC under price stability + Expression of the natural rate

$$b_t = R(b_{t-1} - s_t) + \frac{b}{y} r_t^n$$
$$r_t^n = \eta(b_{t-1} - \tau_t)$$

• Together give dynamics of debt under price stability as:

$$b_t = \left(R + \eta \frac{b}{y}\right) (b_{t-1} - s_t)$$

- ullet Debt diverges faster absent increases in taxes because r^n now increases with b
- But how fast does rⁿ increase with the level of debt?
 - In the paper, $q=0.75 \rightarrow \eta \simeq 0.08$
 - If debt \uparrow 1pp of annual GDP from B/Y=100%, annualized $r^n \uparrow$ by $16\eta \simeq 130 bp$
 - Huge! 15pp \uparrow in Debt-to-GDP since Covid $\rightarrow r^n \uparrow$ by 20pp!

#3: How Fast Does r^n Increase With Public Debt?

• **Model**: Sensitivity long-term r^n to B/Y as a function of 1-q (No re-adjustment in the social fund transfer!)

#3: How Fast Does r^n Increase With Public Debt?

- Data: Laubach (2009), Engen Hubbard (2004): 3 to 4bp
- Requires $q \simeq 0.965$ (MPC $\simeq 0.035$)

#3: How Fast Does r^n Increase With Public Debt?

- To still match high average MPC in the data, extend model with HTM households
- ullet To match r^n -sensitivity, still requires $q \simeq 0.97$ (Debt Holders' MPC $\simeq 0.03$)

#3: How Fast Does rⁿ Increase With Public Debt?

- Also why capital changes determinacy region so much
- Even with low q, hence little elastic asset demand, an elastic capital supply dampens how much rⁿ increases with public debt
- With or without capital, important sufficient statistic to match is $\partial r^n/\partial b$

A) No capital, sticky prices and wages

C) Capital, short term debt

• Back to α_b^* threshold

$$\alpha_b > \alpha_b^* \simeq r + \frac{b}{y} \eta$$

- Empirical sensitivity implies α_b^* increases by about 0.03/4 \simeq 0.0075
 - From $\alpha_b^*=$ 0.0025 to $\alpha_b^*=$ 0.01 (From 1% to 4% in annualized terms)
 - ullet Significant, but \sim 35 times smaller than under q=0.75 calibration (w/o capital)
- All this is local analysis! It's not captured in loglinearized model but:
 - \bullet As debt increases, b/y increases and higher r^n multiplies a higher debt
 - As debt increases, $\partial r^n/\partial b$ becomes higher
 - Full conditions for central bank to keep control over inflation: non-linear model
 - Derived in Dupraz Rogantini Picco (2024)