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1. Introduction

In this paper we study two key challenges in developing empirical New-Keynesian DSGE mod-
els for policy analysis: identification and misspecification. Following the seminal papers by
Christiano, Eichenbaum and Evans (2005), and Smets and Wouters (2003), estimated dynamic
stochastic general equilibrium (DSGE) models have become one of the most important tools
available to policy-makers at central banks. However, when the quantitative implications of the
models are of interest, it is vital that the inputs to the models, i.e. their parameter values, have
empirical credibility. This has stimulated a very active research effort aimed at the estimation
and empirical evaluation of DSGE models.

Most papers in the empirical DSGE literature have used Bayesian estimation techniques.
The choice of this approach can partly be explained by compelling arguments for why Bayesian
methods are appropriate when thinking about possibly misspecified macroeconomic models, see
e.g. Sims (2007, 2008). But it is also conceivable that Bayesian methods have been applied to
remedy identification problems. If some of the parameters in the model are not identified by the
data, the prior distribution provide curvature and thus enables estimation of the model. The
dominant narrative, see e.g. Blanchard (2016a, 2016b), is that lack of identification is the main
reason for the adoption of Bayesian methods. Our paper provides a different perspective by
arguing that model design and problems with model misspecification may still be a first-order
issue for many monetary DSGE models, and that a key benefit of moving from a classical to a
Bayesian framework is to mitigate the consequences of such problems.

In line with the dominant narrative, Canova and Sala (2009) and Iskrev (2008, 2010a),
suggest that there is often insuffi cient information in the data to learn about the structural
parameters in DSGE models, thus casting doubt on the empirical results and policy inference
drawn from estimated DSGE models. Canova and Sala (2009) focus on limited information
methods (i.e. the minimum distance estimator used by e.g. Christiano, Eichenbaum and Evans,
2005) and argue that problems with observational equivalence between parameterizations are
widespread in DSGE models and that Bayesian methods may hide underlying identification
problems. Following Canova and Sala (2009), we define a DSGE model as suffering from ob-
servational equivalence if different parameterizations of the model are indistinguishable with
respect to the likelihood for a given set of observable variables. Another, arguably more rele-
vant, case in practice is a situation where the DSGE model is only weakly identified, i.e. where
the likelihood function has a unique but only weak curvature for (some or all of) the parame-
ters that the econometrician tries to estimate. In the former case, the ML estimator will be
inconsistent, whereas in the latter case, the ML estimator will be consistent but a very large
sample may be required to learn about (some of) the parameters of the DSGE model.1 Iskrev
(2008, 2010a), on the other hand, considers full information methods and develops a test to
check for identification prior to estimation. Iskrev’s analysis of the Smets and Wouters (2007)
model also points toward local indistinguishability between some of the parameters, given that
the econometrician attempts to estimate a large set of parameters. In conclusion, this leads
to a widely held belief that maximum likelihood estimation may not be feasible because many
parameters are poorly identified, see for example the recent discussion in Blanchard (2016a,b)
and the references therein.

In contrast, we show in this paper that identification should not be assumed to be weak

1So with Canova and Sala’s (2009) definition of weak identification, sample size matters for identification
strength. This definition is in analogy with, but not identical to, the weak instrument problem studied in the
GMM literature as the weak instrument problem is not necessarily a small sample problem, see Stock et al. (2002).
The definition by Canova and Sala is convenient for us as they study identification in DSGE models.
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for all models. Models can have similar core features and yet differ in terms of the degree of
identification. Identification should therefore be assessed on a case-by-case basis, by applying
recently developed pre-tests of identification. Such tests are fast and effective in highlighting
major identification issues before models are actually taken to the data.

To begin with, we use Iskrev’s (2010a,b) tests of identification on a prototype DSGE model
to show that identification problems are limited to a few parameters if a suitable set of observed
variables is matched. Iskrev’s tests are particularly useful because they allow us to exploit the
entire prior parameter space.2 Next, we complement Iskrev’s identification tests by studying
the small sample properties of the classical maximum likelihood (ML) estimator in a Monte
Carlo simulation exercise. To generate artificial samples, we use a log-linearized version of a
typical New Keynesian open-economy DSGE model, parameterized by the Bayesian posterior
median estimate in Adolfson et al. (2008a). We look at small sample distributions for individual
parameters and show that the ML estimator is unbiased for nearly all parameters, and as the
sample size increases, the small sample bias that occurs for a few parameters disappears. We
also show that the mean square error is small (relative to e.g. the prior uncertainty) for many
parameters. In contrast to Canova and Sala (2009), we therefore conclude that, in our case,
many of the structural parameters are well identified and taking the model to the data will be
informative about their values.

We then estimate closed and open economy models on actual Swedish (open economy) and
U.S. (closed economy) data with classical ML estimation techniques and compare the results
with the Bayesian estimation results. For both countries, we obtain an outsized increase in
the log likelihood at the ML estimate which we interpret as informativeness in the data. A
key finding in the ML estimation is that the Calvo parameters in the price-setting equations
are driven to implausibly high values. We argue that this is due to misspecified price-setting
behavior in two complementary ways. First, we apply a formal test of misspecification by using
the DSGE-VAR methodology of Del Negro and Schorfheide (2004, 2009). This tool measures
how well the DSGE model mimics the data, and we obtain a large improvement in marginal
likelihood when relaxing the cross-equation restrictions in the DSGE. It is hence clear that both
the closed and open economy models are misspecified, but the test does not tell us in which
dimensions the DSGEs need to be altered. Consequently, we complement our direct evidence
with an informal test, where misspecification is introduced in the DSGE through an incorrectly
specified Phillips curve, and study how ML estimation on simulated data is affected by this.
The results provide support for problems in the price-setting bloc.

A possible limitation of our analysis is that it is restricted to two baseline models, the
workhorse New Keynesian open-economy DSGE model in Adolfson et al. (2008a) and a closed
economy formulation of the same model (Adolfson, 2008b). This feature may limit our ability to
draw any conclusions about identification and misspecification in New Keynesian DSGE models
more generally. There are, however, three distinct reasons why we think our analysis may be of
importance to a wider range of studies.

First, the closed and open economy models we study have well-documented good empirical

2We make use of the tests in Iskrev (2010a,b) since they have been applied to the workhorse model of Smets
and Wouters (2007), with which our models share many features. Other recent papers which have developed
useful tools to study identification in DSGE models include Andrle (2010) and Komunjer and Ng (2011), who
build on the same asymptotic theory as Iskrev (2010a); Müller (2013), who discusses uncertainty estimates robust
to misspecification; Consolo, Favero and Paccagnini (2009), Guerron-Quintana, Inoue and Kilian (2013), Koop,
Pesaran and Smith (2011), Qu (2014) and Andrews and Mikusheva (2015). The latter study encompasses most
of the recent literature on the subject and also proposes an informal test for weak identification. In Appendix
C, to complement Iskrev (2010a,b), we discuss and show that the results of such an informal test applied to our
models do not alter the general outcomes.
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properties (see e.g. Adolfson et al. 2008a,b).3 Second, the parameterization and structure of
the closed economy formulation of the model is literally a multi-shock variant of the Christiano,
Eichenbaum and Evans (2005) model which is in turn the backbone of other key empirical models
in the DSGE literature (see e.g. Smets and Wouters 2003 and 2007, and Coenen et al., 2012).
To show this, impulse response functions to a monetary policy shock in six different models of
the Euro Area and the US (see Wieland et al., 2012), including ours, are reported in Figure
1. As can be seen, the transmission mechanism in our model is almost identical to the other
closed and open economy benchmark models. Third, several central banks use very similar
models, e.g., the Federal Reserve Board’s SIGMA model (Erceg et al., 2006), the European
Central Bank’s New Area Wide model (Christoffel et al., 2008), the International Monetary
Fund’s GEM model (Pesenti, 2008), and the European Commission’s QUEST model (Ratto et
al., 2009). See Coenen et al. (2012) for a review of these models.

The remainder of the paper is organized as follows. In the next section, we describe the
closed and open economy DSGE models that we use as the data-generating processes. We
perform a detailed identification analysis in Section 3: first the identification tests developed
in Iskrev (2010a,b) followed by the Monte Carlo simulation exercise. In Section 4 we address
misspecification issues. We estimate the DSGE model on actual Swedish and U.S. data with ML
techniques and offer a comparison with the Bayesian estimation results. We subsequently apply
formal and informal tests of misspecification to the model and assess the economic implications
of the differences between the Bayesian posterior and ML estimate. Finally, we provide some
concluding remarks in Section 5.

2. The DGP - variations of a standard New Keynesian DSGE model

As data-generating processes (DGP) we use two variations of a standard New Keynesian DSGE
model. The open economy formulation of the model is identical to the model estimated in
Adolfson et al. (2008a). It shares its basic closed economy features with many recent new Key-
nesian models, including the benchmark models of Christiano, Eichenbaum and Evans (2005),
Altig, Christiano, Eichenbaum and Lindé (2011), and Smets and Wouters (2003). This section
provides an overview of the open economy model. At the end of the section, we show how to
recast it as a standard closed economy model.

2.1. The model

The model economy includes four different categories of operating firms. These are domestic
goods firms, importing consumption, importing investment, and exporting firms, respectively.
Within each category, there is a continuum of firms that each produces a differentiated good
and set prices. The domestic goods firms produce their goods using capital and labor inputs,
and sell them to a retailer who transforms the intermediate products into a homogenous final

3With the exception of the uncovered interest rate parity condition, this model is essentially identical to the
model originally developed by Adolfson et al. (2007). Sims (2007) points out that this is the first estimated
fully-fledged DSGE model that is in full operational use as the core model in the policy process at an inflation
targeting central bank (Sveriges Riksbank). Also, many models in the open-economy literature are similar in
spirit (see e.g. Cristadoro et al., 2008, Justiniano and Preston, 2010, Rabanal and Tuesta, 2010 and Smets and
Wouters, 2002).
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good according to the CES function

Yt =

 1∫
0

(Yi,t)
1

λdt di

λ
d
t

, 1 ≤ λdt <∞, (1)

where λdt is a stochastic process that determines the time-varying flexible-price markup in the
domestic goods market.

The production function for intermediate good i is given by

Yi,t = z1−α
t εtK

α
i,tH

1−α
i,t − ztφ, (2)

where zt is a unit-root technology shock capturing world productivity, εt is a domestic covariance
stationary technology shock, Ki,t the capital stock and Hi,t denotes homogeneous labor hired
by the ith firm. A fixed cost ztφ is included in the production function. We set this parameter
so that profits are zero in steady state, following Christiano et al. (2005).

We allow for working capital by assuming that the intermediate firms’wage bill has to be
financed in advance through loans from a financial intermediary. Cost minimization then yields
the following nominal marginal cost for intermediate firm i:

mcdt =
1

(1− α)1−α
1

αα
(Rkt )α (WtRt−1)1−α 1

(zt)1−α
1

εt
, (3)

where Rkt is the gross nominal rental rate per unit of capital, Rt−1 the gross nominal (economy
wide) interest rate, and Wt the nominal wage rate per unit of aggregate, homogeneous, labor
Hi,t.

Each of the domestic goods firms is subject to price stickiness through an indexation variant
of the Calvo (1983) model. Since we have a time-varying inflation target in the model, we allow
for partial indexation not only to the current inflation target, but also to last period’s inflation
rate in order to allow for a lagged pricing term in the Phillips curve. Each intermediate firm faces
in any period a probability (1 − ξd) that it can reoptimize its price.4 In each period, the price
is set so that the firms maximize a future stream of marginal utility discounted period-profits,
taking into account that they might not be able to optimally change their price in each future
period.

Log-linearization of the first-order condition of the profit maximization problem yields the
following log-linearized Phillips curve:(

π̂dt − ̂̄πct) =
β

1 + κdβ

(
Etπ̂

d
t+1 − ρπ̄ ̂̄πct)+

κd
1 + κdβ

(
π̂dt−1 − ̂̄πct) (4)

−κdβ (1− ρπ̄)

1 + κdβ
̂̄πct +

(1− ξd)(1− βξd)
ξd (1 + κdβ)

(
m̂cdt + λ̂

d

t

)
,

where π̂dt denotes inflation in the domestic sector (a hat denotes percent deviation from steady
state, i.e., X̂t = dXt/X ≈ lnXt − lnX) and ̂̄πct the time-varying inflation target of the central
bank. β is the discount factor and ρπ̄ the persistence coeffi cient in the AR(1)-process for ̂̄πct .

We now turn to the import and export sectors. There is a continuum of importing consump-
tion and investment firms that each buys a homogenous good at price P ∗t in the world market,

4For the firms that are not allowed to reoptimize their price P dt+1, we adopt the indexation scheme P
d
t+1 =(

πdt
)κd (π̄ct+1)1−κd P dt where κd is an indexation parameter.
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and converts it into a differentiated good through a brand-naming technology. The exporting
firms buy the (homogenous) domestic final good at price P dt and turn this into a differentiated
export good through the same type of brand naming. The nominal marginal costs of the im-
porting and exporting firms are thus StP ∗t and P

d
t /St, respectively, where St is the nominal

exchange rate (domestic currency per unit of foreign currency). The differentiated import and
export goods are subsequently aggregated by an import consumption, import investment and
export packer, respectively, so that the final import consumption, import investment, and export
good is each a CES composite according to the following:

Cmt =

 1∫
0

(
Cmi,t
) 1
λmct di

λ
mc
t

, Imt =

 1∫
0

(
Imi,t
) 1

λmit di

λ
mi
t

, Xt =

 1∫
0

(Xi,t)
1
λxt di

λ
x
t

,

(5)
where 1 ≤ λjt < ∞ for j = {mc,mi, x} is the time-varying flexible-price markup in the import
consumption (mc), import investment (mi) and export (x) sector. By assumption, the contin-
uum of consumption and investment is invoiced by importers in the domestic currency and by
exporters in the foreign currency. To allow for short-run incomplete exchange rate pass-through
to import and export prices, we introduce nominal rigidities in the local currency price, modeled
through the same type of Calvo setup as above. The price-setting problems of the import-
ing and exporting firms are completely analogous to those of the domestic firms, and in total
there are thus four specific Phillips curve relations determining inflation in the domestic, import
consumption, import investment and export sectors.

There is a continuum of j households, whose preferences are given by

Ej0

∞∑
t=0

βt

ζct ln (Cj,t − bCj,t−1)− ζhtAL
(hj,t)

1+σL

1 + σL
+Aq

(
Qj,t
ztP dt

)
1− σq

1−σq , (6)

where Cj,t, hj,t and Qj,t/
(
ztP

d
t

)
denote the jth household’s levels of aggregate consumption,

labor supply and stationarized real cash holdings, respectively. Consumption is subject to habit
formation through bCj,t−1. ζct and ζht are persistent preference shocks to consumption and
labor supply, respectively. Aggregate consumption is assumed to be given by the following CES
function:

Ct =

[
(1− ωc)1/ηc

(
Cdt

)(ηc−1)/ηc
+ ω

1/ηc
c (Cmt )(ηc−1)/ηc

]ηc/(ηc−1)

, (7)

where Cdt and C
m
t are consumption of the domestic and imported good (provided by the domestic

and importing consumption firms, respectively). ωc is the share of imports in consumption, and
ηc is the elasticity of substitution across consumption goods.

The households invest in a basket of domestic and imported investment goods (It) to form
the capital stock (Kt), and decide how much capital to rent to the domestic firms given costs of
adjusting the investment rate. The capital accumulation equation is given by

Kt+1 = (1− δ)Kt + Υt

(
1− S̃ (It/It−1)

)
It, (8)

where S̃ (It/It−1) determines the investment adjustment costs through the estimated parameter
S̃′′, and Υt is a stationary investment-specific technology shock. Total investment is assumed to
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be given by a CES of aggregate domestic and imported investment goods (Idt and I
m
t , respec-

tively) according to

It =

[
(1− ωi)1/ηi

(
Idt

)(ηi−1)/ηi
+ ω

1/ηi
i (Imt )(ηi−1)/ηi

]ηi/(ηi−1)

, (9)

where ωi is the share of imports in investment, and ηi is the elasticity of substitution across
investment goods.

Following Erceg, Henderson and Levin (2000), each household is a monopoly supplier of
a differentiated labor service which implies that they can set their own wage. After having
set their wage, households supply the firms’demand for labor at the going wage rate. Each
household sells its labor to a firm which transforms household labor into a homogenous good
that is demanded by each of the domestic goods-producing firms. Wage stickiness is introduced
through the Calvo (1983) setup, with partial indexation to last period’s CPI inflation rate, the
current inflation target and technology growth. Household j reoptimizes its nominal wage rate
Wnew
j,t according to the following

max
Wnew
j,t

Et
∑∞

s=0 (βξw)s [−ζht+sAL
(hj,t+s)

1+σL

1+σL
+

υt+s
(1−τyt+s)
(1+τwt+s)

((
πct ...π

c
t+s−1

)κw (π̄ct+1...π̄
c
t+s

)(1−κw) (
µz,t+1...µz,t+s

)
Wnew
j,t

)
hj,t+s],

(10)

where ξw is the probability that a household is not allowed to reoptimize its wage, τ
y
t a labor

income tax, τwt a pay-roll tax (paid for simplicity by the households), and µz,t = zt/zt−1 is the
growth rate of the permanent technology level.5

The households save in domestic and foreign bonds, and the choice between domestic and
foreign bond holdings balances into an arbitrage condition pinning down expected exchange
rate changes (i.e., an uncovered interest rate parity condition). To ensure a well-defined steady-
state in the model, we assume that there is a premium on the foreign bond holdings which
depends on the aggregate net foreign asset position of the domestic households, following, e.g.
Lundvik (1992), and Schmitt-Grohé and Uribe (2001). Our specification of the risk premium
also includes the expected change in the exchange rate EtSt+1/St−1 which is based on the vast
empirical evidence of a forward premium puzzle in the data (i.e., that risk premia are strongly
negatively correlated with the expected depreciation of the exchange rate), see e.g. Fama (1984)
and Duarte and Stockman (2005). The risk premium is given by:

Φ(at, St, φ̃t) = exp

(
−φ̃a(at − ā)− φ̃s

(
EtSt+1

St

St
St−1

− 1

)
+ φ̃t

)
, (11)

where at ≡ (StB
∗
t )/(Ptzt) is the net foreign asset position, and φ̃t is a shock to the risk premium.

The UIP condition in its log-linearized form is given by:

R̂t − R̂∗t =
(

1− φ̃s
)
Et∆Ŝt+1 − φ̃s∆Ŝt − φ̃aât +

̂̃
φt. (12)

By setting φ̃s = 0, we obtain the UIP condition typically used in small open economy models
(see e.g. Adolfson et al., 2007).

5For the households that are not allowed to reoptimize, the indexation scheme is Wj,t+1 =
(πct)

κw (π̄ct+1)(1−κw) µz,t+1W
new
j,t , where κw is an indexation parameter.
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Following Smets and Wouters (2003), monetary policy is approximated with a generalized
Taylor-type rule:

R̂t = ρRR̂t−1 + (1− ρR)
[̂̄πct + rπ

(
π̂ct−1 − ̂̄πct)+ ryŷt−1 + rxx̂t−1

]
(13)

+r∆π∆π̂ct + r∆y∆ŷt + εR,t,

where π̂ct denotes CPI inflation, ŷt the output gap (actual minus trend output), x̂t−1 the lagged

real exchange rate
(
x̂t ≡ Ŝt + P̂ ∗t − P̂ ct

)
, and εR,t an uncorrelated monetary policy shock.

To clear the final goods market, the foreign bond market, and the loan market for working
capital, the following three constraints must hold in equilibrium:

Cdt + Idt +Gt + Cxt + Ixt ≤ z1−α
t εtK

α
t H

1−α
t − ztφ, (14)

StB
∗
t+1 = StP

x
t (Cxt + Ixt )− StP ∗t (Cmt + Imt ) +R∗t−1Φ(at−1, φ̃t−1)StB

∗
t , (15)

νWtHt = µtMt −Qt, (16)

where Gt is government expenditures, Cxt and Ixt are the foreign demand for export goods,
and µt = Mt+1/Mt is the monetary injection by the central bank. When defining the demand
for export goods, we introduce a stationary asymmetric (or foreign) technology shock z̃∗t =
z∗t /zt, where z

∗
t is the permanent technology level abroad, to allow for temporary differences in

permanent technological progress domestically and abroad.
The log-linearized shock processes are given by the univariate representation

ς̂t = ρς ς̂t−1 + ες,t, ες,t
iid∼ N

(
0, σ2

ς

)
where

ςopent = {µz,t, εt, λ
j
t , ζ

c
t , ζ

h
t ,Υt, φ̃t, εR,t, π̄

c
t , z̃
∗
t } and j = {d,mc,mi, x} . (17)

The government spends resources on consuming part of the domestic good, and collects taxes
from the households. The resulting fiscal surplus/deficit plus the seigniorage are assumed to be
transferred back to the households in a lump sum fashion. Consequently, there is no government
debt. The fiscal policy variables - taxes on capital income, labor income, consumption, and the
pay-roll, together with (HP-detrended) government expenditures - are assumed to follow an
identified VAR model with two lags.

To simplify the analysis, we adopt the assumption that the foreign prices, output (HP-
detrended) and interest rate are exogenously given by an identified VAR model with four lags.
Both the foreign and the fiscal VAR models are being estimated, using uninformative priors,
prior to estimating the other structural parameters in the DSGE model.6

To re-cast the model in its closed economy form, we set import shares ωc and ωi in eqs. (7)
and (9) to nil. Together with a balanced trade assumption, this implies that the evolution of

6The scaled level of foreign output ŷ∗t enters the stationarized log-linear representation of the DSGE model

(via in the aggregate resource constraint, eq. (14) as total export demand equals Cxt + Ixt =
(
Pxt
P∗t

)−ηf
Y ∗t ). In

order to avoid joint estimation of the parameters in the foreign VAR and the deep parameters in the model, we
use the HP-filter to compute ŷ∗t as lnY ∗t − lnY ∗t where lnY ∗t is the HP-trend of log trade-weighted foreign output
with the smoothing coeffi cient set to 1600. Then the filtered series ŷ∗t is used to estimate the VAR. However, ŷ

∗
t

is treated as an unobserved variable when the DSGE is subsequently estimated, we only observe overall foreign
output growth ∆ lnY ∗t as discussed in Section 2.2. In the working paper version of Adolfson et al. (2008a),
we discuss that the baseline estimation results hold up (but are much more time-consuming to generate) if the
foreign VAR is estimated jointly, presumably since lnY ∗t has largely similar statistical properties to the estimated
stochastic unit-root shock.
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all foreign variables is irrelevant for the dynamics in the domestic economy. For the shocks, we
keep the eight disturbances

ςcloset =
{
µz,t, εt, λ

d
t , ζ

c
t , ζ

h
t ,Υt, εR,t, π̄

c
t

}
(18)

in (17) and allow for exogenous variations in the fiscal variables.
To compute the equilibrium decision rules, we proceed as follows. First, we stationarize all

quantities determined in period t by scaling with the unit root technology shock zt. Then, we
log-linearize the model around the constant steady state and calculate a numerical (reduced
form) solution with the AIM algorithm developed by Anderson and Moore (1985).

2.2. Parameterization of the model

To parameterize the model, we use the Bayesian posterior median estimates from matching quar-
terly Swedish data 1980Q1− 2004Q4, on the following observed 15 variables; the GDP deflator,
the real wage, consumption, investment, the real exchange rate, the short-run interest rate, hours
worked per capita (total hours divided by working age population), GDP, exports, imports, the
consumer price index (CPI), the investment deflator, foreign output, foreign inflation and the
foreign interest rate

Ỹ obs,open
t =

[ πdt ∆ ln(Wt/Pt) ∆ lnCt ∆ ln It x̂t Rt Ĥt ∆ lnYt...

∆ ln X̃t ∆ ln M̃t πcpit πdef,it ∆ lnY ∗t π∗t R∗t ]′.
. (19)

The data are adapted from Adolfson et al. (2008a), and the interested reader is kindly referred
to this paper for further details. Among other things, we there verify by multiple MCMC-chains
that the Posterior median is not bimodal. Following Christiano et al. (2005), we calibrate
parameters we think are weakly identified by the set of observables we match, and estimate the
other parameters. The latter pertain mostly to the nominal and real frictions in the model as
well as the exogenous shock processes. Appendix A provides details on the prior distribution
and calibrated values.

3. Identification analysis

In this section we show that many parameters in the two models are not particularly affected
by identification issues. While the results do not allow us to draw any firmer conclusions about
identification in New Keynesian DSGE models more generally, we discussed in the introduction
that these results are likely relevant to a wider range of models, beyond the actual case studies.
Moreover, we also show that recent pre-tests proposed in the literature are robust and adequate
in highlighting possible issues. Indeed, we establish that diagnostic tests of identification de-
veloped in Iskrev (2010a,b) are in line with more computationally intensive Monte Carlo (small
sample) analysis. For large scale models, only the former pre-tests would be feasible. Therefore,
identification issues should and can always be assessed on a case-by-case basis using pre-tests.

3.1. Pre-estimation tests of identification

As a starting point we apply the diagnostic tests of identification developed in Iskrev (2010a,b).
Let mT (θ) denote all first- and second-order moments for the l series with observed variables
(l = 15 and 7 in our open and closed economy variants, respectively). If the second-order
moments are computed for contemporaneous and T − 1 lags of observed data, then mT (θ) is a
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(T − 1) l2 + l (l + 3) /2 sized vector with moments in the model determined by the k estimated
parameters in θ. Now, if mT is a continuously differentiable function of θ, then θ0 is locally
identifiable if the Jacobian matrix J (T ) = ∂mT /∂θ has rank k at θ0. By applying the chain
rule, Iskrev (2010a) shows that the Jacobian matrix J (T ) can be conveniently expressed as

J (T ) =
∂mT

∂τ

∂τ

∂θ
≡ J1 (T ) J2, (20)

where τ is a vector with all reduced-form coeffi cients in the DSGE model. The decomposition in
eq. (20) is very useful, as it implies that if the matrix J2 = ∂τ/∂θ has a rank less than k at θ0,
then some of the parameters in θ are not locally identified at θ0 regardless of which dataseries are
used in the estimation as this matrix is independent of the set of observables. For this reason,
Iskrev suggests the rank of both matrices J2 and J(T ) are studied to learn about identification.
Full column rank (k) of J2 is necessary for identification, whereas the rank of J(T ) will show
if θ is locally identified for the particular set of observables and contemporaneous and lagged
moments under consideration.

Iskrev (2008, 2010a) emphasizes that although both J (T ) and J2 have rank k, they can
be close to rank deficient and hence poorly conditioned. Poorly conditioned J (T ) and J2

matrices suggest that identification of (at least) some parameters is weak. A parameter θi can
be poorly identified because it has little impact on the reduced-form coeffi cients of the model,
i.e. ∂τ/∂θi ≈ 0, or because there is a high degree of substitutability between the parameter
and (possibly a linear combination of) other parameters, so that ∂τ/∂θi ≈ Σj 6=iaj (∂τ/∂θj)
where Σj 6=iaj is some linear combination of the other deep parameters in θ. The problem with
parameter interdependence arises when different parameter combinations play a very similar
role in the model, and can be assessed by computing multiple collinearity coeffi cients for each
parameter in θ. The multiple collinearity coeffi cient for θi measures how well the effect of θi in
the model can be mimicked by other parameters in θ, and values close to unity (or -1) imply a
very strong degree of multiple collinearity, and accordingly problems with weak identification.

In addition to reporting J2 and J (T ) multiple collinearity statistics, where J (T ) considers
all moments for contemporaneous and one lag of data, we also present in Table 1a expected
standard errors following Iskrev (2010b), who discusses in detail how they can be computed
from the inverse of the Fisher information matrix as a function of the set of observables and
the sample size (we use 100 observations) using Cramér-Rao lower bounds.7 Iskrev suggests the
expected standard errors are used as an a priori measure of identification strength.

The first column in Table 1a reports the multiple collinearity coeffi cients (Mco) in the model
(J2), which range from 0.169 (ρz̃∗) to 0.912 (rπ). For most of the parameters, there is not much
intrinsic interdependence in the theoretical model, possibly with the exception of some of the
parameters in the policy rule. Next, we study the multiple collinearity in the moments of the
data, J (T ) . First we consider the full set of 15 observed variables (see eq. 19). We see that
the collinearity coeffi cients are generally higher for J (T ) than J2. Especially, there seems to
be a strong linear dependence between the policy parameters (ρr, rπ, rx, ry) and the other deep
parameters with Mco of around 0.99.

The expected standard deviations from the Fisher Information matrix, std(θi), are also
somewhat high for rπ, rx, and ry, but economically reasonable for most of the other parameters.

7Because the expected standard errors in Iskrev (2010a) - denoted std(θi) in Table 1a - are based on the
Cramér-Rao inequality it follows that the true standard devations should be greater or equal to std(θi) for all
parameters θi. Even so, this inequality may not be verified in practice due to the non-linearity of the mapping
between θ and the likelihood function, as well as lack of convergence in the computation of the asymptotic
information matrix.
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For comparable parameters, they are often quite close to those reported by e.g. Christiano,
Eichenbaum and Evans (2005). We also report the identification strength measured as the
ratio sr(θi) ≡abs(θi)/std(θi) (i.e. normalizing the parameter value with its standard deviation),
where a high value means that θi is more tightly pinned down and thus strongly identified.
The identification strength seems adequate for most of our estimated parameters, perhaps with
the exception of the three policy rule parameters rπ, rx and ry for which data seem to be less
informative. In the column labeled ‘prior(θi)/std(θi)’, we study how large the expected standard
deviations are compared to the standard deviation of the prior distribution. From this column
we see that estimation cannot be expected to reduce the uncertainty about rπ, ry, ξw, S̃

′′, λd,
and ζc compared to the a priori belief, since they all have a value below one. Even so, when
excluding these parameters from the set of estimated parameters, we find that they have little
influence on the sampling uncertainty of the other parameters.8

If we specifically look at the Calvo parameters, we see that the expected standard deviations
are very small for the four Phillips curves but that the data seem comparably less informative
about the wage-setting parameter. Compared to Iskrev (2010b), our choice of estimated para-
meters and observables seems to provide a somewhat better precision; for instance we find that
sr for ξp and ξw is 33.69 and 8.29, respectively, whereas Iskrev finds 3.8 and 10.8.

It thus seem like problems of weak identification are limited to some parameters that do not
appear to contaminate the informativeness of the other deep parameters. Notice, however, that
the results in Table 1a and the Monte Carlo evidence in the next section are contingent upon
one particular parameterization of the model. To explore identification in a larger region of the
parameter space, we sample 5, 000 draws from the prior distribution. In Table 1b we report
the results as the share of draws for which J (T ) and J2 have full column rank along with their
(median) condition number, the (median) smallest singular value and (median) tolerance value.
The conditioning number is the ratio between the largest and smallest singular value of J (T )
and J2, which have full rank if their smallest singular value is larger than the tolerance value.
Hence, a large conditioning number is a strong indication of weak identification.

For all parameter draws, J (T ) does have full rank, and Table 1b makes it clear that the
model is locally identified in all parts of the parameter space that we explore. Problems with
weak identification could, however, still be present. In fact, they seem somewhat more noticeable
when moving around in the parameter space since the conditioning numbers (for the draws with
full rank) increase and the smallest singular values diminish compared to the numbers under
the posterior median parameterization.

The five rightmost columns in Tables 1a and 1b display the corresponding results for the
closed economy variant of the model. In this formulation of the model, we follow Smets and
Wouters (2007) and match the seven variables (a subset of the variables in Ỹ obs,open

t in eq. 19)

Ỹ obs,close
t = [ πdt ∆ ln(Wt/Pt) ∆ lnCt ∆ ln It Rt Ĥt ∆ lnYt]

′, (21)

using a subset of the estimated and calibrated shocks as described at the end of Section 2.1.
The results for the closed economy model in Table 1b show that J(T ) and J2 are always

full rank and the conditioning numbers are comparable to those obtained in the open economy
model, suggesting that problems with weak identification are still an issue in certain regions
of the parameter space. For the individual parameters in Table 1a, we see that the Mco J(T )
coeffi cients are notably higher for the deep parameters. Even so, std(θ) and θ/std(θ) are often

8When calibrating rπ,ry, ξw, S̃
′′, λd, and ζc , the standard deviations based on the Fisher Information matrix for

the other parameters are essentially unchanged. This dispels possible objections that our results on identification
may be driven by the fact that we calibrate (i.e. fix) parameters which are weakly identified or not identified at
all.
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comparable with the exception of a few parameters (S̃′′ and the consumption preference shock
ρζc) for both the posterior and the prior median.

9

Note finally that complementing the Iskrev tests with additional ones as proposed by An-
drews and Mikusheva (2015) also supports the same conclusions discussed here, see Appendix
C.

3.2. Identification in small samples: A Monte Carlo exercise

In this section, we first describe in detail how the small sample ML distributions have been
generated using the DSGE models, and then present the distribution results. The Monte Carlo
exercise also confirms the main findings from identification pre-tests, showing their effectiveness
and robustness as ex-ante identification diagnostic tools.

3.2.1. Setup

To assess the performance of Maximum Likelihood in small samples simulated with the DSGE
models, the following steps are conducted for each model:

1. Solve the DSGE model using the chosen parameterization (calibrated parameters and the
Bayesian posterior median of the estimated parameters).

2. Generate an artificial sample of length T by simulating the model 1, 000 + T periods
initiated from the steady state. The first 1, 000 observations are discarded as burn-ins.
The innovations in the shock series were drawn randomly from the normal distribution.

3. Given the simulated data, estimate the parameters by maximizing the likelihood function
for the given set of observable variables (provided by eq. (19) for the open economy model
and eq. (21) for the closed economy).10

4. Store the resulting parameter estimates along with the likelihood information, inverse
Hessian, seed number used to generate the sample, and convergence diagnostics.

5. Repeat Step 1 to 5 N times to obtain a parameter distribution that is stable. In practice,
it took between 1, 000 and 1, 500 samples to obtain approximate convergence in mean
and variance in the marginal parameter distributions, and therefore we decided to use
N = 1, 500.

9We have also done the identification tests for the seven “closed economy”variables in (21) in the open economy
model when all 43 parameters in Table 1a are estimated. In this case the identification strength diminishes,
especially for the parameters pertaining to the open economy. When narrowing the number of observables, the
multiple collinearity coeffi cients for most parameters turn out to be close to unity, and the properties of J(T ) —
inferior to those in Table 1b, implying that problems with weak identification are more marked. This exercise thus
demonstrates that the econometrician needs to think hard about the structure of the model and the variables that
need to be included in order to ensure identification of a given set of parameters, consistent with the conclusions
in Boivin and Giannoni (2006) and Guerron-Quintana (2010).
10We use Chris Sims’optimizer CSMINWEL to perform the estimations, and impose the lower (bl) and upper

bounds (bu) that are reported in the last two columns in Table A.2. The lower and upper bounds only define
a theoretically admissible range of a parameter, and not necessarily a range that is considered to be consistent
with existing empirical evidence. We use the following smooth mapping function pmod = bu − bu−bl

1+epo p t
between

the model parameters (pmod) and the parameters that we optimize over (popt ). Notice that pmod converges to bu
as popt approaches ∞, and that pmod converges to bl as popt approaches −∞.
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We consider several sample sizes. For our benchmark results in Table 2, we set T = 100,
which is roughly equivalent to the Swedish actual data sample. In Appendix B.4 we also report
distributions for T = 400 to examine if we have square-root sample size convergence.11

In order to simplify the interpretation of the results and focus on the key model parameters,
we do not include measurement errors and keep the parameters of the exogenous foreign VAR
(in the open economy model) and fiscal policy VAR (both closed and open economy variants)
fixed at their true values, which differs from how the model was estimated on actual Swedish
data using Bayesian techniques.12

3.2.2. Results

In Table 2, we report distribution results for the open economy (left columns) and closed economy
(right columns) formulation of the model. First, we turn to the open economy variant and see
that mean and median for almost every parameter are equal or close to the true value, so the
ML estimator appears to be unbiased. Important exceptions are two coeffi cients in the policy
rule; rπ and ry, which both have mean estimates that are notably higher than their true values.
However, the median for the two parameters is of the right magnitude, indicating that the
parameter distributions are skewed to the right. Given the specification of the instrument rule,
where ρR multiplies the coeffi cients in the policy rule (see eq. 13), it is perhaps not surprising
that the distributions for these two parameters can be skewed to the right. In samples when
ρR is driven close to unity, the values of rπ and ry can easily end up at very high values
without affecting the composite response much. The fourth column of Table 2, labeled “Std.
of distribution”, shows the standard deviation of the parameter distributions, i.e. the mean
square errors (MSEs), and not surprisingly the standard deviations are very high for these two
parameters. The MSEs are also relatively high for the investment adjustment cost parameter,
S̃′′, and the persistence coeffi cient for the asymmetric technology shock, ρz̃∗ , suggesting that also
these parameters are sometimes driven to very high and low values, respectively. Interestingly,
the MSEs for the key parameters pertaining to the nominal rigidities in the model reveal that
the marginal distributions are much tighter for the sticky price parameters (ξd, ξmc, ξmi and ξx),
relative to the parameter governing nominal wage stickiness, ξw, indicating that the degree of
price stickiness is more strongly identified relative to the degree of wage stickiness. By and large,
the patterns for the parameters we estimate in the closed economy specification are very similar
to those already discussed, noting that the MSE is almost twice as high for S̃′′ but somewhat
muted for ry.

In addition to the standard deviations of the resulting marginal parameter distributions,
Table 2 reports the median standard deviation of the estimates in each sample computed from
the inverse Hessian matrix. As discussed in further detail in Iskrev (2008, 2010a), weak identi-
fication induces poor conditioning of the Hessian (analogous with the poor conditioning of the
Jacobians reported in Table 1b), and causes standard deviations based on the inverse Hessian
to underestimate the true sampling uncertainty. The standard deviations based on the inverse

11Throughout the paper, the results are limited to the convergent estimations only. Dropping non-convergent
optimizations reflect our belief that the econometrician would not be satisfied with a non-convergent outcome,
and would redo the estimation by perturbing the starting values of the optimization until convergence was found.
Given that very few samples are plagued by convergence problems, as noted in Table 2, our approach is largely
inconsequential.
12 In Appendix B we check the robustness of our results regarding, i) the starting values in the optimizations,

ii) adding measurement errors and re-estimating the fiscal and foreign VARs, and iii) imposing the true co-
integrating vectors among the set of observed variables. The key results are little affected. In the appendix we
also check the consistency properties by increasing each sample size to 1,600 and 6,400 observations.
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Hessian are smaller than the standard deviation of the distribution for every parameter, and in
particular so for rx and ry, indicating problems of data informativeness. It is, however, clear
from the MSEs that the key parameters are still well identified. For instance, the sticky price
parameters (ξd, ξmc, ξmi and ξx in the open and ξd in the closed economy variant) have very
small MSEs which shows that the likelihood is very informative about these parameters even
when T = 100. Hence, although a few parameters are poorly identified, our results suggest that
we can learn a lot from the data about many parameters.

Comparing the Monte-Carlo simulated MSEs in Table 2 with the Cramér-Rao (CR) lower
bounds computed using Iskrev’s (2010b) approach (cf. the forth and eight columns in Table 2
and the third column in Table 1a), we see that the simulated MSEs are generally higher than the
CR lower bounds as expected. The exceptions are λm,c, and σλm,c in the open economy model
for which we counterfactually obtain lower simulated MSE values; i.e. a ratio of the simulated
MSE over the CR bounds that is lower than unity. All other implied ratios are above unity as
they should be.13

However, due to the non-linear relationships between the parameters in the model, the ratios
vary quite a bit and can be as high as 5 (see e.g. the policy rule parameters rπ and ry). In our
view, this demonstrates, on the one hand, the usefulness of complementing Iskrev’s (2010b)
approach with Monte-Carlo simulations. On the other hand, our analysis suggests that Iskrev’s
approach provides expected standard errors that are often a good proxy of the MC ones, which is
useful because his method is fast enough to be iteratively performed at several random locations
in the prior space and thereby overcomes the contingency of the Monte Carlo simulations on a
particular location in the parameter space.

In Figure 1, we complement the information in the table by plotting the kernel density es-
timates of the marginal parameter distributions for some key parameters in the open economy
model. The solid line (T = 100) in the figure confirms the picture in Table 2 and shows that the
distributions for S̃′′, rπ and ry are clearly skewed to the right. Notice that the marginal distri-
butions for rπ are reported in logs in order to improve the visibility of the results. Comparing
the densities for the benchmark sample size with the results when increasing the sample size to
T = 400 observations (dotted lines), it is clear that this set of data suffi ces for identification of
the parameters in the notion of Rothenberg (1971): as the sample size increases, the parameter
distributions start to collapse around the true values. So, conditional on the observed variables
and estimated parameters, the ML estimates are consistent in the open economy model. The
same result applies in the closed economy model.

4. Analysis on actual data and misspecification

Having done all the pre-tests and the ex-ante identification analysis, we now take the models
to the data and elaborate on misspecification issues. We show that ML and Bayesian estimates
differ notably for some key parameters, suggesting problems with model misspecification. By
applying formal and informal tests of model misspecification, we provide support for this conjec-
ture. Finally, we assess the economic implications of misspecification by studying the difference
between the impulse response functions to a monetary policy shock for the ML estimate and
Bayesian posterior.

13As noted in footnote 7, this can be due to the non-linear mapping between the deep parameters and the
reduced form solution of the model, i.e. the shape of the posterior may be steeper than what is implied by
the quadratic approximation underlying the estimation of the asymptotic information matrix. Moreover, the
algorithm used to estimate such asymptotic information matrix in Dynare may feature slow convergence for some
deep parameter, for the limit T →∞.
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4.1. Maximum likelihood estimation

Our analyses in Sections 3.1 and 3.2 show that the likelihood function should be quite informative
about many of the key parameters in both the closed and open economy models, under the null
hypothesis that the models are correctly specified. Therefore we now attempt to obtain estimates
for both variants using classical ML techniques on actual data. For the open economy variant, we
use Swedish data. Here the setting in the estimation is identical to the setting that was employed
in the Bayesian estimation procedure that resulted in the posterior median estimates, with the
exception that the policy parameters rπ, ry and rx are estimated as composite coeffi cients in
an attempt to reduce the large uncertainty bands stemming from trying to directly estimate
the separate coeffi cients in eq. (13) as discussed in detail in Section 3.2.2.14 In the closed
economy variant, we use U.S. data for the period 1965Q1-2006Q4 for the seven variables in eq.
(21) following Smets and Wouters (2007).15 For the U.S., we also follow Smets and Wouters
(2007) by assuming that the data are measured without errors. In addition, we turn off all
the tax shocks. Hence, in the estimated closed economy model, we only allow for the shocks
in (18) plus a government spending shock which we assume follows an AR(1)-process with
persistence coeffi cient of 0.95 and unit innovation variance (this parameterization was determined
by pre-estimation on detrended government spending series including state, federal and military
expenses).16 The priors for the “closed economy” parameters (displayed in Tables 1a and 2)
that we estimate are standard and coincide with those adopted for Sweden in Table A.1.

To find the classical ML point estimates, we impose the lower and upper bounds reported in
Table A.2 and perform 3, 000 optimizations with CSMINWEL by sampling starting values from
the prior distribution. The ML estimates are the vector of parameters θ̂ out of all vectors with
optimized parameters θi, i = 1, 2, ..., 3, 000, that returned the highest log-likelihood. To assess
the uncertainty about the point estimates, i.e. how much we can learn from the log-likelihood
function about the parameters, under possible misspecification, we use the standard deviations
based on the sandwich form of the inverse Hessian following Newey and Windmeijer (2009) to
compute 5 and 95 percentile confidence bands associated with the ML estimates.

In Table 3a, we report the classical ML estimation results for Sweden along with the Bayesian
posterior median and 5 and 95 percent posterior uncertainty bands. The corresponding results
for the U.S. are reported in Table 3b. From both tables, we see that the classical ML estimate
moves in the same direction from the prior as the posterior median, but typically a bit further. An
interesting feature of the ML estimation results is that the parameter which measures deviations
from the standard UIP condition ( φ̃s) is driven almost to its upper bound of unity, suggesting
the UIP does not provide a good approximation of exchange rate dynamics. Also, and in

14Thus, we estimate r̃π = (1− ρR) rπ, r̃y = (1− ρR) ry, and r̃x = (1− ρR) rx directly instead of rπ, ry and
rx. Notice that the Bayesian posterior median results presented in Table 3 have been transformed to composite
parameters, although the priors used in the Bayesian estimation are for the individual parameters.
15GDP, consumption and investment were taken from the U.S. Department of Commerce —Bureau of Economic

Analysis data-bank. Real gross domestic product is expressed in billions of chained 2009 dollars. Nominal personal
consumption expenditures and fixed private domestic investment are deflated with the GDP-deflator. Inflation is
the first difference of the log of the implicit price deflator of GDP. Hours and wages come from the BLS (hours
and hourly compensation for the non-farm business, NFB, sector for all persons). Hourly compensation is divided
by the GDP price deflator in order to get the real wage variable. Hours are adjusted to take into account the
limited coverage of the NFB sector compared to GDP (the index of average hours for the NFB sector is multiplied
by Civilian Employment 16 years and over). All series are seasonally adjusted. The interest rate is the Federal
Funds Rate. Consumption, investment, GDP, wages, and hours are expressed in 100 times log whereas inflation
and the fed funds rate are annualized (400 times quarterly series).
16As discussed in Appendix A, we modify some of the calibrated parameters to standard values used for the

U.S. to match various steady state ratios (like government spending to steady state output and the depreciation
rate).
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line with the results on artificial samples, the data appear to be highly informative about the
sticky price parameters ξd, ξm,c, ξm,i and ξx which are estimated to be very high. In relation
to the microeconomic evidence, the median estimate of the four ξ′s equals 0.979 and for the
U.S. we have ξd = 0.989 which implies an unrealistically high average duration between price
reoptimizations of about 47 and 100 quarters, respectively. This is far too long relative to the
microeconomic evidence on price-setting (see e.g. Apel, Friberg and Hallsten, 2005, for Swedish
evidence, and Klenow and Malin, 2010, for U.S. evidence). The finding of a very high degree of
price stickiness with classical methods is not specific to our pricing equations (see e.g. eq. 4),
they are standard in the existing DSGE literature. Smets and Wouters (2003) also report a very
high degree of price stickiness in their model with i.i.d. markup shocks on Euro Area data, and
to reduce the degree of price stickiness on U.S. data, Smets and Wouters (2007) assume that the
markup shocks follow an ARMA(1,1) (where the estimated AR term is very high) process and
use the Kimball (1995) aggregator which in effect implies that firms respond less to movements
in marginal costs for a given level of price stickiness.17 However, an unappealing feature of the
specification with correlated shocks in Smets and Wouters (2007) is that positive markup shocks
account for a substantial part of the great inflation of the 1970s (see their Figure 4), a finding
that seems hard to reconcile with Shiller’s (2000) evidence that aggregate firm profits did not
rise in the 1970s. Moreover, Chari, Kehoe and McGrattan (2008) have argued that the implied
variance of markup shocks is implausibly high.

However, before drawing too firm conclusions about the point estimates, we need to con-
sider the possibility that the large changes in some of the parameters (e.g. the price stickiness
parameters) merely reflect small-sample uncertainty. As can be seen from Tables 3a and 3b,
the 90 percent confidence interval based on the sandwich form of the inverse Hessian suggests
that many parameters are relatively tightly estimated, with the exception of the investment
adjustment cost S̃′′ which has a high standard deviation of about 4 for Sweden and 1.5 for
the United States. Even so, because the simulation results in Table 2 documented that the
standard deviations based on the inverse Hessian are likely to underestimate the true degree
of uncertainty associated with the ML estimates due to problems with weak identification, we
also simulated 90 percent simulated confidence bands as follows. First, the ML point estimates
and the associated inverse Hessian matrix were used to generate draws from the joint parameter
distribution using the Metropolis-Hastings algorithm. The proposal distribution is taken to be
the multivariate normal density centered at the previous draw with a covariance matrix propor-
tional to the inverse Hessian. Second, all draws that could not be differentiated from the highest
log-likelihood according to a standard likelihood ratio (LR-) test at the 10-percent significance
level were accepted in the chain. A chain with 1,000,000 draws was simulated, and from this
chain the lower and upper confidence bands were computed as the minimum and maximum
values for each parameter.18 Despite the fact that the simulated confidence bands are often
notably larger than the ones based on the inverse Hessian in Tables 3a and 3b, it is clear that
the log-likelihood function is very informative. For example, the Bayesian posterior median lies
outside the simulated and Hessian based 90 percent ML confidence band for all the sticky price
parameters (except for ξx in Table 3a). Therefore, we conclude that the higher relative to the

17An additional assumption that would reduce the implied degree of price stickiness would be to assume that
capital and/or labor is specific to the firm, see Altig et al. (2011) and Woodford (2003).
18As we estimate 43 (26) parameters in open (closed) economy model, 2

[
lnL

(
θ̂
)
− lnL (θi)

]
follows the χ2-

distribution with 43 (26) degrees of freedom and a particular parameter draw θi is rejected in favor of the MLE
estimate θ̂ associated with lnLmax at the 10 percent level if the χ2-statistic exceeds 55.23 (35.56). Notice also
that the robustness of the simulated confidence bands were checked by simulating and computing the confidence
bands for an additional chain of 1,000,000 draws.
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Bayesian posterior of the sticky price parameters ML estimate cannot be explained by small
sample properties of the ML estimator.

4.2. Misspecification

All previous findings raise the issue of why the classical ML estimate differs so markedly relative
to the Bayesian posterior estimate. Although the obtained log-likelihood under ML estimation
by definition is associated with the largest possible likelihood, the improvement in log-likelihood
from −2128, 6 associated with the Bayesian posterior median to −2022, 2 in the open economy
model for Sweden in Table 3a under classical estimation is prima facie evidence that the likeli-
hood is not flat when the parameters change, which is consistent with the analysis in Sections
3.1 and 3.2. In the closed economy model for the U.S., we also observe a large improvement
from −1454.4 to −1410.6, a difference that is significant under the toughest possible significance
level according to a standard likelihood ratio test.

Under the presumption that the data indeed are informative, the obvious candidate expla-
nation for why the estimates differ so much is therefore model misspecification. The very low
Log Posterior (−4439.2 for Sweden and −3996.7 for the U.S.) under ML estimation indicates
that the ML estimates are often far out in the prior tails, which is a sign of model misspecifi-
cation. To examine this formally, we apply a test of misspecification following Del Negro and
Schorfheide (2004, 2009). They develop an approach where a possibly misspecified DSGE model
is compared to a VAR with a prior centered on the DSGE model, where the tightness of the
prior is determined by a parameter, λ. When λ = ∞ the prior imposes the DSGE restrictions
with probability one and the VAR collapses to the (VAR approximation) of the DSGE, whereas
a λ <∞ implies that the cross-restrictions of the DSGE on the VAR are relaxed. By comparing
the marginal likelihood for different choices of λ, one can find the optimal λ, λ̂ henceforth, which
maximizes the empirical fit (i.e. the marginal likelihood) of the DSGE-VAR. A λ̂ well below
infinity thus implies that the cross-equation restrictions of the DSGE model are not compatible
with the data, and the model is misspecified.

In Table 4 we show (the Laplace approximation of) the log marginal likelihoods of the VAR
and VECM with 8 lags when varying the tightness in the prior. The VECM with 8 lags and λ =
∞ provides a very good approximation of the DSGE model as the log-marginal likelihoods are
almost identical. The VECM is a better approximation than the VAR because the latter does not
exploit the cointegration relations of the DSGE model. When the VAR/VECM spans the DSGE
model in terms of the marginal likelihood, the reliability of the results increases. The table shows
that λ̂ is 5.5 in the VECM for the open economy model estimated on Swedish data, implying that
relaxing the cross-equation restrictions of the estimated DSGE model improves the empirical fit
to the data.19 In Adolfson et al. (2008a), we found a similar degree of misspecification when
allowing for a regime shift in monetary policy, and documenting it had substantial implications
for the vector autocorrelation functions in the VAR. Notice also that the log-marginal likelihood
improvement in the DSGE-VAR for λ̂ is much larger than the improvement in log-likelihood
between the Bayesian posterior and the MLE, suggesting that even the MLE estimates impose
cross-restrictions which are not satisfied in the best-fitting VAR. Thus, our open economy model
is clearly misspecified according to this test.

The right panel reports the corresponding DSGE-VAR and DSGE-VECM results for our

19Note that the prior is proper if λ ≥ λmin = (n(p + 1) + q + 1)/T, where n is the number of endogenous
variables in the VAR with p lags, q the number of exogenous variables in the VAR and T the number of actual
data observations. For our VAR and VECM specifications in Table 4, λmin is 1.79 and 1.87 for the Swedish open
economy model, and 0.36 and 0.39 for the U.S. closed economy model.

17



U.S. closed economy model. For the United States, we find that λ̂ = 1 − 1.25, which is in line
with Del Negro et al. (2007).20 Although λ̂ is higher for the Swedish open economy model,
it does not mean this model is less misspecified than the closed economy U.S. model since the
longer US sample (1965Q1-2006Q4) implies that the prior is proper for a lower λ.

A limit of the test, however, is that it is not instructive to make a structural interpretation
of the DSGE parameters of the VECM model with a λ less than infinity. Therefore, we cannot
directly compare our estimated Calvo coeffi cients for the DSGE-VAR(λ̂) model with the ones
obtained under ML estimation in Tables 3a and 3b. To strengthen our case that the high Calvo
coeffi cients under ML estimation indicate misspecification problems, we therefore complement
our DSGE-VAR analysis with some indirect evidence. Specifically, we take a structural approach
and introduce misspecification through the Phillips curve for domestic prices. We do this through
the domestic price setting equation for two reasons. First, we can observe both the dependent
and explanatory variables in this equation. Second, the ML estimate of ξd is implausibly high
(including its confidence bands).

To begin with, we note that the Phillips curve (4) in both DSGEs implies a positive correla-
tion between contemporaneous domestic inflation and marginal cost: simulating artificial data
under the Bayesian posterior median estimates, estimated on Swedish data, yields a correlation
of 0.10, whereas it is −0.11 using the ML estimates (1, 500 samples with T = 100). On actual
Swedish data, we observe a negative correlation (−0.16) between domestic inflation and marginal
cost (measured as the demeaned labor share) for the inflation targeting period. Accounting for a
negative correlation between inflation and marginal costs in New Keynesian models is challeng-
ing, because marginal costs are normally a positively serially correlated variable. This implies
that when current marginal cost rises, the present discounted sum of marginal cost also rises,
and this causes firms to raise prices. Only when the direct impact of marginal cost on inflation
is suffi ciently low —as is the case under ML estimation — the model can generate a negative
correlation through the presence of markup and inflation targeting shocks.21

Moreover, when we run an OLS-regression on Swedish data for the following simple pricing
equation

πdt = (1− c1)(π + c2m̂ct) + c1π
d
t−1 + εt , (22)

where πdt is domestic annualized inflation, π the sample mean (1.69 percent for our sample)
and m̂ct the marginal cost proxied by the demeaned labor share, we find c1 = −0.349 and
c2 = −0.013. Thus, even conditional on the lagged inflation rate, a negative partial impact
(c2) of marginal costs on domestic inflation is obtained. We now proceed by examining how a
misspecified domestic Phillips curve can impact the estimation under maximum likelihood.

To do this, we simulate data from an ad hoc version of the open economy DSGE model in
which we replace the theoretically derived Phillips curve in eq. (4) with the simplified empirical
relation in eq (22).22 We then estimate the original open economy DSGE model, including the
Phillips curve in eq. (4), noting that it is now misspecified compared to the true data generating
process, with maximum likelihood. For 1, 500 artificial samples of size T = 100, the mean ML
estimate of ξd in the misspecified New Keynesian Phillips domestic curve equals 0.96, which is

20Del Negro et al. (2007) also obtain a λ̂ of about unity. When we compute the optimal λ for the Smets and
Wouters (2007) model for our U.S. dataset, we obtain similar value (λ̂ = 1.5).
21To see this, recall that in a simplified version of eq. (4) without dynamic indexation (κd = 0), markup

and inflation targeting shocks, we have that π̂dt = γdΣ
∞
s=0β

sEtm̂ct+s, and under the simplifying assumption that
m̂ct = ρm̂ct−1 + εmc,t, it follows that π̂dt = (γd/ (1− ρβ)) m̂ct. In this case, corr

(
π̂dt , m̂ct

)
=γd/ (1− ρβ)>0.

Evidently, a lower γd (i.e. higher ξd) reduces the positive correlation but cannot make it negative.
22 It does not matter for the results if we introduce eq. (22) as a true structural equation in the model to incor-

porate it into the beliefs of the economic agents, or as an exogenous equation where expectations are unaffected.
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closely in line with our ML estimate on actual Swedish data reported in Table 3a.
Hence, misspecifying the pricing equation enables us to retrieve the implausibly high price

stickiness parameter, which in turn enables the model to match the small yet negative correlation
between marginal cost and inflation in the data. We believe that this exercise, together with the
DSGE-VAR analysis, constitutes straightforward evidence of misspecification problems, which
manifest themselves with implausible stickiness parameters under ML estimation.

4.3. Assessing the economic implications

An important question is whether the differences between the Bayesian posterior median and
ML estimate in Tables 3a and 3b matter when the models are used for policy analysis. It
is possible that many individual parameters differ, but that the propagation of key shocks
remains largely unaffected. To examine this issue, we simulate the effects of monetary policy
and government spending shocks under the Bayesian posterior median and the ML estimate for
the closed economy U.S. model in Table 3b. In both parameterizations of the model, we scale
the policy shock so that it implies an increase in the federal funds rate with 100 basis points
in the first period. For the government spending shock, we scale innovation to represent the
equivalence of an increase of baseline GDP with 1 percent. This scaling of the spending shock
implies that the output response in the first period measures the impact spending multiplier.

The results of these experiments are reported in Figure 3. As seen from the figure, the output
effects of the monetary policy shock are notably larger under the ML estimate of the model,
reflecting that a nominal shock propagates more into the real equilibrium when price and wage
adjustments are estimated to be notably slower relative to the Bayesian estimation results. The
inflation response is also notably smaller and more persistent under the ML estimation results
compared to the Bayesian posterior. For the real government spending shock, the initial output
response is similar in both models, but over time the response is notably larger in the model
estimated with classical ML techniques. The inflation and price level response is also much
more muted in this model compared to the Bayesian posterior model. Together, these results
demonstrate that the differences between the Bayesian and ML results matter immensely for
the effects of core policy actions, for the very purpose of which they are constructed.

5. Concluding remarks

In this paper we have analyzed the properties of maximum likelihood estimation in state-of-the-
art closed and open economy New Keynesian DSGE models for monetary policy analysis. Our
asymptotic tests of identification as well as our small-sample Monte Carlo analysis suggest that
the studied DSGE models are identifiable in the notion of Rothenberg (1971): if an appropriate
set of variables is used to estimate the DSGE model, the ML estimator is unbiased and we have
mean square convergence. We therefore argue that the econometrician can learn a lot about
many parameters in DSGE models by estimating them.

Consequently, we estimate the models with classical ML techniques on actual data for Sweden
(open economy) and the U.S. (closed economy) and find a large improvement in log-likelihood:
above 100 relative to the Bayesian posterior median for Sweden and about 45 for the U.S. By
itself, this improvement is evidence against the notion that aggregate data are not informative.
However, the ML estimates of the slope of the Phillips curves (i.e., the coeffi cient multiplying
marginal cost) imply an extremely high degree of price stickiness which is hard to reconcile
with microeconomic evidence. In addition, the low slope of the Phillips curve implies that the
estimated volatility of the markup shocks is implausibly large, as pointed out by Chari, Kehoe
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and McGrattan (2008).
Direct and indirect evidence suggests that the DSGE models under consideration appears

to suffer from misspecification, and that the misspecification problem appears to be mitigated
by a parameterization that is inconsistent with the microeconomic evidence. Also Del Negro et
al. (2007) find evidence of misspecification in their closed economy model on U.S. data, which
indicates that our results are by no means specific to our model setup.

Our findings offer an additional interpretation why Bayesian methods may have become so
popular among macroeconomists: although the likelihood function is informative about many
of the parameters in the model, problems with model misspecification lead to implausible ML
estimates relative to existing microeconomic evidence. In this environment with parameter and
model uncertainty and misspecification, Bayesian techniques offer a way to estimate models in
an internally consistent way by allowing the econometrician to examine the performance of the
model in a region of the parameter space that can be deemed a priori plausible as discussed by
e.g. Sims (2007, 2008).

Our analysis also indicates that, while identification should not be assumed to be weak for
all models; different models can have similar core features and properties and yet differ in terms
of the degree of misspecification or identification. Available identification pre-tests (e.g. Iskrev,
2010b, available in Dynare) appear to be very effective in highlighting possible identification
issues and should always be used on a case-by-case basis. The severity of misspecification for
a given model can be assessed using the DSGE-VAR techniques developed by Del Negro and
Schorfheide (2004, 2009) (also available in Dynare). However, such issues are more diffi cult to
address, and may affect outcomes more extensively than usually assumed.

There are some important issues that we leave for future research. First, we have followed
the common practice in the literature (e.g. Christiano, Eichenbaum and Evans, 2005), and
calibrated (i.e. used strict priors) some parameters we believe we have relatively good prior
information about and a priori know would not be well identified by the set of observable
variables we match. It would be of interest to examine in future work how the results would be
affected when attempting to estimate these parameters on an extended information set.

Second, the models we consider have little to say about fiscal policy, and we think an in-
teresting extension of our work would be to study identification in models where monetary and
fiscal policy switch between active and passive regimes as in Davig and Leeper (2011) or Bianchi
and Melosi (2017). Moreover, it would be of interest to examine if better integration of fiscal
policy aspects mitigates the misspecification issues we have identified.

Third and finally, Rubio-Ramirez and Villaverde (2005) argue that estimations based on a
non-linear (second-order) approximation are much more informative about the parameters in a
real business cycle model. Following the appearance of the zero lower bound during the recent
financial crisis, a rapidly growing literature has started to estimate non-linear DSGE models.
Therefore, an interesting extension would be to examine the extent to which identification is en-
hanced in non-linear frameworks relative to the standard log-linearized representation examined
in this paper.
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 Table 1a: Multiple collinearity statistics and expected standard errors. 

Open Economy Model Closed Economy Model 

Parameter Mco 
(J2) 

Mco  
(J(T)) std(θi) θi/std(θi) 

prior(θi)
/std(θi) 

Mco 
(J2) 

Mco  
(J(T)) std(θi) θi/std(θi) 

prior(θi)
/std(θi) 

Calvo wages  wξ 0.336 0.887 0.092 8.288 0.542 0.442 0.935 0.097 7.906 0.517 
Calvo domestic prices dξ  0.729 0.791 0.025 33.694 2.042 0.740 0.936 0.038 21.738 1.318 
Calvo import cons. prices cm,ξ

 
0.578 0.888 0.015 60.869 3.382 ― ― ― ― ― 

Calvo import inv.  prices im,ξ 0.674 0.806 0.013 73.091 3.892 ― ― ― ― ― 
Calvo export prices  xξ  0.566 0.948 0.025 35.572 2.035 ― ― ― ― ― 
Indexation prices  κ  0.713 0.934 0.052 4.366 2.885 0.702 0.980 0.120 1.900 1.255 
Indexation wages wκ 0.450 0.829 0.135 2.395 1.112 0.495 0.938 0.125 2.582 1.199 
Investment adj. cost  ''~S 0.559 0.853 2.823 3.041 0.531 0.564 0.868 3.786 2.267 0.396 
Habit formation  b 0.589 0.831 0.053 12.943 1.906 0.695 0.885 0.056 12.090 1.781 
Markup domestic  dλ  0.490 0.814 0.109 10.954 0.458 0.580 0.869 0.155 7.693 0.322 
Subst. elasticity invest.  iη  0.700 0.945 0.134 20.204 5.842 ― ― ― ― ― 
Subst. elasticity foreign fη 0.651 0.970 0.330 4.645 2.382 ― ― ― ― ― 
Markup imported cons.  cm,λ

 
0.657 0.943 0.029 54.657 1.725 ― ― ― ― ― 

Markup.imported invest.  im,λ 0.725 0.922 0.021 53.809 2.373 ― ― ― ― ― 
Technology growth  zµ  0.514 0.825 0.0002 4 549.07 2.263 0.432 0.857 0.001 1533.800 0.763 
Risk premium  φ~  0.680 0.912 0.016 3.224 64.472 ― ― ― ― ― 
UIP modification 

sφ
~ 0.506 0.878 0.040 15.321 3.792 ― ― ― ― ― 

Unit root tech. persistance 
zµ

ρ
 

0.562 0.978 0.100 8.422 0.997 0.502 0.994 0.172 4.915 0.581 
Stationary tech. persistance ερ  0.463 0.975 0.041 22.789 2.464 0.493 0.985 0.044 21.106 2.281 
Invest. spec. tech. persist.  Υρ 0.629 0.987 0.085 8.136 1.172 0.645 0.983 0.061 11.287 1.627 
Risk premium persistence φρ ~ 0.654 0.999 0.079 8.644 1.264 ― ― ― ― ― 
Consumption pref. persist. 

cζ
ρ
 

0.499 0.958 0.116 5.666 0.862 0.538 0.957 0.128 5.147 0.783 
Labour supply persistance  

hζ
ρ 0.583 0.972 0.101 2.680 0.993 0.542 0.963 0.115 2.353 0.871 

Asymmetric tech. persist.  *~zρ 0.169 0.759 0.067 14.437 1.498 ― ― ― ― ― 

Unit root tech. shock 
zµ

σ
 

0.494 0.968 0.042 3.165 23.800 0.392 0.994 0.101 1.325 9.935 
Stationary tech. shock  εσ 0.333 0.967 0.048 13.886 20.787 0.318 0.976 0.050 13.437 20.112 
Imp. cons. markup shock 

cm ,λσ
 

0.615 0.834 0.128 8.774 7.792 ― ― ― ― ― 
Imp. invest. markup shock im ,λσ

 
0.561 0.825 0.098 11.583 10.214 ― ― ― ― ― 

Domestic markup shock   
dλ

σ
 

0.752 0.913 0.070 11.474 14.218 0.692 0.927 0.088 9.198 11.398 
Invest. spec. tech. shock   Υσ 0.572 0.984 0.070 5.653 14.276 0.634 0.987 0.054 7.284 18.384 
Risk premium shock   φσ ~ 0.627 0.998 0.159 4.974 6.272 ― ― ― ― ― 
Consumption pref. shock   

cζ
σ
 

0.404 0.957 0.035 7.576 28.805 0.414 0.955 0.035 7.477 28.387 
Labour supply shock   

hζ
σ
 

0.550 0.971 0.055 7.033 18.220 0.545 0.948 0.059 6.505 16.873 
Asymmetric tech. shock   *~zσ

 
0.178 0.710 0.044 4.298 22.862 ― ― ― ― ― 

Export markup shock   
xλ

σ
 

0.612 0.877 0.254 4.069 3.939 ― ― ― ― ― 

Monetary policy shock  Rσ 0.586 0.937 0.020 12.276 51.364 0.663 0.981 0.021 11.582 48.462 
Inflation target shock  cπ

σ
 

0.408 0.921 0.050 3.144 20.025 0.375 0.916 0.055 2.861 18.221 
Interest rate smoothing  Rρ 0.890 0.991 0.043 21.060 1.153 0.892 0.993 0.047 19.452 1.066 
Inflation response  πr 0.912 0.994 0.960 1.744 0.104 0.893 0.992 0.943 1.775 0.106 
Diff. infl response  π∆r 0.522 0.622 0.030 3.224 1.645 0.412 0.599 0.026 3.783 3.848 
Real exch. rate response  xr 0.648 0.990 0.029 0.548 1.713 ― ― ― ― ― 
Output response  yr 0.797 0.990 0.110 1.139 0.455 0.755 0.988 0.106 1.180 0.471 
Diff. output response  yr∆ 0.658 0.940 0.040 4.412 1.239 0.635 0.981 0.046 3.880 1.088 

Note: The table shows Iskrev’s (2008) multiple collinearity statistics (Mco) w.r.t. the reduced form coefficients in the model only, J2, and w.r.t. the 
first and second moments in the data, J(T), using different sets of observables. A value close to one (or -1) indicates that there is very strong degree of 
collinearity w.r.t. the other deep parameters. The expected standard deviation, std(θi), is computed using the Fisher Information Matrix at the 
posterior median following Iskrev (2010b). The strength of identification is calculated by θi/std(θi) and prior(θi)/std(θi) shows if uncertainty increases 
or decreases compared to standard deviation of the prior distribution. Dynare 4.5.5 has been used to do the calculations.  



Table 1b: Rank tests and median condition numbers, smallest singular and tolerance values. 
            
 Open Economy Model  Closed Economy Model 
 posterior median  prior sampling  posterior median  prior sampling 

 J2 J(T)  J2 J(T)  J2 J(T)  J2 J(T) 
            
Full rank Yes Yes  100% 100%  Yes Yes  100% 100% 
Condition number 325.62 649.03  610.91 2.327e+6  224.435 538.697  235.559 2.33e+4 
Min singular value 0.114 0.023  0.0824 7.381e-6  0.092 0.0146  0.096 4.12e-4 
Tolerance value 2.677e-11 6.235e-13  2.677e-11 1.247e-12  3.09e-12 7.28e-14  3.09e-12 1.46e-13 
            

 

Note: For the columns labelled “prior sampling”, the rank of J2 and J(T) have been evaluated at 5,000 draws from the prior distribution in Table A:2. For the condition, 
smallest singular, and tolerance values we report the median from these 5,000 evaluations. The condition number measures the ratio of the largest singular number to the 
smallest of a matrix A. The tolerance value measures the value that would overturn the rank condition for a matrix A, i.e. tol=max(size(A)) * eps(norm(A)). Dynare 4.5.5 
has been used to do the calculations. 



 Table 2: Small sample distribution results for different models. 
      
   Open Economy Model  Closed Economy Model 

Parameter  True 
values 

Mean of 
distri-
bution 

Median 
of distri-
bution 

Std. of 
distri-
bution 

Std based 
on Inverse 

Hessian  
 

Mean of 
distri-
bution 

Median of 
distri-
bution 

Std. of 
distri-
bution 

Std based 
on Inverse 

Hessian 
            
Calvo wages  wξ  0.77 0.74 0.75 0.13 0.07  0.72 0.73 0.16 0.08 
Calvo domestic prices dξ  0.83 0.81 0.82 0.04 0.03  0.81 0.81 0.04 0.03 
Calvo import cons. prices cm,ξ  0.90 0.90 0.90 0.02 0.01  ― ― ― ― 
Calvo import inv.  prices im,ξ  0.94 0.94 0.94 0.02 0.01  ― ― ― ― 
Calvo export prices  xξ  0.87 0.86 0.86 0.04 0.02  ― ― ― ― 
Indexation prices  κ  0.23 0.22 0.22 0.06 0.05  0.22 0.22 0.13 0.08 
Indexation wages wκ  0.32 0.32 0.32 0.15 0.07  0,32 0.31 0.14 0.09 
Investment adj. cost  ''~S  8.58 8.98 8.08 4.08 2.02  9.86 7.76 7.54 2.79 
Habit formation  b  0.68 0.67 0.67 0.07 0.05  0.67 0.67 0.07 0.05 
Markup domestic  dλ  1.20 1.21 1.20 0.14 0.09  1.22 1.18 0.20 0.15 
Subst. elasticity invest.  iη  2.72 2.72 2.71 0.13 0.11  ― ― ― ― 
Subst. elasticity foreign fη  1.53 1.59 1.45 0.59 0.23  ― ― ― ― 
Markup imported cons.  cm,λ  1.58 1.58 1.58 0.01 0.01  ― ― ― ― 
Markup.imported invest.  im,λ  1.13 1.14 1.13 0.02 0.02  ― ― ― ― 
Technology growth  zµ  1.005 1.005 1.005 0.0003 0.0003  1.005 1.005 0.001 0.0006 
Risk premium  φ~  0.05 0.06 0.05 0.02 0.01  ― ― ― ― 
UIP modification 

sφ
~  0.61 0.61 0.60 0.05 0.03  ― ― ― ― 

Unit root tech. persistance 
zµ

ρ  0.85 0.80 0.83 0.14 0.06  0.72 0.80 0.24 0.08 
Stationary tech. persistance ερ  0.93 0.89 0.90 0.08 0.03  0.88 0.90 0.08 0.04 
Invest. spec. tech. persist.  Υρ  0.69 0.65 0.67 0.13 0.06  0.67 0.68 0.10 0.07 
Risk premium persistence φρ ~  0.68 0.65 0.65 0.11 0.06  ― ― ― ― 
Consumption pref. persist. 

cζ
ρ  0.66 0.59 0.61 0.18 0.08  0.61 0.62 0.16 0.09 

Labour supply persistance  
hζ

ρ  0.27 0.26 0.26 0.13 0.07  0.26 0.26 0.13 0.09 
Asymmetric tech. persist.  *~zρ  0.96 0.73 0.84 0.28 0.09  ― ― ― ― 

Unit root tech. shock 
zµ

σ  0.13 0.14 0.14 0.05 0.03  0.14 0.13 0.09 0.06 
Stationary tech. shock  εσ  0.67 0.66 0.65 0.06 0.05  0.65 0.65 0.06 0.05 
Imp. cons. markup shock 

cm ,λσ
 1.13 1.13 1.12 0.11 0.10  ― ― ― ― 

Imp. invest. markup shock im ,λσ
 1.13 1.14 1.13 0.11 0.10  ― ― ― ― 

Domestic markup shock   
dλ

σ  0.81 0.82 0.82 0.08 0.08  0.82 0.81 0.10 0.08 
Invest. spec. tech. shock   Υσ  0.40 0.42 0.41 0.09 0.06  0.42 0.41 0.08 0.06 
Risk premium shock   φσ ~  0.79 0.82 0.80 0.21 0.12  ― ― ― ― 
Consumption pref. shock   

cζ
σ  0.26 0.27 0.27 0.05 0.04  0.27 0.27 0.04 0.04 

Labour supply shock   
hζ

σ  0.39 0.39 0.39 0.06 0.04  0.39 0.39 0.07 0.05 
Asymmetric tech. shock   *~zσ  0.19 0.15 0.16 0.06 0.04  ― ― ― ― 
Export markup shock   

xλ
σ  1.03 1.13 1.09 0.41 0.21  ― ― ― ― 

Monetary policy shock  Rσ  0.24 0.24 0.23 0.02 0.02  0.24 0.23 0.03 0.02 
Inflation target shock  cπ

σ  0.16 0.14 0.14 0.10 0.04  0.12 0.11 0.11 0.06 
Interest rate smoothing  Rρ  0.91 0.91 0.91 0.05 0.03  0.91 0.91 0.05 0.03 
Inflation response  πr  1.67 3.80 1.59 5.08 2.70  3.80 1.52 4.94 1.24 
Diff. infl response  π∆r  0.10 0.11 0.10 0.04 0.03  0.11 0.10 0.03 0.03 
Real exch. rate response  xr  -0.02 -0.07 -0.02 0.15 0.02  ― ― ― ― 
Output response  yr  0.13 0.35 0.13 0.63 0.07  0.32 0.11 0.60 0.07 
Diff. output response  yr∆  0.18 0.19 0.18 0.05 0.03  0.19 0.19 0.06 0.04 
            

 

Note: Out of the 1,500 estimations for the sample (each 100 obs.), the results above is based on 1,452 convergent estimations (defined as estimations when the optimizer 
CSMINWEL terminates without an error message and when the inverse Hessian has full rank and is positive definite). Out of the 1,500 estimations for the closed 
economy, the results above is based on 1,448 convergent estimations. True parameter values were used as starting values in the estimations. Std based on Inverse Hessian 
shows the median of these estimations. 



 Table 3.a: Likelihood estimation results on actual data: Open economy model for Sweden. 
     

  Bayesian Posterior Distribution  Maximum Likelihood Estimation 
         

Parameter  
Median 5% 95%  Point 

estimate 5% 95% 
         
Calvo wages  wξ  0.765 0.677 0.839  0.830 0.808 0.852 
Calvo domestic prices dξ  0.825 0.737 0.903  0.949 0.942 0.956 
Calvo import cons. prices cm,ξ  0.900 0.870 0.926  0.989 0.963 1.015 
Calvo import inv.  prices im,ξ  0.939 0.922 0.955  0.990 0.990 0.990 
Calvo export prices  xξ  0.874 0.838 0.905  0.987 0.983 0.991 
Indexation prices  pκ  0.227 0.135 0.335  0.013 0.012 0.014 
Indexation wages wκ  0.323 0.165 0.515  0.020 0.017 0.023 
Investment adj. cost  ''~S  8.584 6.510 10.803  22.500 14.963 30.037 
Habit formation  b  0.679 0.572 0.771  0.871 0.862 0.880 
Markup domestic  dλ  1.195 1.117 1.277  1.112 1.110 1.114 
Subst. elasticity invest.  iη  2.715 2.280 3.330  1.335 1.311 1.359 
Subst. elasticity foreign fη  1.531 1.349 1.856  2.766 2.530 3.002 
Markup imported cons.  cm,λ  1.584 1.529 1.638  2.371 2.367 2.375 
Markup.imported invest.  im,λ  1.134 1.067 1.207  2.315 2.292 2.338 
Technology growth  zµ  1.005 1.005 1.005  1.005 1.005 1.005 
Risk premium  φ~  0.050 0.022 0.116  0.228 0.164 0.292 
UIP modification 

sφ
~  0.606 0.516 0.728  0.982 0.976 0.988 

Unit root tech. shock persistence 
zµ

ρ  0.845 0.704 0.928  0.906 0.898 0.914 
Stationary tech. shock persistence ερ  0.925 0.822 0.972  0.994 0.993 0.995 
Invest. spec. tech shock 
persistence Υρ  0.694 0.519 0.839  0.319 0.207 0.431 
Risk premium shock persistence φρ ~  

0.684 0.503 0.855  0.416 0.395 0.437 
Consumption pref.shock 
persistence cζ

ρ  0.657 0.419 0.848  0.017 -0.067 0.101 
Labour supply shock persistence 

hζ
ρ  0.270 0.167 0.385  0.025 0.017 0.033 

Asymmetric tech. shock 
persistence *~zρ  0.964 0.947 0.978  0.933 0.929 0.937 
Unit root tech. shock std. dev. zσ  0.133 0.098 0.184  0.064 0.053 0.075 
Stationary tech. shock std. dev. εσ  0.668 0.542 0.817  0.664 0.640 0.688 
Imp. cons. markup shock std. dev. 

cm ,λσ
 

1.126 0.956 1.349  1.285 1.187 1.383 
Imp. invest. markup shock std. 
dev  im ,λσ

 
1.134 0.955 1.364  1.726 1.718 1.734 

Domestic markup shock std. dev. λσ  0.807 0.684 0.960  0.823 0.820 0.826 
Invest. spec. tech. shock std. dev. Υσ  0.396 0.294 0.535  0.558 0.473 0.643 
Risk premium shock std. dev. φσ ~  

0.793 0.500 1.226  2.021 1.950 2.092 
Consumption pref. shock std. dev. 

cζ
σ  0.263 0.196 0.348  0.300 0.277 0.323 

Labour supply shock std. dev. 
hζ

σ  0.386 0.326 0.458  0.344 0.343 0.345 
Asymmetric tech. shock std. dev. *~zσ  0.188 0.150 0.240  0.013 0.012 0.014 
Export markup shock std. dev.  

xλ
σ  1.033 0.817 1.282  0.554 0.482 0.626 

Monetary policy shock  ,Rσ  0.239 0.207 0.279  0.219 0.218 0.220 
Inflation target shock  cπ

σ  0.157 0.089 0.247  0.263 0.244 0.282 
Interest rate smoothing  Rρ  0.913 0.882 0.938  0.957 0.956 0.958 
Inflation response  )1( Rr ρπ −

 
0.146 0.104 0.197  0.045 0.043 0.047 

Diff. infl response  π∆r  0.098 0.050 0.152  0.011 0.011 0.011 
Real exch. rate response  )1( Rxr ρ−

 
-0.001 -0.005 0.002  0.002 0.001 0.003 

Output response  )1( Ryr ρ−
 

0.011 0.005 0.018  -0.001 0.000 0.002 
Diff. output response  yr∆  0.178 0.118 0.241  0.060 0.024 0.096 
         

Log Likelihood  -2128.58  -2022.16 
Log Marginal Likelihood (Laplace)  -2271.24  --- 
Log Posterior  -2232.42  -4439.24 
     

*Note: The reported parameters for the level of inflation, real exchange and the output gap have been transformed to composite responses instead of 
separate responses as in Tables 1 and 2. The prior distribution used to obtain the Bayesian posterior median is provided in Table A:2. The log likelihood 
for the Bayesian posterior distribution is computed using the posterior median parameters. The sample period in the estimation is 1980Q1-2004Q4, where 
the period 1980Q1-1985Q4 is used to compute the unobserved state variables in 1985Q4 and the period 1986Q1-2004Q4 for inference. The ML 
estimation confidence interval is calculated as: point estimate ± 1.645*std, where std is the standard deviation according to the sandwich form of the 
inverse Hessian.  



 Table 3.b: Likelihood estimation results on actual data: Closed economy model for United States. 
     

  Bayesian Posterior Distribution  Maximum Likelihood Estimation 
         

Parameter  
Median 5% 95%  Point 

estimate 5% 95% 
         
Calvo wages  wξ  0.735 0.671 0.799  0.972 0.955 0.990 
Calvo domestic prices dξ  0.865 0.841 0.889  0.989 0.987 0.991 
Indexation prices  pκ  0.223 0.106 0.339  0.897 0.763 1.031 
Indexation wages wκ  0.644 0.442 0.845  0.067 0.006 0.130 
Investment adj. cost  ''~S  6.512 4.419 8.605  2.389 0.024 4.574 
Habit formation  b  0.794 0.756 0.832  0.961 0.940 0.983 
Markup domestic  dλ  1.261 1.099 1.423  1.799 1.718 1.880 
Technology growth  zµ  1.004 1.004 1.004  1.004 1.004 1.004 
Unit root tech. shock persistence 

zµ
ρ  0.568 0.423 0.713  0.509 0.364 0.654 

Stationary tech. shock persistence ερ  0.990 0.981 0.998  0.997 0.994 0.999 
Invest. spec. tech shock 
persistence Υρ  0.612 0.518 0.706  0.363 0.149 0.577 
Consumption pref.shock 
persistence cζ

ρ  0.994 0.990 0.999  0.192 0.003 0.381 
Labour supply shock persistence 

hζ
ρ  0.428 0.302 0.553  0.329 0.086 0.573 

Unit root tech. shock std. dev. zσ  0.388 0.274 0.501  0.490 0.384 0.596 
Stationary tech. shock std. dev. εσ  0.467 0.385 0.550  0.370 0.325 0.416 
Domestic markup shock std. dev. λσ  0.169 0.150 0.189  0.157 0.142 0.172 
Invest. spec. tech. shock std. dev. Υσ  0.911 0.783 1.040  1.339 1.141 1.537 
Consumption pref. shock std. dev. 

cζ
σ  0.150 0.112 0.188  0.173 0.144 0.203 

Labour supply shock std. dev. 
hζ

σ  0.207 0.164 0.251  0.199 0.124 0.274 
Monetary policy shock  ,Rσ  0.233 0.210 0.256  0.242 0.214 0.269 
Inflation target shock  cπ

σ  0.127 0.097 0.157  0.133 0.066 0.200 
Interest rate smoothing  Rρ  0.775 0.738 0.813  0.964 0.941 0.987 
Inflation response  )1( Rr ρπ −

 
0.407 0.330 0.484  0.311 0.188 0.435 

Diff. infl response  π∆r  0.297 0.214 0.379  0.248 0.116 0.379 
Output response  )1( Ryr ρ−

 
0.013 0.008 0.018  −0.003 −0.005 −0.001 

Diff. output response  yr∆  0.120 0.088 0.153  0.228 0.178 0.277 
         
Log Likelihood  −1454.39 

 
 −1410.61 

 
Log Marginal Likelihood (Laplace)  −1518.85 

 
 --- 

 
Log Posterior  −1454.27 

 
 −3996.65 

      
*Note: The reported parameters for the level of inflation and the output gap have been transformed to composite responses instead of separate responses as 
in Tables 1 and 2. The prior distribution used to obtain the Bayesian posterior median is provided in Table A:2. The log likelihood for the Bayesian 
posterior distribution is computed using the posterior median parameters. The sample period in the estimation is 1959Q2−2006Q4, where the period 
1959Q2−1965Q4 is used to compute the unobserved state variables in 1959Q4 and the period 1966Q1−2006Q4 for inference. The ML estimation 
confidence interval is calculated as: point estimate ± 1.645*std, where std is the standard deviation according to the sandwich form of the inverse Hessian. 
The parameter 

zµ  has been calibrated to 1.004 (Bayesian posterior median) because it was driven to its lower bound (1.0001) in the MLE estimations, 
but the results are essentially unaffected (if anything, estimating it amplifies further the difference between the Bayesian and MLE log likelihood). 
 
 
 
 



Table 4: Log-marginal likelihood of VAR/VECM with DSGE prior for Sweden and the U.S.  
      
 

 
 

   
 Open Economy Model for Sweden Closed Economy Model for the U.S. 
 
 DSGE-VAR DSGE-VECM DSGE-VAR DSGE-VECM 
λ  8 lags 8 lags 8 lags 8 lags 
     λmin = 0.36 ― ― ― −1 520.25 

λmin = 0.39 ― ― −1 577.43 ― 
 λmin = 1.79 −2 445.25 ― ― ― 

λmin = 1.87 ― −2 469.01 ― ― 
0.75 ― ― −1 437.67 −1 421.84 

1 ― ― −1 436.08 −1 407.78 
1.25 ― ― −1 421.02 −1 408.28 
1.5 ― ― −1 424.44 −1 408.95 
2 −2 283.20 −2 353.32 −1 432.57 −1 409.25 
3 −2 050.28 −2 071.91 −1 462.54 −1 423.30 
4 −1 995.27 −2 005.99 −1 473.30 −1 429.79 
5 −1 981.17 −1 987.29 −1 474.31 −1 442.96 

5.5 −1 980.23 −1 985.07 −1 486.51 −1 450.06 
6 −1 981.43 −1 985.36 −1 490.96 −1 452.76 

10 −2 014.23 −2 017.24 −1 511.16 −1 465.30 
∞ −2 244.01 −2 271.94 −1 544.49 −1 519.67 
     

DSGE −2 271.24 −2 271.24 −1 518.85 −1 518.85 
     

Note:  The table displays Laplace approximations of the log-marginal likelihood. λ = 1.79 and  λ = 1.87 are the minimal tightnesses for the 
VAR and VECM for Sweden and 0.36 and 0.39 the corresponding numbers for the U.S., respectively. Bold numbers indicate the λ with the 
maximal log marginal likelihood. The prior is proper if λ≥λmin=[n(p+1)+q+1]/T, where n is the number of endogenous variables in the VAR 
with p lags, q the number of exogenous variables, and T the number of data points. In our Swedish application n=15, p=8, T=76 (post-
training sample 86Q1-04Q4), and q=0 in the VAR whereas q=6 for the VECM. In the U.S. estimations, n=7, p=8, T=164 (post-training 
sample 65Q1-06Q4), and q=0 in the VAR whereas q=4 for the VECM. 
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Figure 1: Impulse response functions to a monetary policy shock in different DSGE models,
Smets and Wouters 2007-rule
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Figure 2: Kernel density estimates of the small sample distribution for the estimates of some of
the model parameters. The solid line shows the parameter distribution for T = 100, and the
dashed line shows the distribution for T = 400 observations. The vertical bar shows the true
parameter value and the cross on the x-axis indicates the starting value in the optimizations.
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Appendix A. Calibrated parameters, prior and posterior distributions

The parameters we choose to calibrate are displayed in Table A.1. Following common practice
in the literature (e.g. Christiano, Eichenbaum and Evans, 2005), we decided to calibrate (i.e.
use strict priors) for these parameters as we have relatively good prior information about them
and a priori know that they are not well identified by the set of observable variables we match.
According to the results in Iskrev many of these parameters are weakly identified in his analysis
of the Smets and Wouters model. But, some of them could be well identified from aggregate
quantities and prices if a larger set of observed variables and first-order moments were included in
the estimation. Most of these parameters are related to the steady-state values of permutations of
the observables, and would be identified by inclusion of the following set of first-order moments:
C/Y , M̃/Y , I/Y and G/Y (identifies ωc, ωi, δ, and gr); π and R (identify µ and β when µz
is estimated); 1−WH/Y (identifies α); average income, pay-roll and VAT rates (identifies τy,
τw, and τ c).23

This said, there are a few calibrated parameters in Table A.2 {ηc, σL, λw, ρπ̄} that are more
problematic. The two parameters ηc and ρπ̄ are identified in our model (not shown), but
we nevertheless decided to calibrate them to have our setup consistent with Adolfson et al.
(2008a).24 However, the average wage markup (λw) and the labor supply elasticity (σL) are
better identified by micro data, see e.g. Domeij and Floden (2006), and we therefore fix also these
parameters when we estimate the model on aggregate data. In principle, our model implies a
distribution and history of households with different nominal wages and hours worked, and under
the standard maintained assumption that the data generating process is not misspecified, the
information in these distributions in conjunction with aggregate hours worked and the aggregate
real wage could be used to effi ciently estimate the labor supply elasticity and the steady state
markup. Christiano, Eichenbaum and Evans (2005) pursue the same approach in their paper
when estimating their model on U.S. data, and we therefore adapt their values for these two
parameters. The fact that these parameters are weakly identified when aggregate data are used
exclusively to estimate DSGE models is not an identification problem per se, it merely reflects
a limitation of what can be achieved with aggregate data only. Of course, it may be the case
that the DSGE model does not represent a reasonable approximation of actual wage-setting
behaviour, so that estimating the first-order conditions right off the micro data would yield
implausible results, but again this is a problem with misspecification and not with identification.

In comparison with other papers in the open economy literature, such as for example Justini-
ano and Preston (2010) and Lubik and Schorfheide (2005), we have chosen to work with a large
number of variables because it facilitates identification of the parameters and shocks processes
we estimate. We estimate 13 structural shocks of which 5 are assumed to be identically inde-
pendently distributed and 8 follow AR(1) processes. In addition to these shocks, there are eight
additional shocks provided by the exogenous and pre-estimated fiscal and foreign VARs, whose
parameters are kept fixed at their posterior means throughout the estimation of the DSGE
model parameters. The shocks enter in such a way that there is no stochastic singularity in the

23For our open economy model we consider a steady state where ā is zero. Combined with our assumption that
foreign and domestic inflation targets both equal π̄ in the steady-state, the change in the nominal exchange rate
is nil in steady state, so that S̄t+1

S̄t

S̄t
S̄t−1

− 1 = 0. We have also verified that a solution exists and is unique for our

augmented specification of the risk-premium in (12) in the joint prior distribution for
{
φ̃a, φ̃s

}
.

24The rationale for calibrating ρπ̄ to 0.975 was to ensure that the inflation target is a highly persistent process.
ηc was calibrated to 5 because this parameter was otherwise driven towards a very high number (around 20) due
to a slightly better match of the low volatility of consumption and high volatility of imports; see Adolfson et al.
(2007, 2008) for further discussion.
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likelihood function.
We apply the Kalman filter to calculate the likelihood function of the observed variables,

where on Swedish data the period 1980Q1-1985Q4 is used to form a prior on the unobserved
state variables in 1985Q4 and the period 1986Q1-2004Q4 for inference.25 Table A.2 shows the
assumptions for the prior distribution of the estimated parameters, and the resulting Bayesian
posterior median estimates based on a sample of 500, 000 post burn-in draws from the posterior
distribution.

When we estimate the closed economy formulation of the model on U.S. data in Section
4 we eliminate the open economy dimension from the model by setting ωc = ωi = 0 and the
variance of all open economy shocks to nil. Reflecting somewhat different steady state ratios in
the U.S. economy relative to Sweden, we also recalibrate the following parameters in Table A.1;
β = 0.99754, α = 0.3, µ = 0.014, and gr = 0.2. Apart from that, all the priors for the estimated
parameters are identical to those in Table A.2. Another difference is that we remove the mean
and variations in the tax shocks τy,t, τw,t and τ c,t. Data for the period 1959Q1-1965Q4 is used
to form a prior on the unobserved state variables in 1965Q4 and the period 1966Q1-2006Q4
for inference. Following Smets and Wouters (2007), all data series are assumed to be measured
without error.

25We include white noise measurement errors in all variables except for the short-term interest rate and the
three foreign variables, since we know that those data series used are not perfectly measured and at best only
approximations of the ’true’ series. In particular it was hard to remove the seasonal variation in the domestic
series, and there are still spikes in for example the inflation series, perhaps due to changes in the collection of the
data. The variance of the white noise measurement errors is set to 0.1 percent for the real wage, consumption
and output, and 0.2 percent for the other domestic variables, implying that the fundamental shocks explain about
90-95% of the variation in most of the variables measured with error.
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Table A.1: Calibrated parameters for Sweden

Parameter Description Calibrated value
β Households’discount factor 0.999
α Capital share in productiona 0.25
ηc Substitution elasticity between Cdt and C

m
t 5

µ Money growth rate (quarterly rate)a 1.010445
σL labor supply elasticity 1
δ Depreciation rate 0.01
λw Wage markupa 1.05
ωi Share of imported investment goodsa 0.70
ωc Share of imported consumption goodsa 0.40
τy labor income tax ratea 0.30
τ c Consumption tax ratea 0.24
τw Pay-roll tax ratea 0.30
ρπ̄ Inflation target persistence 0.975
gr Government expenditures-output ratioa 0.30

a Notice that the description of the parameter pertain to its steady state.
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 Table A.2: Prior and posterior distributions. 
        
  Prior distribution  Posterior 

distribution 

 Bounds 

        

Parameter  type mean std. dev. / df  median  lower Upper 

          
Calvo wages  w

 beta 0.750 0.050  0.765  0.001 0.999 

Calvo domestic prices d
 beta 0.750 0.050  0.825  0.001 0.999 

Calvo import cons. prices cm,  beta 0.750 0.050  0.900  0.001 0.999 

Calvo import inv.  prices im,  beta 0.750 0.050  0.939  0.001 0.999 

Calvo export prices  x
 beta 0.750 0.050  0.874  0.001 0.999 

Indexation prices  p
 beta 0.500 0.150  0.227  0.001 0.999 

Indexation wages w
 beta 0.500 0.150  0.323  0.001 0.999 

Investment adj. cost  ''~
S  normal 7.694 1.500  8.584  0.1 100 

Habit formation  b  beta 0.650 0.100  0.679  0.01 0.99 

Markup domestic  d
 truncnormal 1.200 0.050  1.195  1.001 10 

Subst. elasticity invest.  i
 invgamma 1.500 4  2.715  0.01 20 

Subst. elasticity foreign f  invgamma 1.500 4  1.531  0.01 20 

Markup imported cons.  cm,  truncnormal 1.200 0.050  1.584  1.001 10 

Markup.imported invest.  im,

 

truncnormal 1.200 0.050  1.134  1.001 10 

Technology growth  z  truncnormal 1.006 0.0005  1.005  1.0001 1.01 

Risk premium  
~

 invgamma 0.010 2  0.050  0.0001 10 

UIP modification 
s

~  beta 0.500 0.15  0.606  0.0001 1 

Unit root tech. shock persistence 
z

  beta 0.850 0.100  0.845  0.0001 0.9999 

Stationary tech. shock persistence 
 beta 0.850 0.100  0.925  0.0001 0.9999 

Invest. spec. tech shock persistence 
 beta 0.850 0.100  0.694  0.0001 0.9999 

Risk premium shock persistence 

 ~

 beta 0.850 0.100  0.684  0.0001 0.9999 

Consumption pref. shock persistence 
c

  beta 0.850 0.100  0.657  0.0001 0.9999 

Labour supply shock persistence 
h

  beta 0.850 0.100  0.270  0.0001 0.9999 

Asymmetric tech. shock persistence *~z  beta 0.850 0.100  0.964  0.0001 0.9999 

Unit root tech. shock std. dev. 
z  invgamma 0.200 2  0.133  0.001 10 

Stationary tech. shock std. dev. 
 invgamma 0.700 2  0.668  0.001 10 

Imp. cons. markup shock std. dev. 
cm ,

 

invgamma 1.000 2  1.126  0.001 400 

Imp. invest. markup shock std. dev. 
im ,

 

invgamma 1.000 2  1.134  0.001 400 

Domestic markup shock std. dev. 
 invgamma 1.000 2  0.807  0.001 100 

Invest. spec. tech. shock std. dev.   invgamma 0.200 2  0.396  0.001 100 

Risk premium shock std. dev. 


 ~
 invgamma 0.050 2  0.793  0.001 10 

Consumption pref. shock std. dev. 
c

  invgamma 0.200 2  0.263  0.001 5 

Labour supply shock std. dev. 
h

  invgamma 1.000 2  0.386  0.001 15 

Asymmetric tech. shock std. dev. *~z  invgamma 0.400 2  0.188  0.001 2 

Export markup shock std. dev.  
x

  invgamma 1.000 2  1.033  0.001 20 

Monetary policy shock  ,R  invgamma 0.150 2  0.239  0.001 2 

Inflation target shock  c
  invgamma 0.050 2  0.157  0.001 1.5 

Interest rate smoothing  R
 beta 0.800 0.050  0.913  0.001 0.999 

Inflation response  r
 truncnormal 1.700 0.100  1.674  1.01 1000 

Diff. infl response  r
 normal 0.300 0.050  0.098  -0.5 5 

Real exch. rate response  xr  normal 0.000 0.050  -0.016  -5 5 

Output response  yr  normal 0.125 0.050  0.125  -0.5 5 

Diff. output response  yr
 normal 0.063 0.050  0.178  -0.5 5 

          
*Note: For the inverse gamma distribution the mode and the degrees of freedom are reported.  Also, for the parameters 

imcmfid  ,   , ,,,,  and 

z  the prior distributions are truncated at 1.  



Appendix B. Additional simulation results

In this appendix, we present additional simulation results for four experiments.

B.1. Robustness w.r.t. starting values

In Section 3.2.2, all the estimations were initiated from the true parameter values. This could be 
a clear advantage for the ML estimator in a large model. In particular, if the multidimensional 
likelihood surface is characterized by many local maxima, there is the possibility that the favor-
able results in the previous subsection was driven by the very good guesses that initialized the 
estimations. In this subsection we relax this assumption and instead initialize the optimizations 
by sampling from the prior distribution in Table 2 that were used to estimate the model on 
actual data. We construct a joint distribution of the parameters in the following way. First, 
we make 30, 000 draws from the prior distribution. Then we compute the 2.5 and 97.5th per-
centiles for each parameter in this distribution, and select all draws in the joint distribution that 
simultaneously are within the 2.5th and 97.5th percentiles. This procedure gives a distribution 
of starting values that can differ substantially from the true parameter values because some of 
the priors in Table A.2 are relatively uninformative (in particular the priors for the standard 
deviations of the shock processes).

In Table B.1, we report the mean, median and standard deviation of the distributions when 
starting out the optimizations from the prior distribution and when starting out from the true 
parameter values. Only results for the same samples are reported in order to be able to make 
an accurate comparison. The results in Table B.1 that are based on initializations with the true 
parameter values can also be compared to the results in Table 3 for T = 100, which were based 
on nearly all 20 additional samples. From this comparison, it is clear that the distributions are 

identical except for small deviations for the parameters S̃′′ and rπ, so any conclusions drawn 
based on results Table B.1 are directly applicable to those in Table 2.

Comparing the marginal parameter distributions based on starting the optimizations with 
the true values with the ones obtained when initialized by sampling starting values from the 
prior distributions, it is clear from Table B.1 that they are essentially identical. Consequently, 
the initial guess does not seem to be of importance when assessing the performance of the ML 
estimator. Not surprisingly, there are some slight deviations in the distributions for the three 

parameters S̃′′ and rπ and ry, but the deviations are very small.
In Figure B.1, we confirm the conclusions in Table B.1 by comparing the distribution re-

sulting from “true initialization” (solid black) against the distribution resulting from “prior 
initialization” (dashed black) along with the actual starting value distribution (dotted line). 
From the figure, it is clear that the prior distributions for the 1, 432 commonly convergent esti-
mations we used are clearly off for some parameters relative to the true parameter values in line 
with the priors used on actual data (see Table A.2). So it is not the case that the ML estimator 
is able to find the optimum only because the starting values sampled from the prior are nearly 
identical to the true parameters. The optimizations can be initiated with parameters that are 
far away from the optimum and convergence can still be achieved.

To sum up, we have presented strong evidence that the performance of the ML estimator 
is robust even if the econometrician does not have a perfect guess of the starting value of the 
parameters.
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B.2. Adding measurement errors and reestimating the fiscal and foreign VARs

We now examine the implications of not having measurement errors and fixing the coeffi cients
in the VARs for the fiscal policy and foreign variables at their true values. We add measurement
errors to the simulated data as described in Section 3.2.1. The measurement errors are assumed
to be i.i.d. and in the estimations they are calibrated at their true values. In addition, we also
reestimate the VARs for the fiscal and foreign VARs in the same way that they are estimated
on actual data for each sample rather than fixing the VAR coeffi cients at their true values in
each simulation.

A priori, we expect this alternative approach, which exactly mimics the estimation strategy
on actual data, to be associated with more dispersed parameter distributions, as the added
measurement errors (although calibrated at their true values) and estimated VARs induce addi-
tional uncertainty in the estimations. This prior is confirmed by the simulation results reported
in Figures B.2a-c, where we see that the resulting parameter distributions are somewhat wider
for some of the parameters. However, the key results are unaffected, and the ML estimator is
still unbiased for almost all parameters.

B.3. Exploiting the cointegrating vectors in the simulations

One possible explanation to problems with poor identification for the degree of nominal wage
stickiness is that we do not exploit the cointegrating vectors when we match the model to the
data in the simulations. Instead of matching the variables in (19) where all quantities and the
real wage are in quarterly growth rates, we therefore consider the following set of variables in
the data instead

Ỹt =
[ πdt ln(Wt/Pt)− lnYt lnCt − lnYt ln It − lnYt x̂t Rt Ĥt ∆ lnYt...

ln X̃t − lnYt ln M̃t − lnYt πcpit πdef,it lnY ∗t − lnYt π∗t R∗t ]′.
(B.1)

The set of variables in (B.1) imposes the true cointegrating vectors in the estimations, and by
doing so it should provide more effi cient estimation of the underlying parameters in the model.

However, Figures B.3a-c suggest that the effi ciency gains from matching the cointegrating
vectors for the quantities as opposed to the variables in first differences are note very large. In
most cases the resulting parameter distributions are essentially identical. Only in a few cases
the marginal parameter distributions based on the cointegrating vectors (dashed lines) are less
dispersed compared to the marginal parameter distributions based on the first differenced real
quantities (solid lines) in (19) .

B.4. Consistency properties of the ML estimator

Table B.2 compares the results for the sample sizes T = 100 as our benchmark and 400 in each
simulated sample. To save space, we limit our attention to the open economy formulation of the
model, but the results (not shown) are qualitatively similar in the closed economy specification
estimated on the set of observables in eq. (21).

Since we have already discussed the results for the benchmark results in the main text, we
immediately turn to the case of T = 400. When doing so, we see that the mean and median
parameter estimates are getting more similar in general, and for S̃′′ and rπ and ry in particular.
Both the mean and median are now also very similar to the true parameter values, with the
exception of rπ whose mean still is too high relative to the true parameter value. In addition, it
is clear that the distributions start to collapse around the true values as the standard deviations
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of the marginal distributions have been reduced by at least a factor of 2, consistent with square-
root sample size convergence properties of the ML estimator. As can be seen from the last
column, the discrepancies between the MSEs and the standard deviations based on the inverse
Hessian are reduced for this larger sample size, but there is still a clear tendency that the
median standard deviations computed from the inverse Hessians underestimate the true degree
of uncertainty predominantly for the policy parameters.

In Table B.3, we report results for the consistency properties of the ML estimator by in-
creasing the sample size in each of the N samples to T = 1600 and T = 6400 observations. We
report results for the case when we match all 15 variables in (19) , but also when we restrict the
set of observables used in the estimation to the “closed economy” variables (eq. 21 although
the underlying DGP is the open economy model). As this is a very time-consuming exercise,
we only report results for N = 40 samples for T = 1600 observations, and N = 20 samples for
T = 6400 observations. The optimizations are initiated by the prior mode values in Table A.2.

From Table B.3, we see that the marginal parameter distributions collapse at the true pa-
rameter values as T = 6400, but the standard errors indicate that the rate of convergence is
substantially slower for many of the parameters when only the closed economy variables are
matched in the estimations. Even so, the ML estimator actually appears to be consistent also
for a relatively small set of variables, although it is clearly much more effi cient to work with a
larger set of variables in the estimations in smaller samples. Since the results for the subset of
variables are derived for the open economy formulation of the model, they imply consistency in
the closed economy specification of the model.
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 Table B.1: Sensitivity with respect to starting values (100 observations in each sample). 
Starting from true values Sampling starting values from prior distribution 

Parameter
True 
esti-

mates 

Mean of 
distribution 

Median of 
distribution 

Std. of 
distribution 

Mean of 
distribution 

Median of 
distribution 

Std. of 
distribution 

Calvo wages  wξ 0.77 0.74 0.75 0.13  0.73 0.74 0.15
Calvo domestic prices dξ 0.83 0.81 0.82 0.04  0.81 0.81 0.04
Calvo import cons. prices cm ,ξ 0.90 0.90 0.90 0.02  0.90 0.90 0.02
Calvo import inv.  prices im ,ξ 0.94 0.94 0.94 0.02  0.94 0.94 0.02
Calvo export prices  xξ  0.87 0.86 0.86 0.04  0.86 0.86 0.04
Indexation prices  κ  0.23 0.22 0.22 0.06  0.22 0.22 0.06
Indexation wages wκ 0.32 0.32 0.32 0.15  0.32 0.32 0.15
Investment adj. cost  ''~S 8.58 8.99 8.08 4.10  9.05 8.11 4.32
Habit formation  b 0.68 0.67 0.67 0.07  0.67 0.67 0.07
Markup domestic  dλ 1.20 1.21 1.20 0.14  1.21 1.20 0.14
Subst. elasticity invest.  iη 2.72 2.72 2.71 0.13  2.72 2.71 0.13
Subst. elasticity foreign fη 1.53 1.59 1.45 0.59  1.59 1.45 0.60
Markup imported cons.  cm ,λ 1.58 1.58 1.58 0.01  1.58 1.58 0.01
Markup.imported invest.  im ,λ 1.13 1.14 1.13 0.02  1.14 1.13 0.02
Technology growth  zμ 1.01 1.01 1.01 0.00  1.01 1.01 0.00
Risk premium  φ~  0.05 0.06 0.05 0.02  0.06 0.05 0.02
UIP modification 

sφ~ 0.61 0.61 0.60 0.05  0.61 0.60 0.06

Unit root tech. persistance 
zμρ 0.85 0.80 0.83 0.14  0.81 0.84 0.14

Stationary tech. persistance ερ  0.93 0.89 0.90 0.08  0.89 0.90 0.08
Invest. spec. tech. persist.  Υρ 0.69 0.65 0.67 0.13  0.65 0.67 0.13
Risk premium persistence φρ ~  0.68 0.65 0.66 0.11  0.65 0.66 0.11
Consumption pref. persist. 

cζρ 0.66 0.59 0.61 0.18  0.60 0.62 0.19
Labour supply persistance  

hζρ 0.27 0.26 0.26 0.13  0.27 0.26 0.16
Asymmetric tech. persist.  *~zρ 0.96 0.73 0.84 0.28  0.72 0.82 0.28

Unit root tech. shock 
zμσ 0.13 0.14 0.14 0.05  0.14 0.14 0.05

Stationary tech. shock  εσ 0.67 0.66 0.65 0.06  0.66 0.65 0.13
Imp. cons. markup shock 

cm ,λσ 1.13 1.13 1.12 0.11  1.12 1.12 0.11
Imp. invest. markup shock im ,λσ 1.13 1.14 1.13 0.11  1.14 1.13 0.11
Domestic markup shock   

dλσ 0.81 0.82 0.82 0.08  0.82 0.82 0.11
Invest. spec. tech. shock   Υσ 0.40 0.42 0.41 0.09  0.42 0.41 0.09
Risk premium shock   φσ ~  0.79 0.82 0.80 0.21  0.82 0.80 0.21
Consumption pref. shock   

cζσ 0.26 0.27 0.27 0.05  0.27 0.27 0.07
Labour supply shock   

hζσ 0.39 0.39 0.39 0.06  0.39 0.39 0.07
Asymmetric tech. shock   *~zσ 0.19 0.15 0.16 0.06  0.15 0.16 0.06
Export markup shock   

xλσ 1.03 1.13 1.08 0.41  1.14 1.09 0.42

Monetary policy shock  Rσ 0.24 0.24 0.23 0.02  0.24 0.23 0.02
Inflation target shock  cπσ 0.16 0.14 0.14 0.10  0.14 0.14 0.11
Interest rate smoothing  Rρ 0.91 0.91 0.91 0.05  0.91 0.91 0.05
Inflation response  πr 1.67 3.77 1.59 5.06  3.79 1.56 5.18
Diff. infl response  πΔr 0.10 0.11 0.10 0.04  0.11 0.10 0.04
Real exch. rate response  xr -0.02 -0.07 -0.02 0.15 -0.07 -0.02 0.16
Output response  yr 0.13 0.35 0.13 0.62 0.35 0.12 0.65
Diff. output response  yrΔ 0.18 0.19 0.18 0.05 0.19 0.18 0.05

Note: Out of the 1,500 estimations, the results above are based on 1,432 commonly convergent estimations.  



 Table B.2: Distribution results when increasing the sample size in the open economy model. 
      
   100 observations  400 observations 

Parameter  True 
values 

Mean of 
distri-
bution 

Median 
of distri-
bution 

Std. of 
distri-
bution 

Std based 
on Inverse 

Hessian  
 

Mean of 
distri-
bution 

Median of 
distri-
bution 

Std. of 
distri-
bution 

Std based 
on Inverse 

Hessian 
            
Calvo wages  wξ  0.77 0.74 0.75 0.13 0.07  0.76 0.76 0.05 0.03 
Calvo domestic prices dξ  0.83 0.81 0.82 0.04 0.03  0.82 0.82 0.02 0.01 
Calvo import cons. prices cm,ξ  0.90 0.90 0.90 0.02 0.01  0.90 0.90 0.01 0.01 
Calvo import inv.  prices im,ξ  0.94 0.94 0.94 0.02 0.01  0.94 0.94 0.01 0.01 
Calvo export prices  xξ  0.87 0.86 0.86 0.04 0.02  0.87 0.87 0.01 0.01 
Indexation prices  κ  0.23 0.22 0.22 0.06 0.05  0.22 0.22 0.03 0.02 
Indexation wages wκ  0.32 0.32 0.32 0.15 0.07  0.32 0.32 0.07 0.04 
Investment adj. cost  ''~S  8.58 8.98 8.08 4.08 2.02  8.65 8.53 1.35 0.98 
Habit formation  b  0.68 0.67 0.67 0.07 0.05  0.68 0.68 0.03 0.02 
Markup domestic  dλ  1.20 1.21 1.20 0.14 0.09  1.20 1.19 0.06 0.04 
Subst. elasticity invest.  iη  2.72 2.72 2.71 0.13 0.11  2.71 2.71 0.06 0.05 
Subst. elasticity foreign fη  1.53 1.59 1.45 0.59 0.23  1.54 1.53 0.14 0.09 
Markup imported cons.  cm,λ  1.58 1.58 1.58 0.01 0.01  1.58 1.58 0.00 0.00 
Markup.imported invest.  im,λ  1.13 1.14 1.13 0.02 0.02  1.13 1.13 0.01 0.01 
Technology growth  zµ  1.005 1.005 1.005 0.0003 0.00  1.005 1.005 0.0001 0.00 
Risk premium  φ~  0.05 0.06 0.05 0.02 0.01  0.05 0.05 0.01 0.00 
UIP modification 

sφ
~  0.61 0.61 0.60 0.05 0.03  0.61 0.61 0.02 0.01 

Unit root tech. persistance 
zµ

ρ  0.85 0.80 0.83 0.14 0.06  0.84 0.85 0.05 0.03 
Stationary tech. persistance ερ  0.93 0.89 0.90 0.08 0.03  0.92 0.92 0.02 0.01 
Invest. spec. tech. persist.  Υρ  0.69 0.65 0.67 0.13 0.06  0.69 0.69 0.05 0.03 
Risk premium persistence φρ ~  0.68 0.65 0.65 0.11 0.06  0.68 0.68 0.04 0.03 
Consumption pref. persist. 

cζ
ρ  0.66 0.59 0.61 0.18 0.08  0.64 0.65 0.07 0.04 

Labour supply persistance  
hζ

ρ  0.27 0.26 0.26 0.13 0.07  0.27 0.27 0.06 0.04 
Asymmetric tech. persist.  *~zρ  0.96 0.73 0.84 0.28 0.09  0.93 0.95 0.11 0.02 
Unit root tech. shock 

zµ
σ  0.13 0.14 0.14 0.05 0.03  0.13 0.13 0.02 0.01 

Stationary tech. shock  εσ  0.67 0.66 0.65 0.06 0.05  0.67 0.67 0.03 0.03 
Imp. cons. markup shock 

cm ,λσ
 1.13 1.13 1.12 0.11 0.10  1.13 1.13 0.05 0.05 

Imp. invest. markup shock im ,λσ
 1.13 1.14 1.13 0.11 0.10  1.14 1.14 0.05 0.05 

Domestic markup shock   
dλ

σ  0.81 0.82 0.82 0.08 0.08  0.81 0.81 0.04 0.04 
Invest. spec. tech. shock   Υσ  0.40 0.42 0.41 0.09 0.06  0.40 0.40 0.03 0.02 
Risk premium shock   φσ ~  0.79 0.82 0.80 0.21 0.12  0.80 0.80 0.08 0.06 
Consumption pref. shock   

cζ
σ  0.26 0.27 0.27 0.05 0.04  0.27 0.26 0.02 0.02 

Labour supply shock   
hζ

σ  0.39 0.39 0.39 0.06 0.04  0.38 0.38 0.03 0.02 
Asymmetric tech. shock   *~zσ  0.19 0.15 0.16 0.06 0.04  0.18 0.19 0.02 0.02 
Export markup shock   

xλ
σ  1.03 1.13 1.09 0.41 0.21  1.04 1.03 0.11 0.08 

Monetary policy shock  Rσ  0.24 0.24 0.23 0.02 0.02  0.24 0.24 0.01 0.01 
Inflation target shock  cπ

σ  0.16 0.14 0.14 0.10 0.04  0.16 0.16 0.03 0.02 
Interest rate smoothing  Rρ  0.91 0.91 0.91 0.05 0.03  0.91 0.91 0.02 0.02 
Inflation response  πr  1.67 3.80 1.59 5.08 2.70  2.07 1.66 1.60 0.61 
Diff. infl response  π∆r  0.10 0.11 0.10 0.04 0.03  0.10 0.10 0.02 0.01 
Real exch. rate response  xr  -0.02 -0.07 -0.02 0.15 0.02  -0.03 -0.02 0.04 0.01 
Output response  yr  0.13 0.35 0.13 0.63 0.07  0.17 0.13 0.17 0.04 
Diff. output response  yr∆  0.18 0.19 0.18 0.05 0.03  0.18 0.18 0.02 0.02 
            

 

Note: Out of the 1,500 estimations for the small sample (100 obs.), the results above is based on 1,452 convergent estimations (defined as estimations when the optimizer 
CSMINWEL terminates without an error message and when the inverse Hessian has full rank and is positive definite). Out of the 1,500 estimations for the large sample 
(400 obs.), the results above is based on 1,497 convergent estimations. True parameter values were used as starting values in the estimations. Std based on Inverse Hessian 
shows the median of these estimations. 



 Table B.3: Distribution results for large sample sizes, matching two sets of variables. 
1,600 observations 6,400 observations 

All variables Closed variables All variables Closed variables 

Parameter
True 
esti-

mates 

Mean of 
distri-
bution 

Std. of 
distri-
bution 

Mean of 
distri-
bution 

Std. of 
distri-
bution 

Mean of 
distri-
bution 

Std. of 
distri-
bution 

Mean of 
distri-
bution 

Std. of 
distri-
bution 

Calvo wages  wξ 0.77 0.80 0.06 0.77 0.02  0.76 0.01 0.76 0.01
Calvo domestic prices dξ 0.83 0.83 0.01 0.83 0.01  0.83 0.00 0.82 0.00
Calvo import cons. prices cm ,ξ 0.90 0.90 0.01 0.90 0.03  0.90 0.00 0.90 0.02
Calvo import inv.  prices im ,ξ 0.94 0.94 0.01 0.94 0.01  0.94 0.00 0.94 0.00
Calvo export prices  xξ  0.87 0.86 0.03 0.87 0.04  0.87 0.00 0.87 0.02
Indexation prices  κ  0.23 0.24 0.03 0.23 0.03  0.23 0.01 0.23 0.01
Indexation wages wκ 0.32 0.33 0.06 0.32 0.03  0.32 0.02 0.32 0.02
Investment adj. cost  ''~S 8.58 9.09 1.95 8.90 1.15  8.58 0.30 8.69 0.58
Habit formation  b 0.68 0.68 0.02 0.68 0.02  0.68 0.01 0.68 0.01
Markup domestic  dλ 1.20 1.25 0.10 1.20 0.03  1.20 0.01 1.20 0.02
Subst. elasticity invest.  iη 2.72 2.72 0.03 2.74 0.76  2.71 0.01 2.66 0.46
Subst. elasticity foreign fη 1.53 1.47 0.17 1.60 0.46  1.53 0.01 1.57 0.31
Markup imported cons.  cm ,λ 1.58 1.58 0.00 1.60 0.12  1.58 0.00 1.58 0.06
Markup.imported invest.  im ,λ 1.13 1.13 0.01 1.16 0.10  1.13 0.00 1.14 0.04
Technology growth  zμ 1.01 1.01 0.00 1.01 0.00  1.01 0.00 1.01 0.00
Risk premium  φ~  0.05 0.05 0.01 0.05 0.01  0.05 0.00 0.05 0.01
UIP modification 

sφ~ 0.61 0.54 0.15 0.62 0.04  0.61 0.00 0.61 0.02

Unit root tech. persistance 
zμρ 0.85 0.82 0.08 0.85 0.04  0.85 0.01 0.85 0.02

Stationary tech. persistance ερ  0.93 0.92 0.02 0.93 0.01  0.92 0.00 0.92 0.01
Invest. spec. tech. persist.  Υρ 0.69 0.69 0.04 0.70 0.03  0.70 0.01 0.70 0.01
Risk premium persistence φρ ~  0.68 0.74 0.10 0.46 0.33  0.68 0.01 0.56 0.24
Consumption pref. persist. 

cζρ 0.66 0.68 0.05 0.66 0.04  0.66 0.01 0.65 0.02
Labour supply persistance  

hζρ 0.27 0.27 0.05 0.27 0.02  0.27 0.02 0.27 0.02
Asymmetric tech. persist.  *~zρ 0.96 0.98 0.02 0.79 0.12  0.96 0.00 0.85 0.06

Unit root tech. shock 
zμσ 0.13 0.14 0.02 0.13 0.03  0.13 0.00 0.13 0.01

Stationary tech. shock  εσ 0.67 0.67 0.01 0.67 0.01  0.67 0.01 0.67 0.01
Imp. cons. markup shock 

cm ,λσ 1.13 1.13 0.03 1.17 0.37  1.12 0.01 1.13 0.19
Imp. invest. markup shock im ,λσ 1.13 1.14 0.04 1.06 0.36  1.13 0.01 1.12 0.13
Domestic markup shock   

dλσ 0.81 0.80 0.02 0.80 0.02  0.81 0.01 0.80 0.01
Invest. spec. tech. shock   Υσ 0.40 0.40 0.04 0.39 0.02  0.39 0.01 0.39 0.01
Risk premium shock   φσ ~  0.79 0.72 0.15 1.92 1.52  0.79 0.02 1.31 0.98
Consumption pref. shock   

cζσ 0.26 0.26 0.01 0.26 0.01  0.26 0.01 0.26 0.01
Labour supply shock   

hζσ 0.39 0.38 0.03 0.38 0.01  0.39 0.01 0.39 0.01
Asymmetric tech. shock   *~zσ 0.19 0.18 0.02 0.56 0.50  0.19 0.00 0.41 0.31
Export markup shock   

xλσ 1.03 1.12 0.24 0.81 0.47  1.03 0.01 0.97 0.24

Monetary policy shock  Rσ 0.24 0.24 0.01 0.24 0.01  0.24 0.00 0.24 0.00
Inflation target shock  cπσ 0.16 0.16 0.03 0.16 0.02  0.16 0.00 0.16 0.01
Interest rate smoothing  Rρ 0.91 0.90 0.03 0.91 0.02  0.91 0.01 0.91 0.01
Inflation response  πr 1.67 1.49 0.35 1.83 1.44  1.67 0.15 1.69 0.17
Diff. infl response  πΔr 0.10 0.09 0.01 0.09 0.01  0.10 0.01 0.10 0.01
Real exch. rate response  xr -0.02 -0.01 0.01 -0.02 0.04 -0.02 0.00 -0.02 0.01
Output response  yr 0.13 0.10 0.05 0.16 0.23 0.13 0.02 0.13 0.02
Diff. output response  yrΔ 0.18 0.17 0.01 0.17 0.01 0.18 0.01 0.18 0.01

Note: The results above are based on 35 convergent estimations with 1,600 observations in each sample, and 20 convergent estimations with 6,400 observations in each 
sample. The optimizations are initialized by the prior mode values in Table 2. 
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Figure B.1a: Kernel density estimates of the small sample distribution for the estimates of the deep model parameters. The solid line shows the 
parameter distribution when initializing the estimations with the true parameters (vertical bars), and the dashed lines show the distribution when 
initializing the estimations using a sample from the prior (dotted line). T = 100  observations in each of the N artificial samples.
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Figure B.1b: Kernel density estimates of the small sample distribution for the estimates of the shock process parameters. The solid line shows 
the parameter distribution when initializing the estimations with the true parameters (vertical bars), and the dashed lines show the distribution 
when initializing the estimations using a sample from the prior (dotted line). T = 1 0 0  observations in each of the N artificial samples.
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Figure B.2a: Kernel density estimates of the small sample distribution for the estimates of the deep model parameters. The solid line shows the 
parameter distribution when estimating the model without measurement errors and keeping the foreign and fiscal VAR models fixed, and the dashed 
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Figure B.2b: Kernel density estimates of the small sample distribution for the estimates of the shock parameters. The solid line shows the 
parameter distribution when estimating the model without measurement errors and keeping the foreign and fiscal VAR models fixed, and the dashed 
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Figure B.3a: Kernel density estimates of the small sample distribution for the estimates of the deep model parameters. The solid line shows the 
parameter distribution when estimating the model in first differences, and the dashed line shows the distribution when estimating the model using the 
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Figure B.3b: Kernel density estimates of the small sample distribution for the estimates of the shock parameters. The solid line shows the 
parameter distribution when estimating the model in first differences, and the dashed line shows the distribution when estimating the model using the 
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Appendix C. Further tests for weak identification

Recent papers that have developed tools to study identification in DSGE models include Andrle
(2010), Consolo, Favero and Paccagnini (2009), Guerron-Quintana, Inoue and Kilian (2013),
Koop, Pesaran and Smith (2011), Komunjer and Ng (2011), Müller (2013), Qu (2014) and An-
drews and Mikusheva (2015). Andrle (2010) and Komunjer and Ng (2011) are based on the same
asymptotic theory as Iskrev (2010a), and hence their results would essentially reproduce ours.
Müller (2013) points out that the ‘sandwich’estimator is more robust in providing uncertainty
of the estimated parameters in the case of misspecification. Consolo, Favero and Paccagnini
(2009) use approximations of the original DSGE model (in the form of VAR models) to assess
DSGE models and show that the factor-augmented version FAVAR provides a more correct
tool for assessment. Our tests and the others discussed hereafter use, instead, the exact DSGE
formulation for testing weak identification. Andrews and Mikusheva (2015) make a thorough
synthesis of methods that are robust to weak identification, which encompasses Koop, Pesaran
and Smith (2011), Guerron-Quintana, Inoue and Kilian (2013) and Qu (2014). Very shortly,
this paper discusses ML inference that is robust to weak identification, based on the martingale
theory and Lagrange multiplier tests. Although the paper does do not provide formal tests for
weak identification, it also suggest an ‘informal’test for weak identification, which analyses the
positive definiteness of the Hessian of the true parameter vector θ when computed on short
sample simulated data of length T . The idea is that non-positive definiteness can point to weak
identification, since it is linked to the residual measure AT (θ) = JT (θ) − IT (θ), which is the
difference between two estimators of the observed information matrix based on outer product
gradient (JT (θ), i.e. the incremental observed information) and Hessian (IT (θ), i.e. the ob-
served information). Andrews and Mikusheva (2015) show that while the expectation E[AT (θ)]
is zero also for weak identification, in the latter case its variance may be still large even at
large sample size, so that the convergence of AT (θ) to zero will be extremely slow. Essentially
the weak identification issue is linked to the relative volatility of AT (θ) w.r.t. JT (θ), the latter
estimator being positive definite by definition. In the paper it is shown than in all the weakly
identified models analysed, there is a large probability that IT (θ) is non positive-definite. The
‘informal’test therefore consists of performing several model simulation replicas of length T for
a given parameter set θ and computing IT (θ) for each simulation replica. Then, one computes
the percentage of IT (θ) matrices that is not positive-definite. The higher this percentage, the
more this will be an indicator of possible weak identification. It seems useful to add here that
non-positive definiteness of the Hessian IT (θ) may also be linked to the underlying non-linearity
of the mapping between θ and the reduced form solution. This non-linearity is inherent to the
DSGE model formulation, and may imply deviations from classical asymptotic theory in terms
of bounded uncertainty of estimates. Although Iskrev’s identification strength test can be taken
as a valid indicator for ranking the strength across estimated parameters and point to those
more prone to weak identification, we summarize here the results of the informal test suggested
by Andrews and Mikusheva (2015) to complement Iskrev (2010a). We applied this test for both
the closed and the open economy versions of the model. We performed replicas of simulations
of the model for length T = 100 periods (corresponding to the length of the actual sample size
used in practical estimation) and we obtained that for about 45% of the simulation there was
at least one negative eigenvalue in IT (θ), and for about 15% of replicas there were 2 negative
eigenvalues, while we never found more that two non-positive eigenvalues. We repeated this
exercise for increasing simulation length: T = 250 and T = 400. The share of non-positive
eigenvalues falls, for T = 250 (= 400), to about 30% (14%) for one non-positive and to 5%
(1%) for two non-positive eigenvalues. We also note here that, with respect to the (simpler)
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example reported in Andrews and Mikusheva (2015), the share of non-positive defined Hessian’s
is smaller [they report almost 50% cases for T = 200], in spite our model is larger w.r.t. the
ones discussed there. These results also show that there is indeed a convergence path, in which
the share of non-positive definite matrices IT (θ) tends to vanish at a rate 1/Tα with αin(0.5, 1).
This is suggestive that the model is not largely affected by the weak identification concerns
discussed in Andrews and Mikusheva (2015), which, in contrast to the model(s) discussed here,
should persist also at very large sample sizes. Applying the same methodology to the closed
economy version of the model, we get 65% (6%) simulations with at least one (two) negative
eigenvalue for T = 100. Those probabilities fall to 45% (2%) for T = 250 and to 22% (0%) for
T = 400. The closed economy version of the model has therefore a larger probability of weakly
identified parameters, but it features a similar (or even larger) rate of convergence. Hence, also
for the less rich closed economy version of the model we can conclude that there is still a lot
to learn from estimation. These results confirm what we already concluded in the core of our
paper. There is indeed some degree of weak identification in the estimation of the model: there
are a couple of directions in the parameter space where the likelihood shape will be quite flat.
However, although a few parameters may be poorly identified according to the identification
tests, the simulation results in Section 4.2 for MLE estimations with T = 100 suggest that we
can learn a lot from the data about many parameters. This is not in contrast with Andrews
and Mikusheva (2015), who also note, discussing their results, that “We can see that while the
confidence intervals for many parameters are wide, in all instances they exclude some values and
in most cases they cover only a small portion of the parameter space”. In conclusion, applying
more tests to address weak identification is indeed interesting and helps in better understanding
the issue for DSGE models. However, the performance of these tests does not seem to change
the main findings of our paper.
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