
SVERIGES RIKSBANK 
WORKING PAPER SERIES   397 

Econometric issues with Laubach 
and Williams’ estimates of the 
natural rate of interest 

Daniel Buncic 

November 2021 



WORKING PAPERS ARE OBTAINABLE FROM 

www.riksbank.se/en/research   
Sveriges Riksbank • SE-103 37 Stockholm 

Fax international: +46 8 21 05 31 
Telephone international: +46 8 787 00 00 

The Working Paper series presents reports on matters in 
 the sphere of activities of the Riksbank that are considered 

 to be of interest to a wider public. 
The papers are to be regarded as reports on ongoing studies 

 and the authors will be pleased to receive comments. 

The opinions expressed in this article are the sole responsibility of the author(s) and should not be 
interpreted as reflecting the views of Sveriges Riksbank. 

http://www.riksbank.se/en/research


Econometric issues with Laubach and Williams’
estimates of the natural rate of interest?

Daniel Buncicx

Sveriges Riksbank Working Paper Series
No. 397

November 2021

Abstract

Holston, Laubach and Williams’ (2017) estimates of the natural rate of interest are
driven by the downward trending behaviour of ‘other factor’ zt. I show that their im-
plementation of Stock and Watson’s (1998) Median Unbiased Estimation (MUE) to de-
termine the size of the signal-to-noise parameter λz which controls the severity of the
downward trend in zt is unsound. It cannot recover the ratio of interest λz = arσz/σỹ
from MUE because of a misspecification in Holston et al.’s (2017) Stage 2 model. More-
over, their implementation of MUE on this misspecified Stage 2 model spuriously ampli-
fies the point estimate of λz. Using a simulation experiment, I show that their procedure
leads to excessively large estimates of λz when applied to data generated from a model
where the true λz is zero. Correcting the misspecification in their Stage 2 model and
the implementation of MUE results in a substantially smaller (and highly insignificant)
λz point estimate, and thereby a more subdued downward trend in ‘other factor’ zt and
the natural rate. The paper also outlines various other issues with Holston et al.’s (2017)
model of the natural rate that make it unsuitable for policy analysis.
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1. Introduction

Since the global financial crisis, nominal interest rates have declined substantially to levels
last witnessed following the Great Depression. The academic as well as policy literature has
attributed this decline in nominal interest rates to a decline in the natural rate of interest;
namely, the rate of interest consistent with employment at full capacity and inflation at its
target. In this literature, Holston, Laubach and Williams’ (2017) estimates of the natural rate
have become particularly influential and are widely regarded as a benchmark. The Federal
Reserve Bank of New York (FRBNY) maintains an entire webpage dedicated to providing
updates to Holston et al.’s (2017) estimates of the natural rate, not only for the United States
(U.S.), but also for the Euro Area, Canada and the United Kingdom (U.K.) (see https://
www.newyorkfed.org/research/policy/rstar).

In Holston et al.’s (2017) model, the natural rate of interest is defined as the sum of trend
growth of output gt and ‘other factor’ zt. This ‘other factor’ zt is meant to capture various un-
derlying structural factors such as savings/investment imbalances, demographic changes,
and fiscal imbalances that influence the natural rate, but which are not captured by trend
growth gt. In Figure 1 below, I show filtered (as well as smoothed) estimates of Holston et
al.’s (2017) ‘other factor’ zt.1

-2.0

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

-2.0

-1.5

-1.0

-0.5

0

 0.5

 1.0

 1.5

1961:Q1 1966:Q4 1972:Q3 1978:Q2 1984:Q2 1990:Q1 1995:Q4 2001:Q4 2007:Q3 2013:Q2 2019:Q2

Figure 1: Filtered and smoothed estimates of Holston et al.’s (2017) ‘other factor’ zt.

The dashed lines in Figure 1 show estimates obtained with data ending in 2017:Q1, while
the solid lines are estimates based on data extended to 2019:Q2. The strong and persis-
tent downward trending behaviour of ‘other factor’ zt is striking from Figure 1, particularly
from 2012:Q1 onwards. The two (black) dashed vertical lines mark the periods 2012:Q1 and
2015:Q4. In 2015:Q4, the Federal Reserve started the tightening cycle and raised nominal
interest rates by 25 basis points. In 2012:Q1, real rates began to rise due to a (mild) dete-
rioration in inflation expectations.2 Both led to an increase in the real rate. Yet, Holston

1Holston et al. (2017) do not show a plot of ‘other factor’ zt on the FRBNY website (as of 22nd of June, 2020).
2See panel (a) of Figure 2, which shows plots of the federal funds rate, the real interest rate, as well as inflation

and inflation expectations. This may be model specific, as inflation expectations here are simply modelled as
an equally weighted MA(4) of current and past inflation.
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et al.’s (2017) estimates of ‘other factor’ zt declined by about 50 basis points from 2012:Q1
to 2015:Q4, and then another 50 basis points from 2015:Q4 to 2019:Q2, reaching a value of
−1.58 in 2019:Q2. Because zt evolves as a driftless random walk in the model, the only pa-
rameter that affects the ‘trending behaviour’ of zt is the ‘signal-to-noise ratio’ parameter λz. The
size of λz thereby has a direct impact on the natural rate estimate.

In this paper, I show that Holston et al.’s (2017) implementation of Stock and Watson’s
(1998) Median Unbiased Estimation (MUE) of the ‘signal-to-noise ratio’ parameter is unsound.
It cannot recover the ratios of interest λg = σg/σy∗ and λz = arσz/σỹ in Stages 1 and 2 of
their three stage procedure. Their implementation of MUE of λz in Stage 2 is particularly
problematic, as Holston et al.’s (2017) procedure is based on a misspecified Stage 2 model.
This misspecified Stage 2 model not only fails to identify the ratio of interest λz = arσz/σỹ,
but further, due to the way Holston et al. (2017) implement the structural break tests in Stage
2 MUE, leads to spuriously large estimates of λz. Since the magnitude of λz determines the
severity of the trend in ‘other factor’ zt, this misspecification is consequential. Correcting the
Stage 2 model specification and the structural break test implementation in MUE leads to
a substantial quantitative reduction in the point estimate of λz. The resulting filtered (and
smoothed) estimates of ‘other factor’ zt are markedly lower, very close to zero, and highly
statistically insignificant. The p−values corresponding to the structural break statistics from
which λz is estimated are around 0.5. The strong and persistent downward trend in Holston
et al.’s (2017) natural rate estimate driven by ‘other factor’ zt is thus spurious.

In Section 4.2, I outline in detail the Stage 2 model and the MUE procedure that Hol-
ston et al. (2017) implement to estimate λz. I show that their Stage 2 model is misspecified
and that their MUE of λz cannot identify the ratio of interest arσz/σỹ. Instead, it recovers
λz = arσz/(σỹ + 0.5agσg) if (ag + 4ar) = 0. If (ag + 4ar) 6= 0, then additional parameters
enter the denominator of λz, making it more intricate to back out σz from λz, as it will be
necessary to make additional assumptions about the time series properties of the nominal
interest rate which is not explicitly modelled. The terms ar and ag are the parameters on
the lagged real interest rate and lagged trend growth in the Stage 2 model of the output
gap equation (see Section 4.2 for more details). In the full model, these are restricted so that
ag = −4ar. In their specification of the Stage 2 model, Holston et al. (2017) do not impose this
restriction. Moreover, they include only one lag of trend growth gt in the output gap equa-
tion, and further add an intercept term not present in the full structural model (see equation
(36c)). Since Stock and Watson’s (1998) MUE relies upon Chow (1960) type structural break
tests to estimate λz, these differences in the output gap specification lead to substantially
larger F statistics on the break dummy (see Figure 5 for a visual presentation) and therefore
estimates of λz. To demonstrate that their misspecified Stage 2 model — when combined
with their MUE procedure — leads to spuriously large estimates of λz when the true value
is zero, I implement a simulation experiment in Section 4.2. This simulation experiment
shows that the mean estimate of λz can be as high as 0.028842, with a 45.7% probability (rel-
ative frequency) of observing a value larger than estimated from the empirical data, when

2



computed from artificial data which were simulated from a model where the true λz = 0.
These simulation results are concerning, as they suggest that it is Holston et al.’s (2017) MUE
procedure that generates the excessively large estimates of λz.

Although Section 4.2 describes the core problem with Holston et al.’s (2017) estimation
procedure, there are other issues with the model and how it is estimated. Some of these are
outlined in Section 5. For instance, Holston et al.’s (2017) estimates of the natural rate, trend
growth, ‘other factor’ zt and the output gap are extremely sensitive to the starting date of the
sample used to estimate the model. Estimating the model with data beginning in 1972:Q1
(or 1967:Q1) leads to negative estimates of the natural rate towards the end of the sample
period. These negative estimates are again driven purely by the exaggerated and spurious
downward trend in ‘other factor’ zt.3 The fact that it is possible to generate such negative
estimates also for the U.S. by simply adjusting the start of the estimation period highlights
the extreme sensitivity of Holston et al.’s (2017) MUE procedure with this model.

In Section 5 I also raise the broader issue of ‘circularity’ between the natural rate estimate
as defined in their model and the exogenously determined policy interest rate. Because
Kalman Filtered estimates of the natural rate are moving averages of all observed variables
that enter the state-space model, any central bank induced change in the policy rate is me-
chanically transferred to the natural rate via the Kalman Filter recursions of the state vector.
This makes it impossible to address ‘causal’ questions regarding the relationship between
natural rates and policy rates. Moreover, since ‘other factor’ zt automatically adjusts to en-
sure a zero mean output gap equation, Holston et al.’s (2017) natural rate estimate is by
default constructed so as to match the movements in the observed policy rate. That is, any
persistent deviations will be ‘filled’ with the ‘plug-variable’ zt to ensure a zero mean in the
real rate gap in the output gap equation. In this model, all that needs to be done for a higher
natural rate to be realized is to raise the exogenously determined policy rate.

In Holston et al. (2017), ‘other factor’ zt is defined as a driftless random walk. One rea-
son why the estimate of λz shrinks towards zero (computed either from MLE or from MUE
based on the correct Stage 2 model) could be due to incompatibility of such a specification
with the observed data. To understand this, I show in Section 5 that the difference between
GDP growth and the real interest rate under Holston et al.’s (2017) model specification is
equal to the sum of a stationary ARMA process and ‘other factor’ zt, which is an I(1) pro-
cess in the model. The ‘integratedness’ of this GDP growth minus real interest rate series
is thus dominated by ‘other factor’ zt and should as such show up as a unit-root in the data.
However, the empirical GDP growth minus real interest rate series is only weakly correlated
(autocorrelation coefficient < 0.6 and quickly decays towards zero). Formal statistical tests
strongly reject the null hypothesis of a unit-root in the series. Shrinking the estimate of σz

3The 1972:Q1 sample was chosen to match the starting date used for the Euro Area. Out of the four estimates
reported in Holston et al. (2017), only the Euro Area ones turn negative in 2013. Data for the Euro Area are
available only from 1972:Q1. Estimates for the U.K., Canada and the U.S. are based on samples starting in
1961:Q1.
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towards zero may thus be the only way to make the I(1) specification of zt in Holston et al.’s
(2017) model compatible with the time series properties of the empirical data.

Median Unbiased Estimation is neither well known nor widely used at policy institu-
tions. To give some background on the methodology, and to help understand why Holston
et al.’s (2017) implementation of MUE in Stage 2 is unsound, I provide a concise review of
the methodology in Section 3. This section will be beneficial to readers unfamiliar with the
estimator. It reviews and summarises the conditions when it is likely to encounter ‘pile-up’ at
zero problems with Maximum Likelihood Estimation (MLE) of such models. Namely, MLE
is likely to generate higher ‘pile-up’ at zero frequencies than MUE when the initial conditions
of the state vector are unknown and need to be estimated, and when the true ‘signal-to-noise
ratio’ is very small (close to zero). Since Holston et al. (2017) do not estimate the initial con-
ditions of the state vector, but instead use tightly specified prior values, and because their
MUEs of the ‘signal-to-noise ratio’ are anything but ‘very small’ in the context of MUE, it seems
highly unlikely that MLE should generate higher ‘pile-up’ at zero probabilities than MUE.

For reasons of completeness, I provide a comprehensive description of Holston et al.’s
(2017) Stage 1 model and their first stage MUE implementation in Section 4.1. As in the
Stage 2 model, I show algebraically that their MUE procedure cannot recover the ratioσg/σy∗

from λg because the error term in the first difference of the constructed trend variable y∗t in
the first stage model depends on the real interest rate, as well as ‘other factor’ zt and trend
growth gt. This means that when the long-run standard deviation from the MUE procedure
is constructed, it will not only equal σy∗ as required, but also depend on σz, σg, as well as
the long-run standard deviation of the real rate. Rewriting a simpler version of the Stage
1 model in local level model form also fails to identify the ratio of interest σg/σy∗ from the
MUE of λg. This section further illustrates that it is empirically entirely unnecessary to use
MUE to estimate σg in the first stage model as its MLE does not ‘pile-up’ at zero; not in the
local level model, nor in the local linear trend (or unobserved component) model. Estimating
σg directly by MLE in the second and third stages confirms this result, yielding in fact larger
point estimates than implied by the first stage MUE of λg obtained from Holston et al.’s
(2017) procedure (ie., from σg = λ̂MUE

g σy∗). Readers not interested in the computational
intricacies and nuances of the Stage 1 model may skip this section entirely, and only refer
back to it as needed for clarification of later results.

MUE of λz based on the correctly specified Stage 2 model suggests that there is no role
for ‘other factor’ zt in this model, given the data.4 This brings the focus to the estimates of
trend growth in this model. Holston et al.’s (2017) estimates give the impression that trend
growth has markedly slowed since the global financial crisis, particularly in the immedi-
ate aftermath of the crisis. In panels (b) and (c) of Figure 2, I show plots of Holston et al.’s

4This result is inline with the MLE based estimates ofσz. Furthermore, these results also carry over to the Euro
Area, Canadian and U.K. estimates of zt which are not reported here to conserve space, but are documented
in detail in Buncic (2020) and are also made available on the author’s webpage at: http://www.danielbuncic.
com/data/correct.HLW.factors.zip.
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(2017) estimates of gt together with a few simple and intuitive alternative ones (annual-
ized GDP growth is superimposed in panel (b)). Trend growth is severely underestimated
from 2009:Q3 onwards. Robust (median) estimates of average GDP growth over the vari-
ous business cycle expansion periods shown in Table 1 indicate that trend growth was only
approximately 25 basis points lower at 2.25% in the expansion from 2009:Q3 until 2017:Q1
(or 2019:Q2) than over the pre financial crisis expansion from 2002:Q1 to 2007:Q4.5 Survey
based 10 year-ahead expectations of annualized real GDP growth plotted in Figure A.8 and
Figure A.9 also suggest that trend growth remained stable (these plots are discussed further
in Section 5). The key point to take away from this discussion is that Holston et al.’s (2017)
(one sided) Kalman Filter based estimate of gt is excessively ‘pulled down’ by the large de-
cline in GDP during the financial crisis, and this strongly effects the estimate of trend growth
for many periods after the crisis.

The rest of the paper is organised as follows. In Section 2, Holston et al.’s (2017) structural
model of the natural rate of interest is described. Section 3 gives a concise background to
Stock and Watson’s (1998) Median Unbiased Estimation. In Section 4, I provide a detailed
description of the Stage 1 and Stage 2 models, and report the results of the full Stage 3 model
estimates. Some additional issues with the model are discussed in Section 5. Section 6
concludes the study. The Appendix provides supplementary information with regards to
Holston et al.’s (2017) model, the matrix expansions and derivations of the models in all
three stages, and a few selected estimation results from an extended sample period.

2. Holston, Laubach and Williams’ (2017) Model

Holston, Laubach and Williams (2017) use the following ‘structural’ model to estimate the
natural rate of interest:6

Output: yt = y∗t + ỹt (1a)

Inflation: πt = bππt−1 + (1− bπ)πt−2,4 + by ỹt−1 +ε
π
t (1b)

Output gap: ỹt = ay,1 ỹt−1 + ay,2 ỹt−2 +
ar
2 [
(
rt−1 − r∗t−1

)
+
(
rt−2 − r∗t−2

)
] +ε

ỹ
t (1c)

Output trend: y∗t = y∗t−1 + gt−1 +ε
y∗
t (1d)

Trend growth: gt = gt−1 +ε
g
t (1e)

Other factor: zt = zt−1 +ε
z
t , (1f)

where yt is 100 times the (natural) log of real GDP, y∗t is the permanent or trend component

5GDP growth is close to being serially uncorrelated over the last two expansion periods. Also, the volatility
of output growth has declined, with the period following 2015:Q4 exhibiting particulary low volatility.

6In what follows, I use the same notation as in Holston et al. (2017) (see equations 3 to 9 on pages S61 to S63)
to facilitate a direct comparison. Also note that this model builds on an earlier specification of Laubach and
Williams (2003), where trend growth gt is scaled by another parameter c, and where also a stationary AR(2)
process for ‘other factor’ zt was considered in addition to the I(1) specification in (1f). The estimation procedure
with the I(1) specification of zt in Laubach and Williams (2003) is identical to the one I describe here.
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of GDP, ỹt is its cyclical component, πt is annualized quarter-on-quarter PCE inflation, and
πt−2,4 = (πt−2 + πt−3 + πt−4) /3. The real interest rate rt is computed as:

rt = it − π e
t , (2)

where expected inflation is constructed as:

π e
t = (πt + πt−1 + πt−2 + πt−3)/4 (3)

and it is the exogenously determined nominal interest rate, the federal funds rate.

The natural rate of interest r∗t is computed as the sum of trend growth gt and ‘other factor’
zt, both of which are I(1) processes. The real interest rate gap is defined as r̃t = (rt − r∗t ).
The error terms ε`t , ∀` = {π , ỹ, y∗, g, z} are assumed to be i.i.d normal distributed, mutually
uncorrelated, and with time-invariant variances denoted by σ2

` . Notice from (1b) that infla-
tion is restricted to follow an integrated AR(4) process. From the description of the data,
we can see that the nominal interest rate it as well as inflation πt are defined in annual or
annualized terms, while output, and hence the output gap, trend and trend growth in out-
put are defined at a quarterly rate. Due to this measurement mismatch, Holston et al. (2017)
adjust the calculation of the natural rate in their code so that trend growth gt is scaled by 4
whenever it enters equations that relate it to annualized variables. The natural rate is thus
factually computed as r∗t = 4gt + zt.7 In the descriptions that follow, I will use the annual-
ized 4gt trend growth rate whenever it is important to highlight a result or in some of the
algebraic derivations, and will leave the equations in (1) as in Holston et al. (2017) otherwise
for ease of comparability.

Holston et al. (2017) argue that due to ‘pile-up’ at zero problems with Maximum Likeli-
hood (ML) estimation of the variances of the innovation terms εg

t and εz
t in (1), estimates of

σ2
g andσ2

z are “likely to be biased towards zero” (page S64). To avoid such ‘pile-up’ at zero prob-
lems, they employ Median Unbiased Estimation (MUE) of Stock and Watson (1998) in two
preliminary steps — Stage 1 and Stage 2 — to get estimates of what they refer to as ‘signal-to-
noise ratios’ defined as λg = σg/σy∗ and λz = arσz/σỹ. In Stage 3, the remaining parameters
of the full model in (1) are estimated, conditional on the median unbiased estimates λ̂g and
λ̂z obtained in Stages 1 and 2, respectively.

Before the three stage procedure of Holston et al. (2017) is described, I outline in detail
how Stock and Watson’s (1998) median unbiased estimator is implemented, what normal-
ization assumptions it imposes, and how look-up tables for the construction of the estimator
are computed. I also include a replication of Stock and Watson’s (1998) empirical estimation
of trend growth of U.S. real GDP per capita. Although the section that follows below may
seem excessively detailed, long, and perhaps unnecessary, the intention here is to provide

7This generates some confusion when working with the model, as it is not clear whether the estimated zt
factor is to be interpreted at an annual or quarterly rate.
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the reader with an overview of how median unbiased estimation is implemented, what it is
intended for, and when one can expect to encounter ‘pile-up’ at zero problems to materialize.

3. Stock and Watson’s (1998) Median Unbiased Estimation

Stock and Watson (1998) proposed Median Unbiased Estimation (MUE) in the general set-
ting of Time Varying Parameter (TVP) models. TVP models are commonly specified in a way
that allows their parameters to change gradually or smoothly over time. This is achieved
by defining the parameters to evolve as driftless random walks (RWs), with the variances
of the innovation terms in the RW equations assumed to be small. One issue with Kalman
Filter based ML estimation of such models is that estimates of these variances can frequently
‘pile-up’ at zero when the true error variances are ‘very’ small, but nevertheless, non-zero.8

Stock and Watson (1998) show simulation evidence of ‘pile-up’ at zero problems with
Kalman Filter based ML estimation in Table 1 on page 353 of their paper. In their simulation
set-up, they consider the following data generating process for the series GYt:9

GYt = βt +εt (4a)

βt = βt−1 + (λ/T)ηt, (4b)

where εt and ηt are drawn from i.i.d. standard normal distributions, β00 is initialized at 0,
and the sample size is held fixed at T = 500 observations, using 5000 replications. The
λ values that determine the size of the variance of ∆βt are generated over a grid from 0
to 30, with unit increments.10 Four median unbiased estimators relying on four different
structural break test statistics are compared to two ML estimators. The first ML estimator,
referred to as the maximum profile likelihood estimator (MPLE), treats the initial state vector
as an unknown parameter to be estimated. The second estimator, the maximum marginal
likelihood estimator (MMLE), treats the initial state vector as a Gaussian random variable
with a given mean and variance. When the variance of the integrated part of the initial state
vector goes to infinity, MMLE produces a likelihood with a diffuse prior.

How one treats the initial condition in the Kalman Filter recursions matters substantially
for the ‘pile-up’ at zero problem with MLE. This fact has been known, at least, since the work
of Shephard and Harvey (1990).11 The simulation results reported in Table 1 on page 353 in

8See the discussion in Section 1 of Stock and Watson (1998) for additional motivation and explanations. As
the title of Stock and Watson’s (1998) paper suggests, MUE was introduced for “coefficient variance estimation in
TVP models” when this variance is expected to be small.

9See their GAUSS files TESTCDF.GSS and ESTLAM.GSS for details on the data generating process, which are
available from Mark Watson’s homepage at http://www.princeton.edu/∼mwatson/ddisk/tvpci.zip.
10To be precise, in their GAUSS code, Stock and Watson (1998) use a range from 0 to 80 for λ, with finer step
sizes for lower λ values (see, for instance, the file TESTCDF.GSS). That is, λ is a sequence between 0 to 30 with
increments of 0.25, then 0.5 unit increments from 30 to 60, and unit increments from 60 to 80. In Tables 1 to 3
of their paper, results are reported for λ values from 0 up to 30 only, with unit increments.
11On page 340, Shephard and Harvey (1990) write to this: “. . . we show that the results for the fixed and known
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Stock and Watson (1998) show that ‘pile-up’ at zero frequencies are considerably lower when
MMLE with a diffuse prior is used than for MPLE, which estimates the initial state vector.
For instance, for the smallest considered non-zero population value of λ = 1, which implies
a standard deviation of ∆βt (σ∆β henceforth) of λ/T = 1/500 = 0.002, MMLE produces an
at most 14 percentage points higher ‘pile-up’ at zero frequency than MUE (ie., 0.60 or 60% for
MMLE versus 0.46 or 46% for MUE based on the Quandt (1960) Likelihood Ratio, henceforth
QLR, structural break test statistic).12 For MPLE, this frequency is 45 percentage points
higher at 0.91 (91%). At λ = 5 (σ∆β = 0.01) and λ = 10 (σ∆β = 0.02), these differences in the
‘pile-up’ at zero frequencies reduce to 11 and 4 percentage points, respectively, for MMLE,
but remain still sizeable for MPLE. At λ = 20 (σ∆β = 0.04), the ‘pile-up’ at zero problem
disappears nearly entirely for MMLE and MUE, with ‘pile-up’ frequencies dropping to 2 and
1 percentage points, respectively, for these two estimators, staying somewhat higher at 7
percentage points for MPLE.

Using MUE instead of MLE to mitigate ‘pile-up’ at zero problems comes, nevertheless, at
a cost; that is, a loss in estimator efficiency whenever λ (orσ∆β) is not very small. From Table
2 on page 353 in Stock and Watson (1998), which shows the asymptotic relative efficiency
of MUE (and MPLE) relative to MMLE, it is evident that for true λ values of 10 or greater
(σ∆β ≥ 0.02), the 4 different MUEs yield asymptotic relative efficiencies (AREs) as low as
0.65 (see the results under the L and MW columns in Table 2). This means that MMLE only
needs 65% of MUE’s sample size to achieve the same probability of falling into a given null
set. Only for very small values of λ ≤ 4 (σ∆β ≤ 0.008) are the AREs of MUE and MMLE of
a similar magnitude, ie., close to 1, suggesting that both estimators achieve approximately
the same precision.

Three important points are to be taken away from this review of the simulation results
reported in Stock and Watson (1998). First, with MLE, ‘pile-up’ at zero frequencies are sub-
stantially smaller when the initial state vector is treated as a known fixed quantity or when a
diffuse prior is used. Second, ‘pile-up’ at zero frequencies of MMLE are at most 4 percentage
points higher than those of MUE once λ ≥ 10 (σ∆β = 0.02). Third, MUE can be consid-
erably less efficient than MMLE, in particular for ‘larger’ values of λ ≥ 10 (σ∆β = 0.02).
This suggests that MLE with a diffuse prior should be preferred whenever MUE based esti-
mates of λ (or σ∆β) are ‘large’ enough to indicate that ‘pile-up’ at zero problems are unlikely
to materialize.

To provide the reader with an illustration of how MUE is implemented, and how its es-
timates compare to the two maximum likelihood based procedures (MPLE and MMLE), I
replicate the empirical example in Section 4 of Stock and Watson (1998) which provides esti-

start-up and the diffuse prior are not too different. However, in Section 4 we demonstrate that the sampling distribution
of the ML estimator will change dramatically when we specify a fixed but unknown start-up procedure.” Their Tables II
and III quantify how much worse the ML estimator that attempts to estimate the initial condition in the local
level model performs compared to MLE with a diffuse prior.
12The four different MUEs based on the different structural break tests appear to perform equally well.
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mates of trend growth of U.S. real GDP per capita over the period from 1947:Q2 to 1995:Q4.
Note that trend growth in GDP is one of the two components that make up the real natural
rate r∗t in Holston et al. (2017). It is thus beneficial to illustrate the implementation of MUE
in this specific context, rather than in the more general setting of time varying parameter
models.

3.1. Median unbiased estimation of U.S. trend growth

Stock and Watson (1998) use the following specification to model the evolution of annual-
ized trend growth in real per capita GDP for the U.S., denoted by GYt below:13

GYt = βt + ut (5a)

∆βt = (λ/T)ηt (5b)

a(L)ut = εt, (5c)

where a(L) is a (stationary) lag polynomial with all roots outside the unit circle, λ is the
parameter of interest, T is the sample size, and ηt and εt are two uncorrelated disturbance
terms, with variances σ2

η and σ2
ε , respectively. The growth rate of per capita GDP is thus

composed of a stationary component ut and a random walk component βt for trend growth.
Stock and Watson (1998) set a(L) to a 4th order lag-polynomial, so that ut follows an AR(4)
process. The model in (5) can be recognized as the local level model of Muth (1960), albeit
with the generalisation that ut follows an AR(4) process, rather than white noise. Being in the
class of local level models means that the estimate of trend growth will be an exponentially
weighted moving average (EWMA) of GYt.14

It is important to highlight here that Stock and Watson’s (1998) discussion of the theoret-
ical results of the estimator in Sections 2.2− 2.3 of their paper emphasizes that MUE of λ in
the model in (5) is only possible with the “normalisation D = 1”. They write at the top of
page 351 (right column): “Henceforth, when k = 1, we thus set D = 1. When Xt = 1, under
this normalization, λ is T times the ratio of the long-run standard deviation of ∆βt to the long run
standard deviation of ut.”15 Denoting the long-run standard deviation of a stochastic process
by σ̄(·), this means that

λ = T
σ̄(∆βt)

σ̄(ut)
= T

σ∆β

σε/a(1)
, (6)

13That is, GYt = 400∆ ln(real per capita GDPt), where ∆ is the first difference operator (see Section 4 on page
354 in Stock and Watson (1998)). I again follow their notation as closely as possible for comparability reasons.
14Stock and Watson (1998) offer a discussion of the rationale behind the random walk specification of trend
growth in GYt in the second paragraph on the left of page 355. Without wanting to get into a technical discus-
sion, one might want to view the random walk specification of trend growth βt as a purely statistical tool to
allow for a slowly changing mean, rather than interpreting trend growth as an I(1) process.
15The parameter k here refers to the column dimension of regressor vector Xt. When k = 1, then only a model
with an intercept is fitted, ie., Xt contains only a unit constant and no other regressors.
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or alternatively, expressed in signal-to-noise ratio form as used by Holston et al. (2017):

λ

T
=
σ̄(∆βt)

σ̄(ut)
=

σ∆β

σε/a(1)
, (7)

where σ̄(ut) = σε/a(1) since ut follows a stationary AR(4) process, a(1) = (1 −
∑4

i=1 ai),
and σ̄(∆βt) = σ∆β due to ηt being i.i.d., yielding further the relation σ∆β = (λ/T)ση. As a
result of the identifying “normalization D = 1” of MUE, (7) implies that ση = σε/a(1). That
is, the long-run standard deviation of the stationary component ut is equal to the standard
deviation of the trend growth innovations ηt.

Stock and Watson (1998) write on page 354: “Table 3 is a lookup table that permits computing
median unbiased estimates, given a value of the test statistic. The normalization used in Table 3 is
that D = 1, and users of this lookup table must be sure to impose this normalization when using
the resulting estimator of λ.” Moreover, the numerical results that are reported in Section 3,
which is appropriately labelled “Numerical Results for the univariate Local-Level Model”, are
obtained from simulations that employ the local level model of (4) as the data generating
process (see Stock and Watson’s (1998) GAUSS programs ESTLAM.GSS, TESTCDF.GSS, and
LOOKUP.GSS in the tvpci.zip file that accompanies their paper). These numerical results
do not only include the simulations regarding ‘pile-up’ at zero frequencies reported in Table
1, asymptotic power functions plotted in Figure 1, or the AREs provided in Table 2 of Stock
and Watson (1998), but also the look-up tables for the construction of the median unbiased
estimator of λ in Table 3. It must therefore be kept in mind that these look-up table values
are valid only for the univariate local level model, or for models that can be (re-)written in
“local level form”.

Table 2 below reports the replication results of Tables 4 and 5 in Stock and Watson
(1998).16 Columns one and two in the top half of Table 2 show test statistics and p−values
of the four structural break tests that are considered: i) Nyblom’s (1989) L test, ii) Andrews
and Ploberger’s (1994) mean Wald (MW) test, iii) Andrews and Ploberger’s (1994) expo-
nential Wald (EW) test, and iv) Quandt’s (1960) Likelihood ratio (QLR) test, together with
corresponding p−values.

16All computations are implemented in Matlab, using their GDP growth data provided in the
file DYPC.ASC. Note that I also obtained look-up table values based on a finer grid of λ values
from their original GAUSS file LOOKUP.GSS (commenting out the lines if (lamdat[i,1] .<= 30) .and

(lamdat[i,1]-floor(lamdat[i,1]) .== 0); in LOOKUP.GSS to list look-up values for the entire grid of λ’s
considered), rather than those listed in Table 3 on page 354 of their paper, where the grid is based on unit
increments in λ from 0 to 30. I further changed the settings in the tolerance on the gradient in their maximum
likelihood (maxlik) library routine to max GradTol = 1e-08 and used the printing option format /rd 14,14

for a more precise printing of all results up to 14 decimal points. Lastly, there is a small error in the construction
of the lag matrix in the estimation of the AR(4) model in file TST GDP1.GSS (see lines 40 to 47). The first column
in the w matrix is the first lag of the demeaned per capita trend growth series, while columns 2 to 4 are the
second to fourth lags of the raw, that is, not demeaned per capita trend growth series. Correcting this leads to
mildly higher, yet still insignificant, point estimates of all σ∆β. For instance, the point estimate of σ∆β based
on Nyblom’s (1989) L statistic yields 0.1501, rather than 0.1303, but remains still statistically insignificant, with
the lower value of the confidence interval being 0. To exactly replicate the results in Stock and Watson’s (1998),
I compute the lag matrix as they do.
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As a reminder, the MW, EW and QLR tests are Chow (1960) type structural break tests,
which test for a structural break in the unconditional mean of a series at a given or known
point in time. Chow (1960) break tests require a partitioning of the data into two sub-periods.
When the break date is unknown, these tests are implemented by rolling through the sam-
ple. To be more concrete, denote by Yt the series to be tested for a structural break in the
unconditional mean. Let the dummy variable Dt(τ) = 1 if t > τ , and 0 otherwise, where
τ = {τ0, τ0 + 1, τ0 + 2, . . . , τ1} is an index (or sequence) of grid points between endpoints τ0

and τ1. As is common in this literature, Stock and Watson (1998) set these endpoints at the
15th and 85th percentiles of the sample size T, that is, τ0 = 0.15T and τ1 = 0.85T.17 For each
τ ∈ [τ0, τ1], the following regression of Yt on a constant and dummy Dt(τ) is estimated:

Yt = ζ0 +ζ1Dt(τ) +εt, (8)

and the F statistic (the square of the t−statistic) on the point estimate ζ̂1 is constructed. The
sequence {F(τ)}τ1

τ=τ0 of F statistics is then used to compute the MW, EW and QLR structural
break test statistics needed in the implementation of MUE. These are calculated as:

MW =
1

Nτ

τ1∑
τ=τ0

F(τ) (9a)

EW = ln

(
1

Nτ

τ1∑
τ=τ0

exp
{

1
2

F(τ)
})

(9b)

QLR = max
τ∈[τ0 ,τ1]

{F(τ)}τ1
τ=τ0 , (9c)

where Nτ denotes the number of grid points in τ . Nyblom’s (1989) L test statistic is com-
puted without sequentially partitioning the data via the sum of squared cumulative sums
of Yt. More specifically, let µ̂Y denote the sample mean of Yt, σ̂2

Y the sample variance of Yt,
and Ỹ t = Yt − µ̂Y the demeaned Yt process. Nyblom’s (1989) L statistic is then constructed
as:

L = T−1
T∑

t=1

ϑ2
t /σ̂

2
Y , (10)

where ϑt is the scaled cumulative sum of Ỹ t, ie., ϑt = T−1/2∑t
s=1 Ỹ s.

Median unbiased estimates of λ based on Stock and Watson’s (1998) look-up tables are

17To be precise, τ0 is computed as floor(0.15 ∗ T) and τ1 as T − τ0. Also, it is standard practice in the struc-
tural break literature to trim out some upper/lower percentiles of the search variable to avoid having too few
observations at the beginning or at the end of the sample in the 0 and 1 dummy regimes created by Dt(τ). In
fact, the large sample approximation of the distribution of the QLR test statistic depends on τ0 and τ1. Stock
and Watson (2011) write to this on page 558: “For the large-sample approximation to the distribution of the QLR
statistic to be a good one, the sub-sample endpoints, τ0 and τ1, cannot be too close to the beginning or the end of the
sample.” Employing endpoints other than the 15th upper/lower percentile values used by Stock and Watson
(1998) in the simulation of the look-up table for λ is thus likely to affect the values provided in Table 3 of Stock
and Watson (1998), due to the endpoints’ influence on the distribution of the structural break test statistics.
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reported in column 3 of Table 2, followed by respective 90% confidence intervals (CIs) in
square brackets. The last two columns show estimates of σ∆β computed as σ̂∆β = λ̂/T ×
σ̂ε/â(1), with 90% CIs also in square brackets. In the bottom half of Table 2, MLE and MUE
based parameter estimates of the model in (5) are reported. The columns under the MPLE
and MMLE headings show, respectively, MLE based results when the initial state vector
is estimated and when a diffuse prior is used. The diffuse prior for the I(1) element of
the state vector is centered at 0 with a variance of 106. The next two columns under the
headings MUE(0.13) and MUE(0.62) report parameter estimates of the model in (5) withσ∆β
held fixed at its MUE point estimate of 0.13 and upper 90% CI value of 0.62, respectively.
The last column under the heading SW.GAUSS lists the corresponding MUE(0.13) estimates
obtained from running Stock and Watson’s (1998) GAUSS code as reference values.18

As can be seen from the results in Table 2, consistent with the ‘pile-up’ at zero problem
documented in the simulations in Stock and Watson (1998) (and also Shephard and Harvey
(1990)), the MPLE estimate of σ∆β goes numerically to zero (up to 11 decimal points), while
MMLE produces a ‘sizeable’ point estimate of σ∆β of 0.044. Although Stock and Watson
(1998) (and also I) do not report a standard error for σ̂∆β in the tables containing the estima-
tion results, the estimate of stderr(σ̂∆β) is 0.1520, suggesting that σ̂∆β is very imprecisely
estimated.19 From the MUE results reported in the first column of the top half of Table 2
it is evident that all 4 structural break tests yield confidence intervals for λ and hence also
σ∆β that include zero. Thus, even when using MUE as the ‘preferred’ estimator, one would
conclude that λ̂ and σ̂∆β are not statistically different from zero.

An evident practical problem with the use of Stock and Watson’s (1998) MUE is that
the 4 different structural break tests can produce vastly different point estimates of λ. This is
clearly visible from Table 2, where the 4 tests yield λ estimates with an implied σ̂∆β range be-
tween 0.0250 (for QLR) and 0.1303 (for L). From the simulation results in Stock and Watson
(1998) we know that all 4 tests seem to behave equally well in the ‘pile-up’ at zero frequency
simulations (see Table 1 in Stock and Watson (1998)). However, the QLR test performed ‘best’
in the efficiency results, producing the largest (closes to 1) asymptotic relative efficiencies in
Table 2 of Stock and Watson (1998). Analysing these results in the context of the empirical
estimation of trend growth, the most accurate MUE estimator based on the QLR structural
break test produces an estimate of σ∆β that is 5 times smaller than the largest one based on
the L structural break test, with the MMLE estimate of σ∆β being approximately double the
size of the QLR estimate.
18See the results reported in Table 5 on page 354 in Stock and Watson (1998), where nevertheless only two
decimal points are reported. MPLE and MMLE are also replicated accurately to 6 decimal points.
19Stock and Watson (1998) compute standard errors for the remaining MMLE parameters (see column three in
the upper part of Table 5 on page 354 in their paper. They write in the notes to Table 5: “Because of the nonnormal
distribution of the MLE of λ, the standard error for σ∆β is not reported.” Evidently, ‘testing’ the null hypothesis of
σ∆β = 0 using a standard t−ratio does not make any sense statistically. Nevertheless, σ̂∆β is very imprecisely
estimated, and highly likely to be ‘very’ close to zero. The MMLE log-likelihood function with the restriction
σ∆β = 0 is−547.5781, while the (unrestricted) MMLE is−547.4805, with the difference between the two being
very small of about 0.10.
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To provide a visual feel of how different the MLE and MUE based estimates of U.S. trend
growth are, I show plots of the smoothed estimates in Figure 3 (these correspond to Figures
4 and 3 in Stock and Watson (1998)). The top panel displays the MPLE, MMLE, MUE(0.13),
and MUE(0.62) estimates together with a 90% CI of the MMLE estimate (shaded area), as
well as a dashed yellow line that shows Stock and Watson’s (1998) GAUSS code based
MUE(0.13) estimate for reference. The plot in the bottom panel of Figure 3 superimposes
the actual GYt series to portray the variability in the trend growth estimates relative to the
variation in the data from which these were extracted.20 The y−axis range is set as in Fig-
ures 4 and 3 in Stock and Watson (1998). As can be seen from Figure 3, there is only little
variability in the MLE based trend growth estimates, with somewhat more variation from
MUE(0.13). Nonetheless, all three trend growth point estimates stay within the 90% error
bands of MMLE. Moreover, the plots in Figure 3 confirm the lack of precision of MUE. Trend
growth could be anywhere between a constant value of about 1.8% (β̂00 from MPLE), which
is a flat line graphically when σ∆β is held fixed at its lower 90% CI value of 0, and a rather
volatile series which produces a range between nearly 4.5% in 1950 and less than 0.5% in
1980 when σ∆β is set at its upper 90% CI value of 0.62.

Given the previous results and discussion, one could argue that the statistical evidence
in support of any important changes to trend growth in real U.S. GDP per capita is rather
weak in this data set. As a robustness check and in the context of a broader replication of
the time varying trend growth estimates of Stock and Watson (1998), I re-estimate the model
using a more recent vintage of real GDP per capita data from the Federal Reserve Economic
Data (FRED2) database. These results are reported in Table 3 , which is arranged in the same
way as Table 2 (only the last column with heading SW.GAUSS is removed). The sample
period is again from 1947:Q2 to 1995:Q4, using an AR(4) model to approximate ut in (5a).21

From Table 3 it is clear that not only do the two MLE based estimates of σ∆β yield point
estimates that are numerically equal to zero, but so do all 4 MUEs. Hence, trend growth
may well be constant. More importantly, it demonstrates that MUE can also lead to (exactly)
zero estimates of σ∆β.22

Before I proceed to describe how the three stage procedure of Holston et al. (2017) is
implemented, a brief procedural description of Stock and Watson’s (1998) MUE that lists the
main steps needed to replicate the results reported in Table 2 and Figure 3 is given below.

(i ) Fit an AR(4) model to GYt, construct â(L) from the estimated AR(4) coefficients
{

â j
}4

j=1,

20Notice from the top panel of Table 2 that there are four different estimates of λ, and thus four σ̂∆β. Rather
then showing smoothed trend estimates for all four of these, I follow Stock and Watson (1998) and only show
estimates based on Nyblom’s (1989) L statistic, which has the largest λ estimate, and hence also σ∆β.
21The results using an ARMA(2, 2) model for ut instead are qualitatively the same.
22I show later that the Stage 2 MUE procedure of Holston et al. (2017) is incorrectly implemented and based
on a misspecified Stage 2 model. Once this is corrected, the Stage 2 λz that one obtains is very close to zero,
resulting in the full model MLE and MUE estimates of the natural rate being very similar. Although I do not
show this here to avoid a repetition of the results, the similarity between the MLE and correct Stage 2 MUE
based estimates holds also for the remaining three data sets analysed by Holston et al. (2017); namely, for the
Euro Area, the U.K. and Canada. These results are documented in Buncic (2020).
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and filter the series to remove the AR(4) serial dependence. Let G̃Yt = â(L)GYt denote
the AR(4) filtered series.23 Use the residuals ε̂t from the fitted AR(4) model for GYt

to compute an estimate of the standard deviation of εt and denote it by σ̂ε. Also, let
â(1) =

(
1−

∑4
j=1 â j

)
.

(ii ) Test for a structural break in the unconditional mean of the AR(4) filtered series G̃Yt

using the four structural break tests described above. That is, replace Yt in (8) with G̃Yt,
run the dummy variable regression in (8), and compute the structural break statistics as
defined in (9) and (10).

(iii ) Given these structural break test statistics, use the look-up values provided in Table 3 on
page 354 in Stock and Watson (1998) to find the corresponding λ value by interpolation.
Once an estimate of λ is available, compute σ̂∆β = T−1λ̂σ̂ε/â(1), where σ̂ε and â(1) are
obtained from Step (i).

(iv ) With σ∆β held fixed at its median unbiased estimate obtained in Step (iii), estimate the
remaining parameters of the model in (5) using the Kalman Filter and MLE, namely,
MPLE, where the initial value is estimated as well.24

Finally, using the estimates of the full set of parameters of the model in (5), apply the
Kalman Smoother to extract an estimate of annualized trend growth of U.S. real per
capita GDP.

4. Three stage estimation procedure of Holston et al. (2017)

Holston et al. (2017) employ MUE in two preliminary stages that are based on restricted ver-
sions of the full model in (1) to obtain estimates of the ‘signal-to-noise ratios’ λg = σg/σy∗ and
λz = arσz/σỹ. These ratios are then held fixed in Stage 3 of their procedure, which produces
estimates of the remaining parameters of the model in (1). In order to conserve space in the
main text, I provide all algebraic details needed for the replication of the three individual
stages in the Appendix, which includes also some additional discussion as well as R-Code
extracts to show the exact computations. In the results that are reported in this section, I
have used their R-Code from the file HLW Code.zip made available on Willams’ website at
the New York Fed to (numerically) accurately reproduce their results.25 The sample period

23This is the generalized least squares (GLS) step in the original TVP model description on page 350 in Stock
and Watson (1998).
24Note here that Stock and Watson (1998) fix the value ofσ∆β at T−1λ̂σ̂ε/â(1), where the hats denote that these
are estimates from Steps (i) to (iii), and do not re-estimate σε or the AR(4) {a j}4

j=1 parameters in the final
estimation of the full model in (5). That is, in the GAUSS files LNAIRC.PRC and LNAIR1.PRC, the SERW variable
in the q matrix is kept at the OLS based estimates, ie., not making the SERW variable a function ofσε and {a j}4

j=1

(see line 19, with corresponding code: q[1,1]=serwˆ2). In Holston et al. (2017), only λ̂/T is held fixed in the
full Stage 3 model, with the other parameters that make up the long-run standard deviation re-estimated. One
could also implement this in Stock and Watson’s (1998) model, however, the goal here is purely to illustrate
the computations in an empirical application, as opposed to providing new or different estimates.
25Williams’ website at the Federal Reserve Bank of New York is at: https://www.newyorkfed.org/research/
economists/williams/pub. Their code is available from the website: https://www.newyorkfed.org/media-

14

https://www.newyorkfed.org/medialibrary/media/research/economists/williams/data/HLW_Code.zip
https://www.newyorkfed.org/research/economists/williams/pub
https://www.newyorkfed.org/research/economists/williams/pub
https://www.newyorkfed.org/medialibrary/media/research/economists/williams/data/HLW_Code.zip
https://www.newyorkfed.org/medialibrary/media/research/economists/williams/data/HLW_Code.zip
https://www.newyorkfed.org/medialibrary/media/research/economists/williams/data/HLW_Code.zip


that I cover ends in 2017:Q1. The beginning of the sample is the same as in Holston et al.
(2017). That is, it starts in 1960:Q1, where the first 4 quarters are used for initialisation of the
state vector, while the estimation period starts in 1961:Q1.

Holston et al. (2017) adopt the general state-space model (SSM) notation of Hamilton
(1994) in their three stage procedure. The SSM is formulated as follows:26

yt = Axt + Hξt +νt

ξt = Fξt−1 + Sεt
, where

[
νt

εt

]
∼ MNorm

([
0
0

]
,

[
R 0
0 W

])
, (11)

where I define εt = Sεt, so that Var(εt) = Var(Sεt) = SWS′ = Q to make it consistent with
the notation used in Holston et al. (2017). The (observed) measurement vector is denoted
by yt in (11), xt is a vector of exogenous variables, A, H and F are conformable system
matrices, ξt is the latent state vector, S is a selection matrix, and the notation MNorm (µ, Σ)
denotes a multivariate normal random variable with mean vector µ and covariance matrix
Σ. The disturbance terms νt andεt are serially uncorrelated, and the (individual) covariance
matrices R and W are assumed to be diagonal matrices, implying zero correlation between
the elements of the measurement and state vector disturbance terms. The measurement
vector yt in (11) is the same for all three stages and is defined as yt = [yt, πt]′, where yt

and πt are the log of real GDP and annualized PCE inflation, respectively, as defined in
Section 2. The exact form of the remaining components of the SSM in (11) changes with the
estimation stage that is considered, and is described in detail either in the text below or in
the Appendix.

As I have emphasized in the description of MUE in Section 3, the simulation results
of Stock and Watson (1998) show that ‘pile-up’ at zero frequencies for MLE are not only a
function of the size of the variance of ∆βt = (λ/T)ηt (or alternatively λ), but also depend
critically on whether the initial condition of the state vector is estimated or not. Now Holston
et al. (2017) do not estimate the initial condition of the state vector in any of the three stages
that are implemented. Instead, they apply the HP filter to log GDP data with the smoothing
parameter set to 36000 to get a preliminary estimate of y∗t and trend growth gt (computed as
the first difference of the HP filter estimate of y∗t ) using data from 1960:Q1 onwards. ‘Other
factor’ zt is initialized at 0.27 This means that ξ00 has known and fixed quantities in all three

library/media/research/economists/williams/data/HLW Code.zip. The weblink to the file with their real
time estimates is: https://www.newyorkfed.org/medialibrary/media/research/economists/williams/data/
Holston Laubach Williams real time estimates.xlsx. Note here that all my results exactly match their esti-
mates provided in the Holston Laubach Williams real time estimates.xlsx file in Sheet 2017Q1.
26The state-space form that they use is described on pages 9 to 11 of their online appendix that is included
with the R-Code HLW Code.zip file from Williams’ website at the New York Fed. Note that I use exactly the
same state-space notation to facilitate the comparison to Holston et al. (2017), with the only exception being
that I include one extra selection matrix term S in front of εt in (11) as is common in the literature to match the
dimension of the state vector toεt when there are identities due to lagged values. I also prefer not to transpose
the system matrices A and H in (11), as it is not necessary and does not improve the readability.
27See the listing in R-Code 1 in the A.6 R-Code Snippets section of the Appendix, which shows
the first 122 lines of their R-file rstar.stage3.R. Line 30 shows the construction of the initial state
vector as ξ00 = [y∗0 , y∗−1, y∗−2, g−1, g−2, z−1, z−2]

′ where subscripts [0,−1,−2] refer to the time pe-
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stages. Given the simulation evidence provided in Table 1 on page 353 in Stock and Watson
(1998), one may thus expect a priori ‘pile-up’ at zero frequencies of MLE (without estimation
of the initial conditions) to be only marginally higher than those of MUE, especially for
‘larger’ values of λ.

Also, Holston et al. (2017) determined the covariance matrix of the initial state vector in
an unorthodox way. Even though every element of the state vector ξt in all three estima-
tion stages is an I(1) variable, they do not use a diffuse prior on the state vector. Instead,
the covariance matrix is determined with a call to the function calculate.covariance.R

(see the code snippet in R-Code 2 for details on this function, and also lines 66, 84, and 88,
respectively, in their R-files rstar.stage1.R, rstar.stage2.R, and rstar.stage3.R, with
line 88 in rstar.stage3.R also shown on the second page of the code snippet in R-Code 1).
To summarize what this function does, consider the Stage 1 model, which is estimated with
a call to rstar.stage1.R. The function calculate.covariance.R first sets the initial co-
variance matrix to 0.2 times a three dimensional identity matrix I3. Their procedure then
continues by using data from 1961:Q1 to the end of the sample to get an estimate ofσ2

y∗ from
the Stage 1 model. Lastly, the initial covariance matrix P00 to be used in the ‘final’ estimation
of the Stage 1 model is then computed as:

P00 = F diag([0.2, 0.2, 0.2])F′ + Q̂ (12a)

=

1 0 0
1 0 0
0 1 0


0.2 0 0

0 0.2 0
0 0 0.2


1 0 0

1 0 0
0 1 0


′

+

σ̂2
y∗ 0 0

0 0 0
0 0 0

 (12b)

=

0.4711 0.2 0.0
0.2 0.2 0.0
0.0 0.0 0.2

 , (12c)

with Q̂ a (3 × 3) dimensional zero matrix with element (1, 1) set to σ̂2
y∗ = 0.27113455739

from the initial run of the Stage 1 model. What this procedure effectively does is to set P00

to the first time period’s predicted state covariance matrix, given an initial state covariance
matrix of 0.2 × I3 and the estimate σ̂2

y∗ , where σ̂2
y∗ was obtained by MLE and the Kalman

Filter using 0.2 × I3 as the initial state covariance. This way of initialising P00 is rather
circular, as it fundamentally presets P00 at 0.2× I3.28

When the state vector contains I(1) variables, it is not only standard practice to use a

riods 1960:Q4, 1960:Q3, and 1960:Q2, respectively. In terms of their R-Code, we have: xi.00 <-

c(100*g.pot[3:1],100*g.pot.diff[2:1],0,0), where g.pot is the HP filtered trend and g.pot.diff is its
first difference, ie., trend growth, with the two zeros at the end being the initialisation of zt. This yields the
following numerical values: [806.45, 805.29, 804.12, 1.1604, 1.1603, 0, 0]. The same strategy is also used in the
first two stages (see their R-files rstar.stage1.R and rstar.stage2.R).
28In footnote 6 on page S64 in Holston et al. (2017) (and also in the description of the calculate.covariance.R
file), they write: “We compute the covariance matrix of these states from the gradients of the likelihood function.” Given
the contents of the R-Code, it is unclear how and if this was implemented.
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diffuse prior, but it is highly recommended. For instance, Harvey (1989) writes to this on
the bottom of page 121: “When the transition equation is non-stationary, the unconditional dis-
tribution of the state vector is not defined. Unless genuine prior information is available, therefore,
the initial distribution of α0 must be specified in terms of a diffuse or non-informative prior.” (em-
phasis added, αt is the state-vector in Harvey’s notation). It is not clear why Holston et al.
(2017) do not use a diffuse prior.29 However, one may conjecture that it could be due to their
preference for reporting Kalman Filtered (one-sided) rather than the more efficient Kalman
Smoothed (two-sided) estimates of the latent state vector ξt which includes trend growth gt

and ‘other factor’ zt needed to construct r∗t .30

As a final point in relation to the probability of ‘pile-up’ at zero problems arising due to
small variances of the state innovations, and hence the rationale for employing MUE rather
than MLE in the first place, one can observe from the size of the σg and σz estimates for the
U.S. reported in Table 1 on page S60 in Holston et al. (2017) that these are rather ‘large’ at
0.122 and 0.150, respectively. The simulation results in Table 1 in Stock and Watson (1998)
show that ‘pile-up’ at zero frequencies drop to 0.01 for both, MMLE and MUE, when the true
population value of λ is 30 (σ∆β = 0.06). Given the fact that Holston et al. (2017) do not
estimate the initial value of the state vector, and that their median unbiased estimates are
about two times larger than 0.06, it seems highly implausible that ‘pile-up’ at zero problems
should materialize with a higher frequency for MLE than for MUE.

4.1. Stage 1 model

Holston et al.’s (2017) first stage model takes the following restricted form of the full model
presented in equation (1):31

yt = y∗t + ỹt (13a)

πt = bππt−1 + (1− bπ) πt−2,4 + by ỹt−1 +ε
π
t (13b)

29In an earlier paper using a similar model for the NAIRU, Laubach (2001) discusses the use of diffuse priors.
Laubach (2001) writes on page 222: “The most commonly used approach in the presence of a nonstationary state is
to integrate the initial value out of the likelihood by specifying an (approximately) diffuse prior.” He then proceeds
to describe an alternative procedure that can be implemented by using: “a few initial observations to estimate
the initial state by GLS, and use the covariance matrix of the estimator as initial value for the conditional covariance
matrix of the state.” The discussion is then closed with the statement: “This is the first approach considered here.
Because this estimate of the initial state and its covariance matrix are functions of the model parameters, under certain
parameter choices the covariance matrix may be ill conditioned. The routines then choose the diffuse prior described above
as default.” Thus even here, the diffuse prior is the ”safe” default option. Note that their current procedure does
not use: “a few initial observations to estimate the initial state”, but the same sample of data that are used in the
final model, ie., with data beginning in 1961:Q1.
30Note that Filtered estimates of gt, zt and thus also r∗t are very volatile at the beginning of the sample period
(until about 1970) when P00 is initialized with a diffuse prior.
31See Section A.1 in the Appendix for the exact matrix expressions and expansions of the first stage SSM. Note
that one key difference of Holston et al.’s (2017) SSM specification described in equations (A.3) and (A.4) in
the Appendix is that the expansion of the system matrices for the Stage 1 model does not include the drift
term g in the trend specification in (13d), so that y∗t follows a random walk without drift. Evidently, such a
specification cannot match the upward trend in the GDP data. To resolve this mismatch, Holston et al. (2017)
‘detrend’ output yt in the estimation (see Section A.1 in the Appendix which describes how this is done and
also shows snippets of their R-Code).
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ỹt = ay,1 ỹt−1 + ay,2 ỹt−2 + ε̊
ỹ
t (13c)

y∗t = g + y∗t−1 + ε̊
y∗
t , (13d)

where the vector of Stage 1 parameters to be estimated is:

θ1 = [ay,1, ay,2, bπ , by, g, σỹ, σπ , σy∗ ]
′. (14)

To be able to distinguish the disturbance terms of the full model in (1) from the ones in the
restricted Stage 1 model in (13) above, I have placed a ring ( ˚ ) symbol on the error terms in
(13c) and (13d). These two disturbance terms from the restricted model are defined as:

ε̊
y∗
t = gt−1 − g +ε

y∗
t (15)

and
ε̊

ỹ
t = ar

2 [(rt−1 − 4gt−1 − zt−1) + (rt−2 − 4gt−2 − zt−2)] +ε
ỹ
t . (16)

From (15) and (16) it is clear that, due to the restrictions in the Stage 1 model, the error terms
ε̊

ỹ
t and ε̊y∗

t in (13) will not be uncorrelated anymore, since Cov(ε̊ỹ
t , ε̊y∗

t ) = − ar
2 4σ2

g given
the assumptions of the full model in (1). The separation of trend and cycle shocks in this
formulation of the Stage 1 model is thus more intricate, as both shocks will respond to one
common factor; the missing gt−1.

In the implementation of the Stage 1 model, Holston et al. (2017) make two important
modelling choices that have a substantial impact on the θ1 parameter estimates, and thus
also the estimate of the ‘signal-to-noise ratio’ λg used in the later stages. The first is the tight
specification of the prior variance of the initial state vector P00 discussed in the introduction
of this section. The second is a lower bound restriction on by in the inflation equation in
(13b) (by ≥ 0.025 in the estimation). The effect of these two choices on the estimates of the
Stage 1 model parameters are shown in Table 4 below. The left block of the estimates in
Table 4 (under the heading ‘HLW Prior’) reports four sets of results where the state vector
was initialized using their values forξ00 and P00. The first column of this block (HLW.R-File)
reports estimates from running Holston et al.’s (2017) R-Code for the first stage model. These
are reported as reference values. The second column (by ≥ 0.025) shows my replication of
Holston et al.’s (2017) results using the same initial values for parameter vector θ1 in the
optimisation routine and also the same lower bound constraint on by. The third column
(Alt.Init.Vals) displays the results I obtain when a different initial value for by is used, with
the lower bound restriction by ≥ 0.025 still in place. The fourth column (by Free) reports
results when the lower bound constraint on by is removed.32 The right block in Table 4

32 To find the initial values for θ1, Holston et al. (2017) apply the HP filter to GDP to obtain an initial estimate
of the cycle and trend components of GDP. These estimates are then used to find initial values for (some of)
the components of parameter vectorθ1 by running OLS regressions of the HP cycle estimate on two of its own
lags (an AR(2) essentially), and by running regressions of inflation on its own lags and one lag of the HP cycle.
Interestingly, although readily available, rather than taking the coefficient on the lagged value of the HP cycle
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shows parameter estimates when a diffuse prior for ξt is used, where P00 is set to 106 times
a three dimensional identity matrix, with the left and right columns showing, respectively,
the estimates with and without the lower bound restriction on by imposed.

Notice initially from the first two columns in the left block of Table 4 that their numerical
results are accurately replicated up to 6 decimal points. From these results we also see
that the lower bound restriction on by is binding. Holston et al. (2017) set the initial value
for by at 0.025, and there is no movement away from this value in the numerical routine.
Specifying an alternative initial value for by, which is determined in the same way as for
the remaining parameters in θ1, leads to markedly different estimates, while removing the
lower bound restriction on by all together results in the ML estimate of by to converge to
zero. Evidently, these three scenarios yield also noticeably different values for σ̂ y∗ , that is,
values between 0.4190 and 0.6177. The diffuse prior based results (with and without the
lower bound restriction) in the right block of Table 4 show somewhat less variability in σ̂ y∗ ,
but affect the persistence of the cycle variable ỹt in the model, with the smallest AR(2) lag
polynomial root being 1.1190 when by ≥ 0.025 is imposed, while it is only 1.0251 and thus
closer to the unit circle when by is left unrestricted.

There is only little variation in the likelihoods of the different estimates that are reported
in the respective left and right blocks of Table 4. For instance, the largest difference in log-
likelihoods is obtained from the diffuse prior results shown in the right block of Table 4. If
we treat the lower bound as a restriction, a Likelihood Ratio (LR) test of the null hypothesis
of the difference in these likelihoods being zero yields −2(−536.9803 − (−535.9596)) =

2.0414, which, with one degree of freedom has a p−value of 0.1531 and cannot be rejected
at conventional significance levels. Hence, there is only limited information in the data to
compute a precise estimate of by. This empirical fact is known in the literature as a ‘flat
Phillips curve’.33

Given the Stage 1 estimate θ̂1, Holston et al. (2017) use the following steps to implement
median unbiased estimation of their ‘signal-to-noise ratio’ λg = σg/σy∗ .

(a) Use the Stage 1 model to extract an estimate of y∗t from the Kalman Smoother and con-
struct annualised trend growth as ∆ŷ∗t|T = 400(ŷ∗t|T − ŷ∗t−1|T), where ŷ∗t|T here denotes
the Kalman Smoothed estimate of y∗t .34

(b) Apply the three structural break tests described in (9) to the ∆ŷ∗t|T series. Specifically,
replace Yt in (8) with the constructed ∆ŷ∗t|T series, run the dummy variable regression

in the initialization of by, which yields a value of 0.0921, Holston et al. (2017) use the lower bound value of
0.025 for by as the initial value. In the optimisation, this has the effect that the estimate for by is effectively
stuck at 0.025, although it is not the global optimum in the restricted model, which is at by = 0.097185 (see
also the values of the log-likelihood function reported in the last row of Table 4).
33That the output gap is nearly uninformative for inflation (forecasting) once structural break information is
conditioned upon — regardless of what measure of the output gap is used or whether it is combined as an
ensemble from multiple measures — is shown in Buncic and Müller (2017) for the U.S. and for Switzerland.
34Note that, although the series is annualised (scaled by 400), this does not have an impact on the magnitude
of the structural break tests. The numerical values that one obtains for λg are identical if scaled by 100 instead.
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in (8), and compute the structural break statistics as defined in (9) and (10). Note that
Holston et al. (2017) specify the endpoint values of the search-grid over τ at τ0 = 4 and
τ1 = T− 4.35

(c) Given the structural break test statistics computed in Step (b), find the corresponding λ
values in the look-up table of Stock and Watson (1998). Return the ratio λ/T = σg/σy∗

which Holston et al. (2017) denoted by λg, where their preferred estimate of λ is based
on the EW statistic of Andrews and Ploberger (1994).

Table 5 shows the range of λg estimates computed from the five sets of θ̂1 values reported
in Table 4, using all four structural break tests of Stock and Watson (1998). Table 5 is arranged
in the same format as Table 4, again showing Holston et al.’s (2017) estimates of λg obtained
from running their R-Code in the first column of the left block for reference. As can be seen
from Table 5, the range of λ̂g values one obtains from Holston et al.’s (2017) MUE procedure
is between 0 to 0.08945 (if only the three structural break tests implemented by Holston
et al. (2017) are considered, and up to 0.09419 if the L statistic is computed as well. Note
that this range is not due to statistical uncertainty, but simply due to the choice of structural
break test, which prior for P00 is used, and whether the lower bound constraint on by is
imposed. Since these estimates determine the relative variation in trend growth through
the magnitude of σy∗ , they have a direct impact not only on the variation in the permanent
component of GDP, but also on the natural rate of interest through the ratio λg = σg/σy∗

utilized in the later stages of the three step procedure of Holston et al. (2017).

4.1.1. Holston et al.’s (2017) rational for MUE in Stage 1

Comparing the MUE procedure that Holston et al. (2017) implement to the one by Stock and
Watson (1998), it is evident that they are fundamentally different. Instead of rewriting the
true model of interest in local level form to make it compatible with Stock and Watson’s
(1998) look-up tables, Holston et al. (2017) instead formulate a restricted Stage 1 model that
not only sets ar in the output gap equation to zero, but also makes the awkward assumption
that trend growth is constant when computing the ‘preliminary’ estimate of y∗t .

The rationale behind Holston et al.’s (2017) implementation of MUE is as follows. Sup-
pose we observe trend y∗t . Then, a local level model for ∆y∗t can be formulated as:

∆y∗t = gt +ε
y∗
t (17a)

∆gt = ε
g
t , (17b)

where ∆y∗t , gt and εy∗
t are the analogues to GYt,βt and ut, respectively, in Stock and Wat-

35This effectively tests for a structural break in nearly every time period in the sample. Interestingly, adjusting
the τ grid to cover the 15th upper/lower percentiles of T as in Stock and Watson (1998) leads to no important
differences in the structural break test statistics, or the size of the λ estimates that one obtains in Stage 1.
Nevertheless, it should be kept in mind that it is not clear what critical values the structural break test statistics
should be compared to and also what λ values for MUE are the appropriate ones to use with such endpoint
values. Also, Holston et al. (2017) do not compute Nyblom’s (1989) L statistic.
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son’s (1998) MUE in (5), with εy∗
t in (17a), nonetheless, assumed to be i.i.d. rather than an

autocorrelated AR(4) process as ut in (5a). Under Stock and Watson’s (1998) assumptions,
MUE of the local level model in (17) yields λg = λ/T defined as:

λ

T
=
σ̄(ε

g
t )

σ̄(ε
y∗
t )

=
σg

σy∗
, (18)

where σ̄(·) denotes again the long-run standard deviation, and the last equality in (18) fol-
lows due to εy∗

t and εg
t assumed to be uncorrelated white noise processes.

Since ∆y∗t is not observed, Holston et al. (2017) replace it with the Kalman Smoother based
estimate ∆ŷ∗t|T obtained from the restricted Stage 1 model in (13). To illustrate what impact
this has on their MUE procedure, let ay(L) = (1− ay,1L − ay,2L2) and ar(L) = ar

2 (L + L2)

denote two lag polynomials that capture the dynamics in the output gap ỹt and the real rate
cycle r̃t = (rt − r∗t ) = (rt − 4gt − zt), respectively. Also, define ψ(L) = ay(L)−1ar(L) and
ψ(1) = ar/(1− ay,1 − ay,2). The output gap equation of the true (full) model in (1) can then
be written compactly as:

ay(L)ỹt = ar(L)r̃t +ε
ỹ
t , (19)

or in differenced form and solved for ∆ỹt as:

∆ỹt = ay(L)−1
[

ar(L)∆r̃t + ∆ε
ỹ
t

]
. (20)

Observed output, and trend and cycle are related by the identity

yt = y∗t + ỹt

∴ ∆yt = ∆y∗t + ∆ỹt. (21)

This relation, together with (17a) and (20), can be written as:

∆yt − ∆ỹt = ∆y∗t

∆yt − ay(L)−1
[

ar(L)∆r̃t + ∆ε
ỹ
t

]
︸ ︷︷ ︸

∆ỹt

= gt +ε
y∗
t︸ ︷︷ ︸

∆y∗t

. (22)

Because the data ∆yt are fixed, any restriction imposed on the ∆ỹt process translates
directly into a misspecification of the right hand side of (22); the ∆y∗t term. In the Stage 1
model, ar is restricted to zero. For the relation in (22) to balance, ∆y∗t effectively becomes:36

∆y∗t = gt + ν̊
y∗
t (23a)

36Note that we need to formulate a local level model for trend growth as in (17) to be able to apply the MUE
framework of Stock and Watson (1998). To arrive at (23a), add [ay(L)−1ar(L)∆r̃t] to both sides of (22). The ring
( ˚ ) symbol on ν̊y∗

t highlights again that it is obtained from the restricted model.
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∆gt = ε
g
t , (23b)

where
ν̊

y∗
t = ε

y∗
t +ψ(L)∆r̃t. (24)

Holston et al.’s (2017) implementation of MUE relies on the (constructed) local level model
relations from the restricted Stage 1 model in (23) and requires us to evaluate the ratio of the
long-run standard deviations of εg

t and ν̊y∗
t :

σ̄(ε
g
t )

σ̄(ν̊
y∗
t )

. (25)

Evidently, εg
t in (23b) has not changed, so the numerator of the ‘signal-to-noise ratio’ in (25)

is still σ̄(εg
t ) = σg , due to εg

t being an i.i.d. process. However, the term ν̊
y∗
t in (23a) is not

uncorrelated white noise anymore. Moreover, the long-run standard deviation σ̄(ν̊y∗
t ) in the

denominator of (25) now also depends on the (long-run) standard deviation ofψ(L)∆r̃t, and
will be equal to σy∗ if and only if ar = 0 in the empirical data.37

To see what the long-run standard deviation of ν̊y∗
t looks like, assume for simplicity that

ε
y∗
t and ∆r̃t are uncorrelated, so that the long-run standard deviation calculation of ν̊y∗

t can
be broken up into a part involving εy∗

t and another part involving ψ(L)∆r̃t, where the latter
decomposes as:

ψ(L)∆r̃t = ψ(L)[∆rt − 4∆gt − ∆zt]

= ψ(L)[∆rt − 4εg
t −ε

z
t ].

Assuming that the shocks {εg
t ,εz

t } are uncorrelated with the (change in the) real rate ∆rt, the
long-run standard deviation of ψ(L)∆r̃t can be evaluated as:

σ̄ (ψ(L)∆r̃t) = σ̄ (ψ(L)∆rt) + σ̄
(
ψ(L)4εg

t
)
+ σ̄ (ψ(L)εz

t )

= σ̄ (ψ(L)∆rt) +ψ(1)
[
4σg +σz

]
, (26)

since εg
t and εz

t are uncorrelated in the model. Because the nominal rate it is exogenous, it
will not be possible to say more about the first term on the right hand side of (26) unless
we assume some time series process for ∆rt. Suppose that rt follows a random walk, so that
∆rt = εr

t , with Var(εr
t) = σ2

r . Then σ̄ (ψ(L)∆r̃t) = ar/(1− ay,1 − ay,2)
[
σr + 4σg +σz

]
, and

we obtain σ̄(ν̊y∗
t ) = σy∗ + ar/(1− ay,1 − ay,2)

[
σr + 4σg +σz

]
. The MUE ratio in (25) based

37If monetary policy is believed to be effective in cyclical aggregate demand management, then ar cannot be
0 and one would not have formulated the main model of interest assuming that ar is different from zero (viz,
negative). Also, this restriction cannot be enforced in the data.
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on the restricted Stage 1 model yields:

σ̄(ε
g
t )

σ̄(ν̊
y∗
t )

=
σg

σy∗ + ar/(1− ay,1 − ay,2)
[
σr + 4σg +σz

] 6= σg

σy∗
. (27)

Thus, Holston et al.’s (2017) implementation of MUE in Stage 1 cannot recover the ‘signal-to-
noise ratio’ of interest σg

σy∗
from λg.

Note here that the autocorrelation pattern in ν̊y∗
t is also reflected in the ∆ŷ∗t|T series which

is used as the observable counterpart to ∆y∗t in (23a). That is, ∆ŷ∗t|T has a significant and size-
able AR(1) coefficient of−0.2320 (standard error≈ 0.0649). Inline with Step (i) of Stock and
Watson’s (1998) implementation of MUE (the GLS step), one would thus need to AR(1) filter
the constructed ∆ŷ∗t|T series used in the local level model before implementing the structural
break tests. Accounting for this autocorrelation patter in ∆ŷ∗t|T leads to very different λg

point estimates (see Table 6, which is arranged in the same way as the top half of Table 2,
with the last column showing λg = λ/T rather thanσg to be able to compare these to column
one of Table 5).

4.1.2. Rewriting the Stage 1 model in local level model form

One nuisance with the Stage 1 model formulation of Holston et al. (2017) in (13) is that trend
growth is initially assumed to be constant to compute a first estimate of y∗t . This estimate is
then used to construct the empirical counterpart of ∆y∗t to which MUE is applied.

A more coherent way to implement MUE in the context of the Stage 1 model is to rewrite
the local linear trend model in local level form. To see how this could be done, we can
simplify the Stage 1 model by excluding the inflation equation (13b) and replacing the con-
stant trend growth equation in (13d) with the original trend and trend growth equations in
(1d) and (1e). Since the specification of the full model in (1) assumes that the error terms
ε`t , ∀` = {π , ỹ, y∗, g, z} are i.i.d. Normal and mutually uncorrelated, and b̂y ≈ 0 in the unre-
stricted Stage 1 model (see the results under the heading ‘by Free’ in Table 4), this simplifi-
cation is unlikely to induce any additional misspecification into the model.

The modified Stage 1 model we can work with thus takes the following form:

yt = y∗t + ỹt (28a)

ay(L)ỹt = ε̊
ỹ
t (28b)

y∗t = y∗t−1 + gt−1 +ε
y∗
t (28c)

gt = gt−1 +ε
g
t , (28d)

where ε̊ỹ
t = ar(L)r̃t + ε

ỹ
t again due to the restriction of the output gap equation of the full

model in (1).38 The local linear trend model in (28) can now be rewritten in local level model

38If the disturbance term ε̊
ỹ
t is i.i.d., then the model in (28) can be recognized as Clark’s (1987) Unobserved
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form by differencing (28a) and (28b), and bringing y∗t−1 to the left side of (28c) to yield:

∆yt = ∆y∗t + ∆ỹt (30a)

ay(L)∆ỹt = ∆ε̊
ỹ
t (30b)

∆y∗t = gt−1 +ε
y∗
t (30c)

gt = gt−1 +ε
g
t .

Substituting (30b) and (30c) into (30a) gives the local level model:

∆yt = gt−1 + ut (31)

∆gt = ε
g
t , (32)

where ut is defined as:

ut = ε
y∗
t + ay(L)−1∆ε̊

ỹ
t

ay(L)ut︸ ︷︷ ︸
AR(2)

= ay(L)εy∗
t︸ ︷︷ ︸

MA(2)

+∆ε̊
ỹ
t

ay(L)ut = b(L)εt, (33)

with b(L)εt = ay(L)εy∗
t + ∆ε̊

ỹ
t on the right hand side of (33) denoting a general MA process.

The ut term in (33) thus follows a higher order ARMA model. If ar = 0, then ε̊ỹ
t = ε

ỹ
t in (29)

and ∆ε̊
ỹ
t = ∆ε

ỹ
t , which is an integrated MA(1) process, so that the right hand side would be

the sum of an MA(2) and an MA(1), yielding an overall MA(2) for b(L)εt. With ay(L) being
an AR(2) lag polynomial for the cycle component, we would then get an ARMA(2, 2) for ut

in (33). If ar 6= 0, then ∆ε̊
ỹ
t follows a higher order ARMA process. In the empirical imple-

mentation of MUE, I follow Stock and Watson (1998), and use an AR(4) as an approximating
model for ut.39

Component (UC) model. However, ε̊ỹ
t is not i.i.d. and instead follows a general ARMA process with non-zero

autocovariances, which are functions of σ2
g , σ2

z , the autocovariances of inflation πt, as well as the exogenously
specified interest rate it. To see this, recall from Section 2 that the real interest rate gap r̃t is defied as r̃t =

[it − δ(L)πt − 4gt − zt], where expected inflation π e
t = δ(L)πt and δ(L) = 1

4
(
1 + L + L2 + L3), so that we can

re-express ε̊ỹ
t as:

ε̊
ỹ
t = ar(L) [it − δ(L)πt − 4gt − zt] +ε

ỹ
t . (29)

The product of the two lag polynomials ar(L)δ(L) in (29) yields a 5th order lag polynomial for inflation. If it
and πt were uncorrelated white noise processes (which they are clearly not), then we would obtain an MA(5)
process for ε̊ỹ

t when ar is non-zero. Since πt is modelled as an integrated AR(4), the implied process for ε̊ỹ
t

is a higher order ARMA process, the exact order of which depends on the assumptions one places on the
exogenously specified interest rate it. To determine this process exactly is of no material interest here. However,
the important point to take away from this is that ε̊ỹ

t is autocorrelated and follows a higher order ARMA
process. Moreover, if it, πt, gt and zt do not co-integrate, then ε̊ỹ

t will be an I(1) process.
39They also considered an ARMA(2, 3) model (see page 355 in their paper). It is well known that higher order
ARMA models can be difficult to estimate numerically due to potential root cancellations in the AR and MA
lag polynomials. Inspection of the autocorrelation and partial autocorrelation functions of ∆yt indicate that
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The relations in (31) to (33) are now in local level model form to which MUE can be
applied to as outlined in equations (5) to (7) in Section 3.1.40 To examine if we can recover
the ‘signal-to-noise ratio’ of interest σg/σy∗ from this MUE procedure, we need to evaluate

σ̄(ε
g
t )

σ̄(ut)
. (34)

In the numerator of (34), the term σ̄(ε
g
t ) = σg as before. Nevertheless, the denominator term

σ̄(ut) = σ̄(ε
y∗
t + ay(L)−1∆ε̊

ỹ
t ) 6= σy∗ . With ε̊ỹ

t = ar(L)r̃t +ε
ỹ
t , we have:

σ̄(ut) = σ̄(ε
y∗
t + ay(L)−1∆ε̊

ỹ
t )

= σ̄(ε
y∗
t +ψ(L)∆r̃t + ay(L)−1∆ε

ỹ
t ), (35)

where the middle part in (35) (ie., ψ(L)∆r̃t) will again be as before in (26) and therefore
depend on ∆rt, ε

g
t and εz

t . Notice here also that even if we knew ar = 0, so that the middle
part in (35) is 0, there is no mechanism to enforce a zero correlation between εy∗

t and εỹ
t in the

data, because ut appears in reduced form in the local level model. We would thus need the
empirical correlation between εy∗

t andεỹ
t to be zero for the long-run standard deviation σ̄(ut)

to equal σy∗ even when the true ar = 0. Estimates from the existing business cycle literature
suggest that trend and cycle shocks are negatively correlated (see for instance Table 3 in
Morley et al. (2003), who estimate this correlation to be −0.9062, or Table 1 in the more
recent study by Grant and Chan (2017) whose estimate is −0.87). I obtain an estimate of
−0.9426 (see Table 8 below).

For completeness, parameter estimates of MUE applied to the local level transformed
Stage 1 model defined in (28) are reported in Table 7. This table is arranged in the same way
as Table 2, with all computations performed in exactly the same way as before. The MUE
results in the last two columns of the bottom part of the table are based on the exponential
Wald (EW) structural break test as used in Holston et al. (2017). Overall, these estimates are
very similar to Stock and Watson’s (1998) estimates, despite different time periods and GDP
data being used. The λ (and also σg) estimates are not statistically different from 0, and the
MMLE σ̂g of 0.1062 is rather sizeable and quite close to the one implied by MUE.

4.1.3. Estimating the local linear trend version of the Stage 1 model

So far, ‘pile-up’ at zero problems were examined in the local level model form which is com-
patible with MUE. As a last exercise, I estimate the modified Stage 1 model in (28) in local
linear trend model form. Two different specifications of the model are estimated. The first
assumes all error terms to be uncorrelated. This version is referred to as Clark’s (1987) UC0

an AR(4) model is more than adequate to capture the time series dynamics of ∆yt. I have also estimated
an ARMA(2, 2) model for ∆yt , with the overall qualitative conclusions being the same and the quantitative
results very similar.
40I am grateful to Jim Stock for his email correspondence on this point.
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model. The second allows for a non-zero correlation between εy∗
t and ε̊ỹ

t . This version is
labelled Clark’s (1987) UC model. The aim here is to not only examine empirically how
valid the zero correlation assumption is and to quantify its magnitude, but also to investi-
gate whether ‘pile-up’ at zero problems materialize more generally in UC models. In Table 8,
the parameter estimates of the two UC models are reported, together with standard errors
of the parameter estimates (these are listed under the columns with the heading Std.error).

As can be seen from the estimates in Table 8, there exists no evidence of ‘pile-up’ at zero
problems with MLE in either of these two UC models.41 The estimates of σg from the two
UC models are 0.0463 and 0.0322, respectively, and are based on quarterly data. Expressed
at an annualized rate, they amount to approximately 0.1852 and 0.1288, and hence are
similar in magnitude to the corresponding MUE based estimates obtained from the trans-
formed model in Table 7. Notice also that the correlation between ε̊ỹ

t and εy∗
t (denoted by

Corr(ε̊ỹ
t ,εy∗

t ) in Table 8) is estimated to be −0.9426 (t−statistic is approximately −10). The
magnitude of the σ̂y∗ and σ̂ỹ coefficients nearly doubles when an allowance for a non-zero
correlation between ε̊ỹ

t and εy∗
t is made.42

Figure 4 shows plots of the various trend growth estimates from the modified Stage 1
models reported in Table 7 and Table 8. The plots are presented in the same way as in
Figure 3 earlier, with the (annualized) trend growth estimates from the two UC models
superimposed. Analogous to the results in Stock and Watson (1998), the variation in the
MUE based estimates is once again large. Trend growth can be a flat line when the lower 90%
CI of MUE is considered or rather variable when the upper CI bound is used. Interestingly,
the MMLE, Clark UC model (with non-zero Corr(ε̊ỹ

t ,εy∗
t )) and MUE(λ̂EW) trend growth

estimates are very similar visually. More importantly, the effect of restricting Corr(ε̊ỹ
t ,εy∗

t ) to
zero on the trend growth estimate can be directly seen in Figure 4. The UC0 model produces
a noticeably more variable trend growth estimate than the UC model.

Two conclusions can be drawn from this section. Firstly, Holston et al.’s (2017) imple-
mentation of MUE in Stage 1 and the resulting λg estimate cannot recover the ‘signal-to-noise
ratio’ of interest σg/σy∗ . Secondly, there is no evidence of ‘pile-up’ at zero problems mate-
rializing when estimating σg directly by MLE. Therefore, replacing σg in Q by λ̂gσy∗ in the
Stage 2 and Stage 3 model’s log-likelihood functions (see (A.17) and (A.31)) where λ̂g was
obtained from MUE applied to the Stage 1 model is not only unsound, but empirically en-
tirely unnecessary.

41I use a diffuse prior on the initial state vector in the estimation of both UC models, and do not estimate the
initial value. This is analogous to MMLE in Stock and Watson (1998). Input data are 100× the log of real GDP.
42As is common with UC models, the improvement in the log-likelihood due to the addition of the extra
correlation parameter is rather small. Although it is important to empirically capture the correlation between
ε̊

ỹ
t and εy∗

t as it affects the trend growth estimate (see Figure 4), the overall level of information contained in the
data appears to be limited and therefore makes it difficult to decisively distinguish one model over the other
statistically. Also, one other aspect of the empirical GDP data that both models fail to capture is the global
financial crisis. The level of GDP dropped substantially and in an unprecedented manner. Simply ‘smoothing’
the data to extract a trend as the UC models implicity do may thus not adequately capture this drop in the
level of the series.
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4.2. Stage 2 Model

The second stage model of Holston et al. (2017) consists of the following system of equations,
which are again a restricted version of the full model in (1):

yt = y∗t + ỹt (36a)

πt = bππt−1 + (1− bπ) πt−2,4 + by ỹt−1 +ε
π
t (36b)

ay(L)ỹt = a0 +
ar
2 (rt−1 + rt−2) + aggt−1 + ε̊

ỹ
t (36c)

y∗t = y∗t−1 + gt−2 + ε̊
y∗
t (36d)

gt−1 = gt−2 +ε
g
t−1. (36e)

Given the estimate of λg from Stage 1, the vector of Stage 2 parameters to be estimated by
MLE is:43

θ2 = [ay,1, ay,2, ar, a0, ag, bπ , by, σỹ, σπ , σy∗ ]
′. (37)

As in the first stage model in (13), I again use the ring symbol ( ˚ ) on the disturbance terms
in (36c) and (36d) to distinguish them from the i.i.d. error terms of the full model in (1).

Examining the formulation of the Stage 2 model in (36) and comparing it to the full model
in (1), it is evident that Holston et al. (2017) make two ‘misspecification’ choices that are im-
portant to highlight. First, they include gt−2 instead of gt−1 in the trend equation in (36d),
so that the ε̊y∗

t error term is in fact:44

ε̊
y∗
t = ε

y∗
t +

ε
g
t−1 from (36e)︷ ︸︸ ︷

gt−1 − gt−2

= ε
y∗
t +ε

g
t−1. (38)

As a result of this, ε̊y∗
t in (38) follows an MA(1) process, instead of white noise as εy∗

t in
(1d). Moreover, due to the εg

t−1 term in (38), the covariance between the two error terms
in (36d) and (36e) is no longer zero, but rather σ2

g . Thus, treating W in (11) as a diagonal
variance-covariance matrix in the estimation of the second stage model is incorrect.

Second, Holston et al. (2017) do not only add an intercept term a0 to the output gap
equation in (36c), but they also account for only one lag in trend growth gt, and further fail
to impose the ag = −4ar restriction in the estimation of ag. Due to this, the error term ε̊

ỹ
t in

43See Section A.2 in the Appendix for the exact matrix expressions and expansions of the SSM of Stage 2. In
the Q matrix, σg is replaced by λ̂gσy∗ , where λ̂g is the estimate from the first stage model (see (A.17)). The
state vector ξt is initialized using the same procedure as outlined in (12a) and Footnote 27, with the numerical
values of ξ00 and P00 given in (A.22) and (A.23).
44Holston et al. (2017) only report the Q matrix in their documentation, which is a diagonal matrix and takes
the form given in (A.17). In Section A.2 of the Appendix, I show how this matrix is obtained. In Section
A.2.1, the correct Stage 2 model state-space form is provided, applying the same ‘trick’ as used in the Stage 3
state-space model specification. The two Q matrices are listed in (A.17) and (A.25).
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(36c) can now be seen to consist of the following two components:

ε̊
ỹ
t =

missing true model part︷ ︸︸ ︷
−ar(L)4gt − ar(L)zt +ε

ỹ
t −

added Stage 2 part︷ ︸︸ ︷
(a0 + aggt−1)

= −ar(L)zt +ε
ỹ
t︸ ︷︷ ︸

desired terms

−
[
a0 + aggt−1 + ar(L)4gt

]︸ ︷︷ ︸
unnecessary terms

, (39)

where the ‘desired terms’ on the right-hand side of (39) are needed for Holston et al.’s (2017)
implementation of MUE in the second stage, whose logic I will explain momentarily, while
the ‘unnecessary terms’ are purely due to the ad hoc addition of an intercept term, changing
lag structure on gt and failure to impose the ag = −4ar restriction.

To be consistent with the full model specification in (1), the relations in (36c) and (36d)
should have been formulated as:

ay(L)ỹt = ar(L)[rt − 4gt] + ε̊
ỹ
t (40a)

y∗t = y∗t−1 + gt−1 +ε
y∗
t (40b)

so that only the two missing lags of zt from (40a) appear in the error term ε̊
ỹ
t , specifically:

ε̊
ỹ
t = −ar(L)zt +ε

ỹ
t . (41)

Such a specification could have been easily obtained from the full Stage 3 state-space model
form (see Section A.3 in the Appendix) by simply removing the last two row entries of the
state vectorξt in (A.28), and adjusting the H, F, and S matrices in the state and measurement
equations to be conformable with this state vector. This is illustrated in Section A.2.1 in the
Appendix. The ‘correctly specified’ Stage 2 model should have been formulated as:

yt = y∗t + ỹt (42a)

πt = bππt−1 + (1− bπ) πt−2,4 + by ỹt−1 +ε
π
t (42b)

ay(L)ỹt = ar(L)[rt − 4gt] + ε̊
ỹ
t (42c)

y∗t = y∗t−1 + gt−1 +ε
y∗
t (42d)

gt−1 = gt−2 +ε
g
t−1. (42e)

To see why this matters, let us examine how one would implement MUE in the Stage 2
model, following again Holston et al.’s (2017) logic as applied in Stage 1. That is, one would
first need to define a local level model involving zt to be in the same format as in (5). If we
assume for the moment that the true state variables ỹt and gt, as well as parameters ay,1, ay,2

and ar are known, and we ignore the econometric issues that arise when these are replaced
by estimates, then the following local level model from the ‘correctly specified’ Stage 2 model
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in (42c) can be formed:

analogue to GYt in (5a)︷ ︸︸ ︷
ay(L)ỹt − ar(L)[rt − 4gt] =

analogue to βt in (5a)︷ ︸︸ ︷
−ar(L)zt +ε

ỹ
t︸ ︷︷ ︸

ε̊
ỹ
t in (41)

(43a)

−ar(L)∆zt︸ ︷︷ ︸
analogue to
∆βt in (5b)

= −ar(L)εz
t︸ ︷︷ ︸

analogue to
(λ/T)ηt in (5b)

, (43b)

where ay(L)ỹt − ar(L)[rt − 4gt] and −ar(L)zt in (43a) are the analogues to GYt and βt in
(5a), εỹ

t corresponds to ut (but is i.i.d. from the full model assumptions in (1) rather than
an autocorrelated time series process as ut in (5a)), and −ar(L)∆zt and −ar(L)εz

t are the
counterparts to ∆βt and (λ/T)ηt in the state equation in (5b).

The equations in (43) are now in local level model form suitable for MUE. The Stage
2 MUE procedure implemented on this constructed GYt = ay(L)ỹt − ar(L)[rt − 4gt] series
produces the λz = λ/T ratio corresponding to (7), that is:45

λ

T
=
σ̄(∆βt)

σ̄(ε
ỹ
t )

=
σ̄(−ar(L)∆zt)

σỹ
=

ar(1)σz

σỹ
=

arσz

σỹ
. (44)

The last two steps in (44) follow due to ar(1) = ar
2 (1 + 12) = ar and σ̄(εỹ

t ) = σỹ, with σ̄(·)
denoting again the long-run standard deviation. The final term in (44) gives Holston et al.’s
(2017) ratio λz = arσz/σỹ.46 This is the logic behind Holston et al.’s (2017) implementation
of MUE in Stage 2.

However, because Holston et al. (2017) define the Stage 2 model in ‘misspecified’ form in
(36), ε̊ỹ

t is no longer simply equal to −ar(L)zt +ε
ỹ
t as needed for the right-hand side of (43a),

but now also includes the ‘unnecessary terms’
[
a0 + aggt−1 + ar(L)4gt

]
(see the decomposi-

tion in (39)). What effect this has on the Stage 2 MUE procedure can be seen by first rewriting
aggt−1 as:

aggt−1 =
ag
2 (gt−1 + gt−1)

=
ag
2 (gt−1 + gt−2 +ε

g
t−1︸ ︷︷ ︸

gt−1 from (36e)

)

= ag(L)gt +
ag
2 ε

g
t−1, (45)

where ag(L) = ag
2 (L + L2). The additional ‘unnecessary terms’ on the right-hand side of (39)

45To make this clear, MUE returns an estimate of λ by using the look-up table on page 354 in Stock and Watson
(1998) to find the closest matching value of one of the four structural break test statistics defined in (9) and (10)
which test for a structural break in the unconditional mean of the constructed GYt series by running a dummy
variable regression of the form defined in (8).
46In Laubach and Williams (2003), λz is curiously defined as the ratio arσz/(σỹ

√
2) (see page 1064, second

paragraph on the right). It is not clear where the extra
√

2 term comes from.
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become:

−
[
a0 + aggt−1 + ar(L)4gt

]
= −[a0 +

aggt−1 from (45)︷ ︸︸ ︷
ag(L)gt +

ag
2 ε

g
t−1 +ar(L)4gt]

= −[a0 +
(ag+4ar)

2 (gt−1 + gt−2) +
ag
2 ε

g
t−1]. (46)

In Holston et al.’s (2017) Stage 2 model in (36), the constructed local level model takes
then the form:

misspecified analogue to GYt in (43a)︷ ︸︸ ︷
ay(L)ỹt − a0 − ar(L)rt − aggt−1 =

analogue to βt︷ ︸︸ ︷
−ar(L)zt +ν̊

ỹ
t (47a)

−ar(L)∆zt︸ ︷︷ ︸
analogue

to ∆βt

= −ar(L)εz
t︸ ︷︷ ︸

analogue
to (λ/T)ηt

, (47b)

where ν̊ ỹ
t in (47a) is the misspecified analogue to εỹ

t in (43a) and is defined as:

ν̊
ỹ
t = ε

ỹ
t − [a0 +

(ag+4ar)
2 (gt−1 + gt−2) +

ag
2 ε

g
t−1]. (48)

As can be seen, the error term ν̊
ỹ
t in (48) will not be white noise. Moreover, forming the MUE

λ/T ratio from the model in (47) in the same way as in (44) leads to:

λ

T
=
σ̄(−ar(L)∆zt)

σ̄(ν̊
ỹ
t )

=
ar(1)σz

σ̄(ν̊
ỹ
t )

=
arσz

σ̄(ν̊
ỹ
t )

, (49)

and now requires the evaluation of the long-run standard deviation of ν̊ ỹ
t in the denomi-

nator. This quantity will not be equal to σỹ as from the ‘correctly’ specified Stage 2 model
defined in (42). Note here that even if (ag + 4ar) = 0 in the data, the long-run standard
deviation of ν̊ ỹ

t will also depend on ag
2 σg because of the extra ag

2 ε
g
t−1 term in ν̊ ỹ

t , so that:

λz =
λ

T
=

arσz

(σỹ + agσg/2)
. (50)

Thus, MUE applied to Holston et al.’s (2017) ‘misspecified’ Stage 2 model defined in (36) can-
not recover the ratio of interest λz = arσz/σỹ as claimed. For the reader’s convenience, the
correctly and misspecified Stage 2 model equations are listed side by side in (51) below:

Correctly specified HLW misspecified

yt = y∗t + ỹt yt = y∗t + ỹt (51a)

bπ(L)πt = by ỹt−1 +ε
π
t bπ(L)πt = by ỹt−1 +ε

π
t (51b)

ay(L)ỹt = ar (L) [rt − 4gt] + ε̊
ỹ
t ay(L)ỹt = a0 + ar (L) rt + aggt−1 + ε̊

ỹ
t , (51c)

y∗t = y∗t−1 + gt−1 +ε
y∗
t y∗t = y∗t−1 + gt−2 + ε̊t

y∗ (51d)

gt−1 = gt−2 +ε
g
t−1 gt−1 = gt−2 +ε

g
t−1. (51e)
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Parameter estimates corresponding to the various Stage 2 models are report in Table 9.
The first and second columns show replicated results which are based on Holston et al.’s
(2017) R-Code as well as my own implementation and serve as reference values. In the third
column under the heading ‘MLE(σg)’, σg is estimated directly by MLE together with the
other parameters of the model without using λ̂g from Stage 1.47 The last column under the
heading ‘MLE(σg).M0’ reports estimates obtained from the ‘correctly specified’ Stage 2 model
defined in (42), where σg is once again estimated directly by MLE.

The results in Table 9 can be summarized as follows. First, there exists no evidence of
‘pile-up’ problems when estimatingσg directly by MLE; not in the ‘misspecified’ Stage 2 model,
nor in the ‘correctly specified’ one. This finding is consistent with the earlier results from the
first stage. In fact, the Stage 2 MLE of σg is nearly 50% larger than the estimate implied by
λ̂g from MUE in Stage 1. The Stage 1 model is redundant. Second, the point estimate of ag is
about eight times the magnitude of −ar, so that (ag + 4ar) ≈ 0.3132 6= 0. And third, despite
the different Stage 2 model specifications, the resulting parameter estimates as well as the
log-likelihood values across the three different models in columns two to four of Table 9
are rather similar. This suggests that, overall, the data are uninformative about the model
parameters.48

Note here that, although the parameter estimates from the various Stage 2 models are
similar, it is the estimate of λz from Holston et al.’s (2017) implementation of MUE on the
‘misspecified’ Stage 2 model that are spuriously large and very different to the ones obtained
from the ‘correctly specified’ Stage 2 model. This is what is shown in the next section.

4.2.1. Holston et al.’s (2017) implementation of MUE in Stage 2

Conceptually, MUE in Stage 2 needs to be implemented following the same logic as in Stage
1 before. First, one needs to construct an observable counterpart to GYt as given in (43a) from
the Stage 2 model estimates. Then, the four structural break tests described in Section 3.1
are applied to test for a break in the unconditional mean of (the AR filtered) GYt series. This
corresponds to Step (ii) in Stock and Watson’s (1998) procedural description. Constructing
a local level model of the form described in (43) enables us to implement MUE to yield the
ratio λ/T = σ̄(∆βt)/σ̄(ε

ỹ
t ) as defined in (44).

Holston et al.’s (2017) implementation of MUE in Stage 2, nonetheless, departs from this
description in two important ways. First, instead of using the ‘correctly specified’ Stage 2
model defined in (42), they work with the ‘misspecified’ model given in (36). Second, rather
than leaving the ay,1, ay,2, ar, ag and a0 parameters fixed at their Stage 2 estimates and con-
structing the observable counterpart to GYt in (47a) only once outside the dummy variable

47I use the same initial values for the parameter and the state vector (mean and variance) as in the exact
replication of Holston et al. (2017). Using a diffuse prior instead leads to only minor differences in the numerical
values. The implied λg and σg estimates are shown in brackets and were computed from the ‘signal-to-noise
ratio’ relation λg = σg/σy∗ .
48This is also the case for Euro Area, the U.K., and Canadian data (see Buncic, 2020).
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regression loop, Holston et al. (2017) essentially ‘re-estimate’ these parameters by including
the vector X t defined in (53) below as a extra regressor in the structural break regression
in (54). This is not only entirely unnecessary, as the ay,1, ay,2, ar, ag and a0 parameters are
already known from the Stage 2 model estimates. Moreover, it deviates from the simulation
set-up used by Stock and Watson (1998) to generate the look-up values in Table 3 of their
paper. In the ‘misspecified’ Stage 2 model, the additional regressors substantially increase the
size and variability of not only the dummy variable coefficients ζ̂1 in (54), but also the corre-
sponding F statistics used in the computation of the MW, EW, and QLR structural break test
statistics. Recall that these break statistics are then ‘looked-up’ in Table 3 of Stock and Watson
(1998) to obtain the MUE of λz.

It will be usefully here to list the main steps that Holston et al. (2017) follow in their
implementation of MUE in the second stage to arrive at an estimate of λz.

(I ) Given the Stage 2 estimate θ̂2 from the model in (36), use the Kalman Smoother to obtain
(smoothed) estimates of the latent state vector ξt = [y∗t , y∗t−1, y∗t−2, gt−1]

′. Then form
estimates of the cycle variable and its lags as ˆ̃yt−i|T = (yt−i − ŷ∗t−i|T), ∀i = 0, 1, 2.

(II ) Construct
Yt = ˆ̃yt|T (52)

and the (1× 5) vector

X t = [ ˆ̃yt−1|T , ˆ̃yt−2|T , (rt−1 + rt−2)/2, ĝt−1|T , 1], (53)

where rt is the real interest rate, ĝt−1|T is the Kalman Smoothed estimate of gt−1 and 1 is
a scalar to capture the constant a0 (intercept term).

(III ) For each τ ∈ [τ0, τ1], run the following dummy variable regression analogous to (8):

Yt = X tφ+ζ1Dt(τ) +εt, (54)

where X t is as defined in (53) andφ is a (5× 1) parameter vector. The structural break
dummy variable Dt(τ) takes the value 1 if t > τ and 0 otherwise, and τ = {τ0, . . . , τ1}
is an index of grid points between τ0 = 4 and τ1 = T − 4. Use the sequence of F
statistics {F(τ)}τ1

τ=τ0 on the dummy variable coefficients to compute the MW, EW, and
QLR structural break test statistics needed for MUE.

(IV ) Given the structural break statistics computed in Step (III), find the corresponding λ
values in look-up Table 3 of Stock and Watson (1998) and return the ratio λ/T = λz,
where their preferred estimate of λ is again based on the EW break statistic defined in
(9b) as in the Stage 1 MUE.

In the top and bottom panels of Figure 5 I show plots of the sequences of F statistics
{F(τ)}τ1

τ=τ0 computed from Holston et al.’s (2017) ‘misspecified’ Stage 2 model and the ‘cor-
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rectly specified’ Stage 2 model defined in (42), respectively. Two sets of sequences are drawn
in each panel.49 The first sequence, which I refer to as ‘time varyingφ’ (drawn as a red line in
Figure 5) is constructed by following Holston et al.’s (2017) implementation outlined in Steps
(I) to (III) above. I call this the ‘time varyingφ’ sequence because the ay,1, ay,2, ar, ag and a0

parameters needed to ‘construct’ the observable counterpart to GYt in (47a) are effectively
‘re-estimated’ for each τ ∈ [τ0, τ1] in the dummy variable regression loop due to the inclusion
of the extra X tφ term in (54). For the ‘correctly specified’ Stage 2 model in (42), X t in (53) is
replaced by the (1× 3) vector [ ˆ̃yt−1|T , ˆ̃yt−2|T , (rt−1 + rt−2 − 4{ĝt−1|T + ĝt−2|T})/2].

In the second sequence, labelled ‘constant φ’ in Figure 5 and drawn as a blue line, the
observable counterpart to GYt is computed only once outside the structural break regression
loop, with the dummy variable regression performed without the extra X tφ term in (54), ie.,
it is computed in its ‘original’ form as given in (8).50 More specifically, for the ‘misspecified’
and ‘correctly specified’ Stage 2 models, the observable counterparts to the GYt series are
constructed as:

GYt = ˆ̃yt|T − ây,1 ˆ̃yt−1|T − ây,2 ˆ̃yt−2|T − âr(rt−1 + rt−2)/2− âg ĝt−1|T − â0, (55)

and

GYt = ˆ̃yt|T − ây,1 ˆ̃yt−1|T − ây,2 ˆ̃yt−2|T − âr(rt−1 + rt−2 − 4{ĝt−1|T + ĝt−2|T})/2, (56)

respectively. The ây,1, ây,2, âr, âg, and â0 coefficients are the (full sample) estimates reported
in columns 2 and 4 of Table 9 under the headings ‘Replicated’ and ‘MLE(σg).M0’, with the
corresponding latent state estimates from the respective models.51

As can be seen from Figure 5, the {F(τ)}τ1
τ=τ0 sequences from the ‘correctly specified’ Stage

2 models shown in the bottom panel are not only smaller overall, but they are nearly un-
affected by Holston et al.’s (2017) approach to ‘re-estimate’ the parameters in the structural
break loop. Both, the ‘constantφ’ and the ‘time varyingφ’ versions generate {F(τ)}τ1

τ=τ0 se-
quences that are overall very similar, with their maximum values being around 4.5. For the
‘misspecified’ Stage 2 model shown in the top panel, this is not the case. The variation as well
as the magnitude of {F(τ)}τ1

τ=τ0 from the ‘time varyingφ’ and ‘constantφ’ implementations
are vastly different, with the former having a much higher mean and maximum value.

These large differences in the {F(τ)}τ1
τ=τ0 sequences from the ‘misspecified’ Stage 2 models

also lead to very different estimates of λz. This can be seen from Table 10, which shows the

49The same sequence computed from data updated to 2019:Q2 is shown in Figure A.4 in the Appendix.
50Note that Stock and Watson’s (1998) MUE look-up table values for λwere constructed by simulation with the
structural break test testing the unconditional mean of the GYt series for a break, without any other variables
being included in the regression. This form of the structural break regression is thus compatible with Stock
and Watson’s (1998) look-up table values.
51For instance, ĝt−1|T in (55) is the Kalman Smoothed estimate of trend growth from Holston et al.’s (2017)
‘misspecified’ Stage 2 model, while trend growth ĝt−1|T in (56) is the corresponding estimate from the ‘correctly
specified’ Stage 2 model.
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resulting λz estimates in the top part with the corresponding L, MW, EW, and QLR struc-
tural break test statistics in the bottom part. Table 10 is arranged further into a left and a right
column block, referring to the ‘time varying φ’ and the ‘constant φ’ MUE implementations
for the three different models reported in (9). ‘Replicated’ refers to the baseline replicated
results, ‘MLE(σg)’ corresponds to the ‘misspecified’ Stage 2 model but with σg estimated by
MLE, and ‘MLE(σg).M0’ is from the ‘correctly specified’ Stage 2 model with σg again esti-
mated directly by MLE. The ‘HLW.R-File’ column lists the results from Holston et al.’s (2017)
R-Code. Note that Holston et al. (2017) do not report estimates based on Nyblom’s (1989) L
statistic. The entries in the L rows in Table 10 under ‘HLW.R-File’ thus simply list ‘—’. 90%
confidence intervals for λz and p−values for the structural break tests are reported in square
and round brackets, respectively.52

Consistent with the visual findings from Figure 5, the structural break statistics from the
‘misspecified’ Stage 2 model shown under the ’Replicated’ heading for the ‘time varying φ’
and ‘constant φ’ settings are very different. The MW, EW, and QLR statistics are approx-
imately 4 to 5 times larger under the ‘time varying φ’ setting than under the ‘constant φ’
scenario. Because Nyblom’s (1989) L statistic is constructed as the scaled cumulative sum
of the demeaned ‘GYt’ series and thus does not require the partitioning of data, creation of
dummy variables, or looping over break dates τ , it is not affected by this choice, yielding
the same test statistic of about 0.05 under both settings.

Under the ‘time varyingφ’ setting, the MW, EW, and QLR statistics and Nyblom’s (1989)
L statistic generate vastly different λz estimates. Nyblom’s (1989) L statistic is highly in-
significant with a p−value of 0.87, resulting in a λz estimate of exactly 0 (Nyblom’s (1989)
L statistic is less than 0.118, the smallest value in Stock and Watson’s (1998) look-up Table
3 which corresponds to λ = 0). The MW, EW, and QLR structural break statistics on the
other hand are either weakly significant or marginally insignificant, with p−values between
0.045 and 0.13. These borderline significant structural break statistics generate sizable λz

point estimates between 0.025 and 0.034. The resulting 90% confidence intervals for λz are,
nonetheless, rather wide with 0 as the lower bound, suggesting that these point estimates
are not significantly different from zero.53 Under the ‘constantφ’ setting, the four structural
break statistics and the resulting λz estimates tell a consistent story (see the ‘Replicated’
heading in the right column block). All structural break statistics are highly insignificant,
with their respective λz point estimates being equal to zero.

For the ‘correctly specified’ Stage 2 models shown under the headings ‘MLE(σg).M0’ in
Table 10, the ‘time varyingφ’ and the ‘constantφ’ estimates of λz reflect the visual similarity
of the {F(τ)}τ1

τ=τ0 sequences shown in the bottom panel of Figure 5. The λz point estimates
are of the same order of magnitude, very close to zero (they are exactly equal to zero for

52As in the replication of Stock and Watson’s (1998) results reported in (2), these were again obtained from
their GAUSS files.
53Given the earlier discussion in Section 3.1 and the ARE results in Table 2 of Stock and Watson (1998), we
know that MUE can be a very inefficient estimator.

34



Nyblom’s (1989) L statistic and MW under the ‘constantφ’ setting), and most importantly,
substantially smaller than those constructed from Holston et al.’s (2017) ‘misspecified’ Stage 2
model.54

What is causing this large difference in the {F(τ)}τ1
τ=τ0 sequences between the ‘misspec-

ified’ and ‘correctly specified’ Stage 2 models in the ‘time varying φ’ setting? There are two
components. First, the Kalman Smoothed estimates of the output gap (cycle) ˆ̃yt|T and of
(annualized) trend growth ĝt|T can be quite different from these two models, despite the
parameter estimates and values of the log-likelihoods being very similar. This difference
is more pronounced for the cycle estimate ˆ̃yt|T, particulary towards the end of the sample
period than for the trend growth estimate ĝt|T (see Figure A.2 in the Appendix which shows
a comparison of ˆ̃yt|T and ĝt|T from the ‘misspecified’ and ‘correctly specified’ Stage 2 models).

Second, the parameter restriction (ag + 4ar) on the relationship between the real rate and
trend growth matters. More specifically, when conditioning on X t in (54), it is the restriction
(rt−1 − 4ĝt−1|T) in X t that makes the largest difference to the {F(τ)}τ1

τ=τ0 sequence. To see
this, I show plots of the {F(τ)}τ1

τ=τ0 sequences from various X t constructs corresponding to
the different Stage 2 model specifications in Figure A.3 in the Appendix. I use the ‘correctly
specified’ Stage 2 model’s { ˆ̃yt−i|T}2

i=1 and ĝt−1|T estimates to form three sets of X t vectors for
the dummy variable regressions in (54). These are:

X t = [ ˆ̃yt−1|T , ˆ̃yt−2|T , (rt−1 + rt−2)/2, ĝt−1|T , 1] (57a)

X t = [ ˆ̃yt−1|T , ˆ̃yt−2|T , rt−1, ĝt−1|T , 1] (57b)

X t = [ ˆ̃yt−1|T , ˆ̃yt−2|T , (rt−1 − 4ĝt−1|T)], (57c)

and are labelled accordingly in Figure A.3 (the preceding ‘MLE(σg).M0’ signifies that these
were constructed using the { ˆ̃yt−i|T}2

i=1 and ĝt−1|T estimates from the ‘correctly specified’ Stage
2 model). The corresponding Yt dependent variable for these structural break regressions
also uses the ‘correctly specified’ Stage 2 model’s output gap estimate ˆ̃yt|T. The {F(τ)}τ1

τ=τ0

sequences from Holston et al.’s (2017) ‘misspecified’ and the ‘correctly specified’ Stage 2 models
are superimposed as reference values and are denoted by ‘HLW’ and ‘MLE(σg).M0’.

The plot corresponding to (57a) (orange dashed line in Figure A.3) shows a rather small
difference relative to the ‘HLW’ benchmark (blue solid line). Thus, exchanging { ˆ̃yt−i|T}2

i=1
and ĝt−1|T from Holston et al.’s (2017) ‘misspecified’ Stage 2 model for those from the ‘correctly
specified’ one only has a small impact on the {F(τ)}τ1

τ=τ0 sequence and is most visible over the
1994 to 2000 period. Dropping the second lag in rt from X t in (57b) (see the cyan dotted line
in Figure A.3) also has only a small impact on the {F(τ)}τ1

τ=τ0 sequence. The biggest effect
on {F(τ)}τ1

τ=τ0 has the restriction (rt−1 − 4ĝt−1|T) as imposed in (57c) (green dashed-dotted
line Figure A.3). This is evident from the near overlap with the red solid line corresponding

54In Table A.2 in the Appendix, I present these Stage 2 MUE results for data that was updated to 2019:Q2. The
conclusion is the same.
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to the ‘correctly specified’ Stage 2 model’s {F(τ)}τ1
τ=τ0 sequence. Recall that the only difference

between these two is that an extra lag of (rt−1− 4ĝt−1|T) is added to X t, and that these enter
as an average, viz, X t = [ ˆ̃yt−1|T , ˆ̃yt−2|T , (rt−1 + rt−2 − 4{ĝt−1|T + ĝt−2|T})/2].

4.2.2. What does Holston et al.’s (2017) Stage 2 MUE procedure recover?

Holston et al.’s (2017) Stage 2 MUE procedure implemented on the ‘misspecified’ Stage 2
model leads to spuriously large estimates of λz when the true value is zero. To illustrate
this, I implement two simple simulation experiments.

In the first experiment, I simulate data from the full structural model in (1) using the
Stage 3 parameter estimates of Holston et al. (2017) reported in column one of Table 12 as
the true values that generate the data, but with ‘other factor’ zt set to zero for all t. The
natural rate r∗t in the output gap equation in (1c) is thus solely determined by (annualized)
trend growth, that is, r∗t = 4gt, which implies that λz is zero in the simulated data.55 I then
implement Holston et al.’s (2017) Stage 2 MUE procedure on the simulated data following
steps (I) to (IV ) outlined in Section 4.2.1 above to yield a sequence of S = 1000 estimates of
λz
(
{λ̂s

z}S
s=1

)
.

I use two different scenarios forθ2 in the Kalman Smoother recursions described in Step
(I) to extract the latent cycle as well as trend growth series needed for the construction
of Yt and X t in the dummy variable regression in (54). The first scenario simply takes
Holston et al.’s (2017) empirical Stage 2 estimate θ̂2 as reported in column one of Table 9, and
keeps these values fixed for all 1000 generated data sequences when applying the Kalman
Smoother. In the second scenario, I re-estimate the Stage 2 parameters for each simulated
sequence to obtain new estimates θ̂s

2, ∀s = 1, . . . , S. I then apply the Kalman Smoother using
these estimates to generate the Yt and X t sequences for the regression in (54).

Finally, I repeat the above computations on data that were generated from the full model
in (1) with the natural rate of interest determined by both factors, namely, r∗t = 4gt + zt,
where zt was simulated as a pure random walk, with its standard deviation set at the Stage
3 estimate of σỹ and ar, ie., at σz = λzσỹ/ar ≈ 0.15 (see row σz (implied) of column one in
Table 12). The goal here is to provide a comparison of the range of λz estimates that can
be obtained when implementing Holston et al.’s (2017) Stage 2 MUE procedure on data that

55To implement the simulations from the full Stage 3 model, I need to define a process for the exogenously
determined interest rate in Holston et al.’s (2017) model. For simplicity, I estimate a parsimonious, but well
fitting, ARMA(2, 1) model for the real interest rate series, and then use the ARMA(2, 1) coefficients to generate
a sequence of 229 simulated observations for rt. Recall that Holston et al. (2017) use data from 1960:Q1, where
the first 4 quarters are used for initialisation of the state vector, so that in total 4 + 225 = T observations are
available. The remaining series are simulated from the Stage 3 model given in (1). To get a realistic simulation
path from the Stage 3 model, I initialize the first four data points for the simulated inflation series at their
observed empirical values. For the y∗t series, the HP-filter based trend estimates of GDP (also utilized in the
initialisation of the State vector in Stage 1) are used to set the first four observations. The cycle variable ỹt is
initialized at zero, while trend growth gt is initialized at 0.75, which corresponds to an annualized rate of 3
percent. In the analysis that requires a simulated path of ‘other factor’ zt, ie., when the natural rate is generated
from r∗t = 4gt + zt, the first four entries in zt are initialized at zero. A total of S = 1000 sequences are simulated
with a total sample size of 229 observations, where the first four entries are discarded in later analysis.

36



were generate with and without ‘other factor’ zt in the data generating processes (DGPs) of
the natural rate.

In Table 11, summary statistics of λ̂s
z from the two different DGPs are reported. The left

column block shows results for the two different DGPs when the Stage 2 parameter vector
θ2 is held fixed at the estimates reported in column one of Table 9. The right column block
shows corresponding results when θ2 is re-estimated for each simulated data series. The
summary statistics are the minimum, maximum, standard deviation, mean, and median of
λ̂s

z, as well as the relative frequency of obtaining a value larger than the empirical point es-
timate of Holston et al. (2017). This point estimate and the corresponding relative frequency
are denoted by λ̂HLW

z and Pr(λ̂s
z > λ̂HLW

z ), respectively. To complement the summary statis-
tics in Table 11, histograms of λ̂s

z are shown in Figure 6 to provide visual information about
its sampling distribution.

From the summary statistics in Table 11 as well as the histograms in Figure 6 it can be seen
how similar the λ̂s

z coefficients from these two different DGPs are. For instance, when the
data were simulated without ‘other factor’ zt (ie., λz = 0), the sample mean of λ̂s

z is 0.028842.
When the data were generated from the full model with r∗t = 4gt + zt, the sample mean of λ̂s

z

is only 6.53% higher at 0.030726. Similarly, the relative frequencies Pr(λ̂s
z > λ̂HLW

z ) for these
two DGPs are 45.70% and 49%, respectively. The inclusion of ‘other factor’ zt in the DGP of
the natural rate thus results in only a 3.3 percentage points higher Pr(λ̂s

z > λ̂HLW
z ).56 The

histograms in Figure 6 paint the same overall picture. The Stage 2 MUE implementation has
difficulties to discriminate between these two DGPs.

In a second experiment I simulate DGPs from entirely unrelated univariate ARMA pro-
cesses of the individual components of the Yt and X t series needed for the regressions in
(54). To match the time series properties of the Yt and X t elements given in (52) and (53), I
fit simple low-order ARMA models to ˆ̃yt|T , rt and ĝt|T, and then use these ARMA estimates
to simulate artificial data.57 Finally, I apply Holston et al.’s (2017) Stage 2 MUE procedure
to the simulated data as before, nevertheless starting from Step (II), and thereby skipping
the Kalman Smoother step. The full results from the second experiment are reported in Ta-
ble A.1 and Figure A.1 in the Appendix. These yield magnitudes of λ̂s

z that are similar to
those from the first simulation experiment, with mean estimates being between 0.026117
and 0.031798, and relative frequencies corresponding to Pr(λ̂s

z > λ̂HLW
z ) being between

38.40% and 49.80%.

From these two experiments, it seems that it is Holston et al.’s (2017) procedure itself that
leads to the spuriously large estimates of λz, regardless of the properties of the data.

56When the Stage 2 parameter vectorθ2 is re-estimated for each simulated sequence shown in the right column
block in Table 11, the sample means as well as the relative frequency Pr(λ̂s

z > λ̂HLW
z ) are somewhat lower at

0.025103 and 0.027462, and 33.90% and 39.30%, respectively.
57I use 4 different time series processes for ĝt|T in these simulations. Complete details of the simulation design
are given in Section A.4 of the Appendix.

37



4.3. Stage 3 Model

The analysis so far has demonstrated that the ratios of interest λg = σg/σy∗ and λz = arσz/σỹ

required for the estimation of the full structural model in (1) cannot be recovered from Hol-
ston et al.’s (2017) MUE procedure implemented in Stages 1 and 2. Moreover, since their
procedure is based on the ‘misspecified’ Stage 2 model in (36), it results in a substantially
larger estimate of λz than when implemented on the ‘correctly specified’ Stage 2 model in (42).
This larger estimate of λz in turn leads to a strong downward trend in ‘other factor’ zt. To
show the impact of this on Holston et al.’s (2017) estimate of the natural rate of interest, I
initially report parameter estimates of the full Stage 3 model in Table 12, followed by plots
of filtered estimates of the natural rate r∗t , trend growth gt, ‘other factor’ zt, and the output
gap (cycle) variable ỹt in Figure 7.58

Given estimates of the ratios λg = σg/σy∗ and λz = arσz/σỹ from the previous two stages,
the vector of Stage 3 parameters to be computed by MLE is:

θ3 = [ay,1, ay,2, ar, bπ , by, σỹ, σπ , σy∗ ]
′. (58)

In Table 12, estimates of θ3 are presented following the same format as in Table 4 and Ta-
ble 9 previously. Since I also estimate σg and σz directly together with the other parameters
by MLE without using the Stage 1 and Stage 2 estimates of λg and λz, additional rows are
inserted, with the values in brackets denoting implied estimates. The first two columns
in Table 12 show estimates of θ3 obtained from running Holston et al.’s (2017) R-Code
and my replication. The third and fourth columns (under headings ‘MLE(σg|λ̂HLW

z )’ and
‘MLE(σg|λM0

z )’, respectively) report estimates whenσg is estimated freely by MLE, while λz

is held fixed at either λ̂HLW
z = 0.030217 obtained from Holston et al.’s (2017) ‘misspecified’

Stage 2 model under their ‘time varyingφ’ approach, or at λ̂M0
z = 0.000754 computed from

the ‘correctly specified’ Stage 2 model in (42) with ‘constant φ’. The last column of Table 12
under heading ‘MLE(σg,σz)’ lists the estimates of θ3 when σg and σz are computed directly
by MLE, with the implied values of λg and λz reported in brackets.

The Stage 3 results in Table 12 can be summarized as follows. The MLE of σg does not
‘pile-up’ at zero and is again approximately 50% larger than the estimate implied by the
Stage 1 MUE of λg. That is, σ̂g ≈ 0.045 in the last three columns of Table 12, and thus very
similar in size to the Stage 2 estimates of 0.044 and 0.045 shown in the last two columns
of Table 9. The MLE of σz shrinks numerically to zero, while the estimates of the other
parameters remain largely unchanged. Notice again that the log-likelihood values of the
last three models in Table 12 are very similar, ie., between −514.8307 and −514.2899. Yet,
the corresponding estimates ofσz are either very small at 0 or comparatively large at 0.1371

58Smoothed estimates are shown in Figure 8. In Section A.3 in the Appendix, the expansion of the system
matrices are reported as for the earlier Stage 1 and Stage 2 models. These are in line with the full model
reported in (1). As before, the state vector ξt is initialized using the same procedure as outlined in (12a) and
Footnote 27, with the numerical values of ξ00 and P00 given in (A.35) and (A.36).
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when implied from the ‘misspecified’ Stage 2 model’s λ̂HLW
z estimate. The σ̂z coefficient from

the ‘correctly specified’ Stage 2 model is 0.0037 and thereby nearly 40 times smaller than from
the ‘misspecified’ Stage 2 model.

The findings from Table 12 are mirrored in the filtered estimates of r∗t , gt, zt and ỹt plotted
in Figure 7. The ‘MLE(σg|λM0

z )’ and ‘MLE(σg,σz)’ estimates are visually indistinguishable.
Unsurprisingly, out of the four estimates, ‘other factor’ zt is overall most strongly affected by
the two different λz values that are conditioned upon, showing either vary large variability
and a pronounced downward trend in zt, or being close to zero with very little variation (see
panel (c) in Figure 7). The effect on the estimate of the natural rate is largest in the immediate
aftermath of the global financial crisis, namely, from 2010 onwards. Interestingly, the output
gap estimates shown in panel (d) of Figure 7 are quite similar, with the largest divergence
occurring after 2012. The three trend growth estimates in panel (b) of Figure 7 where σg

is estimated directly by MLE are visually indistinguishable. Trend growth estimated from
Holston et al.’s (2017) Stage 1 MUE of λg is larger from 2009 to 2014. In comparison to the
plots shown in panel (c) of Figure 2, the drop in all four trend growth estimates following
the financial crisis seems exaggerated. The pure backward looking nature of the Kalman
Filtered gt series exacerbates the effect of the decline in GDP during the financial crisis on
the trend growth estimates after the crisis.59

5. Other issues

There are other issues with Holston et al.’s (2017) structural model in (1) that make it unsuit-
able for policy analysis. For instance, the policy rate it is included as an exogenous variable.
With r∗t = 4gt + zt, and ‘other factor’ zt the ‘free’ variable due to gt being driven by GDP, zt

effectively matches the ‘leftover’ movements in the interest rate to make it compatible with
trend growth in the model. Since the central bank has full control over the policy rate, it
can set it to any desired level and the model will produce a natural rate through ‘other fac-
tor’ zt that will match it. Also, there is nothing in the structural model of (1) that makes
the system stable. For the output gap relation in (1c) to be stationary, the real rate cycle
r̃t = rt − r∗t = (it − π e

t ) − (4gt + zt) must be I(0), yet there is no co-integrating relation
imposed anywhere in the system to ensure that this holds in the model.60

A broader concern in the context of policy analysis is the fact that the filtered estimates
of the state vector ξt will be (weighted combinations of the) one-sided moving averages of
the three observed variables that enter the state-space model; namely, it, yt, and πt.61 This

59Estimation results using updated data up to 2019:Q2 together with corresponding plots of filtered (and
smoothed) estimates are reported in Table A.3, Figure A.5 and Figure A.6 in Section A.3 of the Appendix.
60This insight is not new and has been discussed in, for instance, Pagan and Wickens (2019) (see pages 21− 23).
When trying to simulate from such a model, with πt being integrated of order 1, the simulated paths of the real
rate rt = it − π e

t can frequently diverge to very large values, even with samples of size T = 229 observations
(the empirical sample size).
61Smoothed estimates will be (weighted combinations of the) two-sided moving averages of the observables.
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can be seen by writing out the Kalman Filtered estimate of the state vector as:62

ξ̂ t|t = ξ̂ t|t−1 + Pt|t−1H′(HP′t|t−1H′ + R)−1︸ ︷︷ ︸
Gt

(yt −Axt −Hξ̂ t|t−1)

= ξ̂ t|t−1 + Gt(yt −Axt −Hξ̂ t|t−1)

= (I−GtH)ξ̂ t|t−1 + Gt(yt −Axt)

= (I−GtH)F︸ ︷︷ ︸
Φt

ξ̂ t−1|t−1 + Gt (yt −Axt)︸ ︷︷ ︸
ȳt

= Φtξ̂ t−1|t−1 + Gtȳt,

which is a (linear) recursion in ξ̂ t|t and can thus be rewritten as:

= Ψtξ0|0 +
t−1∑
i=0

ΨiGt−i︸ ︷︷ ︸
ωti

ȳt−i

= Ψtξ0|0 +
t−1∑
i=0

ωtiȳt−i, (59)

where Ψi =
∏i−1

n=0 Φt−n, ∀i = 1, 2, . . . , Ψ0 = I, I is the identity matrix, ξ̂ t|t−1 = Fξ̂ t−1|t−1

is the predicted state vector, ξ0|0 is the prior mean, Pt|t−1 = FPt−1|t−1F + Q is the predicted
state variance, ωti = ΨiGt−i is a time varying weight matrix, and ȳt is a (2 × 1) vector
containing the observed variables yt, πt, and it.63

This creates the following two issues. First, since the nominal interest rate it is directly
controlled by the central bank and the natural rate r∗t is constructed as a moving average of it

(and the other observed variables), a circular relationship can be seen to evolve. Any central
bank induced change in the policy rate it is mechanically transferred to the natural rate r∗t via
the Kalman Filtered estimate of the state vector ξ̂ t|t in (59). This confounds the relationship
between r∗t and it, making it impossible to address ‘causal’ policy questions of interest such
as: “Is the natural rate low because it is low, or is it low because the natural rate is low?”, as one

See also Durbin and Koopman (2012), who write to this on page 104: ”It follows that these conditional means are
weighted sums of past (filtering), of past and present (contemporaneous filtering) and of all (smoothing) observations.
It is of interest to study these weights to gain a better understanding of the properties of the estimators as is argued in
Koopman and Harvey (2003). ... . In effect, the weights can be regarded as what are known as kernel functions in the field
of nonparametric regression; ... .”
62I again use the notation of Hamilton (1994), see pages 394-395, with the matrices A and H however not
transposed to be consistent with the earlier notation.
63To understand what is driving the downward trend in ‘other factor’ zt since the early 2000s in the model, one
could examine the weight matrix ωti in (59) more closely to see how it interacts with the observable vector
ȳt = yt −Axt = [a(L)yt − ar(L)rt; bπ (L)πt − by yt]′, where bπ (L) = 1− bπL− 1

3 (1− bπ )(L2 + L3 + L4) is the
lag polynomial capturing the dynamics of inflation. Alternatively, the steady-state P matrix could be computed
recursively as in equation 13.5.3 in Hamilton (1994) to replace Pt|t−1 in the recursions for ξ̂ t|t. The relation in
(59) would then yield ξ̂ t|t = Φtξ0|0 +

∑t−1
i=0 Φ

iGȳt−i, where Φ = (I−GH)F and G = PH′(HP′H′ + R)−1

would be the steady-state analogue to Φt and Gt, with Pt|t−1 replaced by P from the steady-state P matrix.
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follows as a direct consequence from the other.

Second, because of the one-sided moving average nature of the Kalman Filtered estimates
of the state vector, any outliers, structural breaks or otherwise ‘extreme’ observations at the
beginning (or end) of the sample period can have a strong impact on these filtered estimates.
For the (two-sided) Hodrick and Prescott (1997) filter, such problems (and other ones) are
well known and have been discussed extensively in the literature before.64 Kalman Filter
based (one-sided) estimates will also be affected. A simple way to appreciate this is by re-
estimating the model using four different starting dates, while keeping the end of the sample
period the same at 2019:Q2. In Figure 9 I show filtered estimates of r∗t , gt, zt and ỹt for the
four starting dates 1967:Q1, 1972:Q1, 1952:Q2 and 1947:Q1 (smoothed estimates are shown
in Figure 10), together with Holston et al.’s (2017) estimates using 1961:Q1 as the starting
date.65

Why did I choose these starting dates? The period following the April 1960 to February
1961 recession was marked by temporarily (and unusually) high GDP growth, yielding an
annualized mean of 6.07% (median 6.47%), with a low standard deviation of 2.67% from
1961:Q2 to 1966:Q1 (see panel (b) of Figure 2). Having such ‘excessive’ growth at the be-
ginning of the sample period has an unduly strong impact on the filtered (less so on the
smoothed) estimate of trend growth gt in the model. Since both gt and zt enter the natural
rate, this affects the estimate of r∗t . To illustrate the sensitivity of these estimates to this time
period, I estimate the model with data starting 6 years later in 1967:Q1. Also, Holston et al.’s
(2017) Euro Area estimates of r∗t are negative from around 2013 onwards (see the bottom
panel of Figure 3 on page S63 of their paper).66 To show that one can get the same negative
estimates of r∗t for the U.S., I estimate the model with data starting in 1972:Q1 to match the
sample period of the Euro Area. Lastly, I extend Holston et al.’s (2017) data back to 1947:Q1
to have estimates from a very long sample, using total PCE inflation prior to 1959:Q2 in place
of Core PCE inflation and the Federal Reserve Bank of New York discount rate from 1965:Q1
back to 1947:Q1 as a proxy for the Federal Funds rate, as was done in Laubach and Williams
(2003).67 Since inflation was rather volatile from 1947 to 1952, I also estimate the model with

64There exists a large literature on the HP filter and its problems (one of the more recent papers is by Hamilton
(2018)), and it is not the goal to review or list them here. The paper by Phillips and Jin (2015) is, nonetheless,
interesting to single out here, in particular the introduction section on pages 2 to 9, as it highlights the recent
public debates by James Bullard, Paul Krugman, Tim Duy and others on the use (and misuse) of the HP filter
in the construction of output gaps for policy analysis. Phillips and Jin (2015) show also that the HP filter fails
to recover the underlying trend asymptotically in models with breaks (see section 4 in their paper), and they
further propose alternative filtering/smoothing methods. In an earlier study, Schlicht (2008) describes how
to deal with structural breaks and missing data. In the policy literature, one rarely sees problems such as
structural breaks being addressed when using the HP filter.
65In all computations, I use Holston et al.’s (2017) R-Code and follow exactly their three stage procedure as
before to estimate the factors of interest.
66This negative estimate in r∗t is driven by an excessively large and volatile estimate of ‘other factor’ zt. Some
commentators have attributed the larger decline in the natural rate to a stronger manifestation of ‘secular stag-
nation’ in the Euro Area than in the U.S.
67Note that from the quarterly CORE PCE data it will be possible to construct annualized inflation only from
1947:Q2 onwards. To have an inflation data point for 1947:Q1, annual core PCE data (BEA Series ID: DPC-
CRG3A086NBEA) that extends back to 1929 was interpolated to a quarterly frequency and subsequently used
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data beginning in 1952:Q2 to exclude this volatile inflation period from the sample.

Panel (a) in Figure 9 shows how sensitive the natural rate estimates to the different start-
ing dates are, particularly at the beginning of Holston et al.’s (2017) sample, namely, from
1961 until about 1980, and at the end of the sample from 2009 onwards. Negative natural rate
estimates are now also obtained for the U.S. when the sample starts in 1972:Q1 (or 1967:Q1).
From panel (b) in Figure 9 it is evident that the filtered trend growth estimates are the pri-
mary driver of the excessive sensitivity in r∗t over the 1961 to 1980 period. For instance,
in 1961:Q1, these estimates can be as high as 6 percent, or as low as 3 percent, depending
on the starting date of the sample. Also, the differences in the estimates stay sizeable until
1972:Q1, before converging to more comparable magnitudes from approximately 1981 on-
wards. Apart from the estimate using the very long sample beginning in 1947:Q1 (see the
blue line in panel (b) of Figure 9), the other four series remain surprisingly similar, even
during and after the financial crisis period, that is, from mid 2007 to the end of the sample
in 2019:Q2. Thus, the ‘front-end’ variability of the natural rate estimates are driven by the
‘front-end’ variability in the estimates of trend growth gt.

In panel (b) of Figure 9, I add MUE and MMLE (smoothed) estimates of trend growth
from Stock and Watson’s (1998) model in (4), and also estimates from the (correlated) UC
model in (28) to provide long-sample benchmarks of trend growth from simple univariate
models to Holston et al.’s (2017) estimates. These are the same as plotted earlier in panels
(b) and (c) of Figure 2. To avoid cluttering the plot with additional lines, I do not plot the
mean and median estimates computed over the more recent expansion periods as was done
in Figure 2. Note, however, that the MUE estimate overlaps with the mean and median of
GDP growth from 2009:Q3 onwards and can thus be used as a representative for these model
free ‘average’ estimates of trend growth since the end of the financial crisis. Comparing
the Kalman Filter based estimates from the various starting dates to the (smoothed) MUE,
MMLE, and UC ones shows how different these are, particularly, from 2009:Q3 until the
end of the sample. In the immediate post-crisis period, the (one-sided) filter based estimates
are ‘pulled down’ excessively by the sharp decline in GDP and ‘converge’ only slowly at the
very end of the sample period towards the three long-sample benchmarks. Trend growth is
severely underestimated from 2009:Q3 onwards, and this affects the estimate of r∗t .

In Figure A.7 in the Appendix, I show plots of (real) GDP growth and the recursively es-
timated mean of GDP growth over the post financial crisis period from 2009:Q3 to 2019:Q2.
Trend growth stays rather stable between 2% and 3% over nearly the entire period, settling
at around 2.25% in 2014:Q2 and remaining at that level. Moreover, it is never close to the
filtered estimate of Holston et al. (2017) from 2009:Q3 to 2014:Q3. In Figure A.8, I plot the
mean as well as median 10 year ahead annual-average (real) GDP growth forecasts from
the Survey of Professional Forecasters (SPF) from 1992 to 2020 to have another benchmark

to compute (annualized) quarterly inflation data for 1947:Q1. Since Holston et al.’s (2017) R-Code requires 4
quarters of GDP data prior to 1947:Q1 as initial values, annual GDP (BEA Series ID: GDPCA) was interpolated
to quarterly data for the period 1946:Q1 1946:Q4.
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series.68 These forecasts also remain fairly stable between 2% and 3% from 2008 until 2017,
and drift only marginally lower towards the very end of the sample. Finally, in Figure A.9,
Vanguard investor survey based 3 year and 10 year ahead expectations of (real) GDP growth
from February 2017 to April 2020 are plotted. These are taken from Figure II on page 5 in
Giglio et al. (2020). The 10 year expected growth rate shown in the right panel of Figure A.9
fluctuates (mainly) between 2.8% and 3.2%. All three plots suggest that, following the fi-
nancial crisis, trend growth in GDP is unlikely to have dropped to the value reported in
Holston et al. (2017).

Looking at the estimates of ‘other factor’ zt in panel (c) of Figure 9, we can see that it is
the end of the sample, namely, from 2009:Q1 to 2019:Q2, that is most strongly affected by
the different starting dates.69 In particular the two estimates that are based on the shorter
samples starting in 1967:Q1 and 1972:Q1, which exclude the ‘excessive’ GDP growth period
at the beginning of Holston et al.’s (2017) sample, generate substantially more negative zt

estimates. For instance, in 2009:Q1, the 1972:Q1 based estimate is −2.87 while Holston et
al.’s (2017) is −1.22. Also, the zt estimates from the shorter samples are well below −2 over
nearly the entire 2014:Q4 to 2019:Q2 period.70 What is particularly surprising to observe
here is how stable (and very close to zero) the estimates of zt from the four earlier sample
starts are from 1947:Q1 until about 1971:Q3. Given the change in demographics and popula-
tion growth, as well as factors related to savings and investment following the end of World
War II, one would expect zt to reflect these changes. It is only from 1990:Q2 onwards that a
decisive downward trend in zt becomes visible.

Holston et al. (2017) initialize the state vector for the zt elements of ξt at zero. This choice
leads to an anchoring effect and implies that the natural rate is driven solely by trend growth
at the beginning of the sample. In the data, it acts as a normalisation. Since zt is specified to
evolve as a driftless random walk, an initialisation at zero seems sensible from an economet-
ric perspective. Nevertheless, if one is to view ‘other factor’ zt as a factor which is meant to
capture underlying structural changes in demographics, saving and investment rates, and
the likes, in the economy, it needs to be aligned with such trends in the empirical data of
the economy that is modelled. That is, the normalization date needs to be justified from an
economic perspective. Due to its large impact on the downward trend in the estimates of
the natural rate, understanding how the zero initialisation affects the estimates and what
exactly zt captures is crucial from a policy perspective.

Why does the estimate of σz shrink towards zero, that is, from MLE and the ‘correctly

68The data were downloaded from: https://www.philadelphiafed.org/research-and-data/real-time-center/
survey-of-professional-forecasters/data-files/rgdp10 (accessed on the 27th of July, 2020).
69There is also some variability beginning in the 70s until the 80s, but this variation seems to be largely due to
the noisier nature of the filtered estimates and is not visible from the more efficient smoothed estimates shown
in panel (c) of Figure 10. The differentiation here is not important. The point to take away from this discussion
is that the period following the financial crisis yields very different estimates from the two shorter samples,
irrespective of whether smoothed or filtered estimates are used in the construction of the natural rate.
70This is even more pronounced in the smoothed estimates of zt shown in panel (c) of Figure 10.
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specified’ Stage 2 model MUE? My conjecture is that the empirical data reject the I(1) restric-
tion on ‘other factor’ zt. To test if the zt series indeed follows an I(1) process, we can examine
the time series properties of the difference between the observed GDP growth series ∆yt and
the real rate rt, that is, the (∆yt − rt) series. From Holston et al.’s (2017) structural model in
(1) we know that:

rt = r∗t + r̃t

= gt + zt + r̃t

= gt−1 +ε
g
t + zt + r̃t, (60)

where r̃t is the real rate gap defined earlier, which must be an I(0) process for the output
gap equation to be stationary. From the relations in (21) and (1d) we then obtain

∆yt = gt−1 +ε
y∗
t + ∆ỹt, (61)

so that the difference between real GDP growth ∆yt in (61) and the real rate in (60) is:

(∆yt − rt) = (gt−1 +ε
y∗
t + ∆ỹt)− (gt−1 +ε

g
t + zt + r̃t)

= ∆ỹt − r̃t +ε
y∗
t −ε

g
t︸ ︷︷ ︸

stationary ARMA

− zt, (62)

where the variables in the first block on the right hand side of (62) will be the sum of two
stationary ARMA terms (the two gaps) and two uncorrelated error terms (εy∗

t and εg
t ), while

zt is I(1). In the model we thus have that (∆yt − rt) is I(1).

In Figure 11 I show time series plots of ∆yt with rt superimposed in Panel (a) in the
top of the figure. The GDP growth minus real rate series (∆yt − rt) is plotted in Panel (b),
with the autocorrelation function (ACF) and partial autocorrelation function (PACF) plots
of (∆yt − rt) in Panel (c) in the bottom. Both, the time series plot in Panel (b) as well as the
ACF and PACF plots in Panel (c) give the visual impression of a stationary (∆yt − rt) series,
with a fast decaying correlation structure. The first order autocorrelation coefficient is 0.576.
More formal unit-root tests confirm that the null hypothesis of a unit-root in (∆yt − rt) is
strongly rejected.71 Either ‘other factor’ zt is stationary, or it does not appear in (∆yt − rt) at
all, which is only possible if σz is zero.72 This supports the MLE’s and the correct Stage 2
model’s MUE results. From Panel (a) in Figure 11 it is also visible that the real rate remained
well below real GDP growth for an extended period of time in the aftermath of the financial
crisis; arguably, the longest stretch in the sample, with only the period following the Dotcom
bubble showing some similarities.

A final comment on Holston et al.’s (2017) choice of reporting filtered (as opposed to

71Augmented Dickey-Fuller and Elliott et al. (1996) DF-GLS PT and t−tests yield test statistics of −5.33, 0.58,
and −5.30, which are all substantially lower than their respective 1% critical values of −3.46, 1.92, and −2.58.
72Note again that zt is initialized at 0, so that a σz = 0 implies zt = 0 for all t.
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smoothed) estimates of the latent states is in order. It is well know that the mean squared
error (MSE) of the filtered states is in general larger than from the smoothed ones (see the
discussion on page 151 in Harvey (1989)). The larger variability in the filtered states is visible
from the estimates of r∗t , gt and zt, and less so from the output gap (cycle) estimates. More-
over, reporting filtered estimates precludes the use of a diffuse prior for the I(1) variables
in the state vector, since it creates extreme volatility in the filtered estimates of the states at
the beginning of the sample period. This is not the case with the smoothed estimates. While
it is sometimes stated that filtered states are ‘real time’ estimates, and are thus more relevant
for policy analysis, one can see that this argument is invalid in this model. Not only are the
parameter estimates of the model, ie., the θ̂3 in (58), based on full sample information, the
GDP and PCE inflation data are not real time data, that is, data that were available to policy
makers at time t < T. Reporting filtered (one-sided) estimates of the states as in Holston et
al. (2017) (or on the FRBNY website) gives a misleading visual impression of the magnitude
of the natural rate and trend growth.

6. Conclusion

Holston et al.’s (2017) implementation of Stock and Watson’s (1998) Median Unbiased Esti-
mation (MUE) in Stages 1 and 2 of their procedure to estimate the natural rate of interest
from a larger structural model is unsound. I show algebraically that their procedure cannot
recover the ratios of interest λg = σg/σy∗ and λz = arσz/σỹ needed for the estimation of the
full structural model of interest. Holston et al.’s (2017) implementation of MUE in Stage 2 of
their procedure is particularly problematic, because it is based on a misspecified model as
well as an incorrect MUE procedure that spuriously amplifies their estimate of the signal-to-
noise λz. This has a direct and consequential effect on the severity of the downward trending
behaviour of ‘other factor’ zt and thereby the magnitude of the estimate of the natural rate.

Correcting their Stage 2 model and the implementation of MUE leads to a substantially
smaller estimate of λz of close to zero, and a substantial reduction in the downward trend of
‘other factor’ zt and the natural rate. The correction that is applied is quantitatively important.
It shows that the estimate of λz based on the correctly specified Stage 2 model is statistically
highly insignificant. The resulting filtered estimates of zt are very close to zero for the entire
sample period, highlighting the lack of evidence of ‘other factor’ zt being important for the
determination of the natural rate in this model. Obtaining an accurate estimate of trend
growth for the measurement of the natural rate is therefore imperative. Simple alternative
estimates of trend growth that I construct suggest that the ones in Holston et al.’s (2017) are
too low, particularly in the immediate aftermath of the global financial crisis.

I discuss various other issues with Holston et al.’s (2017) model of the natural rate that
make it unsuitable for policy analysis. For instance, Holston et al.’s (2017) estimates are
extremely sensitive to the starting date of the sample used to estimate the model. Using
data beginning in 1972:Q1 (or 1967:Q1) leads to negative estimates of the natural rate, just
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as with their Euro Area estimates. These negative estimates are again driven purely by
the exaggerated downward trending behaviour of ‘other factor’ zt. Moreover, due to the
Kalman Filtered (or Smoothed) estimates of the state vector being a function of all observable
variables that enter into the model, with the central bank controlled nominal interest rate
being one of these, a confounding effect between r∗t and it will arise, because any central
bank induced change in the policy rate it is mechanically transferred to the natural rate.
This makes it impossible to answer ‘causal’ questions regarding the relationship between r∗t
and it, as one responds to changes in the other. The entire set-up of the model is such that
‘other factor’ zt acts as a ‘plug-variable’ to ensure a zero mean in the output gap equation. In
this model, policy makers simply need to raise the policy rate for a higher natural rate to be
realized.
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Figure 2: Inflation, interest rates, and GDP growth (annualized) from 1947:Q1 to 2019:Q2.



Table 1: Summary statistics of GDP growth over various sub-periods and expansion periods only

Time period Mean Median Stdev T Stderr HAC-Stderr

1947:Q2 − 1981:Q3 3.5746 3.4501 4.6261 138 0.3938 0.4841
1983:Q1 − 2001:Q1 3.6419 3.6862 2.2956 73 0.2687 0.4016
1947:Q2 − 2001:Q1 3.4674 3.4809 4.0406 216 0.2749 0.3530

1947:Q2 − 1948:Q4 2.7952 2.2850 3.4072 7 1.2878 1.2530
1950:Q1 − 1953:Q2 7.3471 7.1194 4.9276 14 1.3169 1.7060
1954:Q3 − 1957:Q3 3.9390 3.9005 3.6537 13 1.0134 1.2985
1958:Q3 − 1960:Q2 5.3858 8.2510 4.7796 8 1.6898 1.7682
1961:Q2 − 1969:Q4 4.7809 4.3428 2.9850 35 0.5046 0.6104
1971:Q1 − 1973:Q4 4.9622 4.0550 3.8234 12 1.1037 0.9041
1975:Q2 − 1980:Q1 4.1795 2.9423 3.6637 20 0.8192 0.7484
1980:Q4 − 1981:Q3 4.2348 6.0763 4.9889 4 2.4944 1.9604
1983:Q1 − 1990:Q3 4.1711 3.8099 2.2194 31 0.3986 0.6300
1991:Q2 − 2001:Q1 3.5522 3.6291 1.8873 40 0.2984 0.3073

2002:Q1 − 2007:Q4 2.8546 2.4710 1.4995 24 0.3061 0.3324
2009:Q3 − 2019:Q2 2.2864 2.2528 1.4740 40 0.2331 0.1946

Notes: This table reports estimates of trend growth computed as the ‘average’ of annualized GDP growth computed
over various sub-periods and expansion periods only. Columns 2 to 5 report means, medians, standard deviations (Stdev)
and sample sizes (T) for the different sub-periods that are listed in column 1. The last two columns provide simple
(Stderr) and HAC robust (HAC-Stderr) standard errors of the sample mean. The first three rows show time periods that
include recession as well as expansion periods over which GDP growth was larger on average and/or more volatile than
the last two rows (excluding the global financial crisis recession period). The ten rows in the middle provide summary
statistics from 1947:Q2 to 2001:Q1 for expansion periods only.



Table 2: Replicated results of Tables 4 and 5 in Stock and Watson (1998)

Test Statistic p−value λ 90% CI σ∆β 90% CI

L 0.2094 0.2500 4.0559 [0, 19.36] 0.1303 [0, 0.62]
MW 1.1588 0.2850 3.4335 [0, 18.76] 0.1103 [0, 0.60]
EW 0.6821 0.3250 3.0712 [0, 17.01] 0.0987 [0, 0.54]
QLR 3.3105 0.4800 0.7786 [0, 13.26] 0.0250 [0, 0.42]

Parameter MPLE MMLE MUE(0.13) MUE(0.62) SW.GAUSS

σ∆β 0 0.04440098 0.13 0.62 0.13
σε 3.85199480 3.85859423 3.84661923 3.78210658 3.84661917
AR(1) 0.33708321 0.34025234 0.33501453 0.31544472 0.33501454
AR(2) 0.12890328 0.13074607 0.12742313 0.12015642 0.12742309
AR(3) −0.00917384 −0.00725108 −0.01017060 −0.01488988 −0.01017052
AR(4) −0.08564442 −0.08247862 −0.08680297 −0.09156066 −0.08680298
β00 1.79589936 — 2.44099926 2.67150007 2.44099940

Log-likelihood −539.77274703 −547.48046450 −540.69267706 −544.90718114 −540.69267706

Notes: This table reports replication results that correspond to Tables 4 and 5 in Stock and Watson (1998) on page 354.
The top part of the table shows the 4 different structural break test statistics together with their p−values in the first
two columns, followed by the corresponding MUE estimates of λ with 90% CIs in square brackets. The last two columns
show the implied σ∆β estimate computed from T−1λ×σε/a(1) and 90% CIs in square brackets. The first two columns of
the bottom part of the table report results from Maximum Likelihood based estimation, where MPLE estimates the initial
value of the state vector β00, while MMLE uses a diffuse prior for the initial value of the state vector with mean zero and
the variance set to 106. Columns under the heading MUE(0.13) and MUE(0.62) show Median Unbiased Estimates when
σ∆β is held fixed at 0.13, respectively, 0.62, which correspond to the estimate of σ∆β when λ is computed using Nyblom’s
(1989) L test (and its upper 90% CI). The last column under the heading SW.GAUSS lists the corresponding MUE(0.13)
estimates obtained from running Stock and Watson’s (1998) GAUSS code. The row Log-likelihood displays the value
of the log-likelihood at the reported parameter estimates. The Matlab file SW1998 MUE replication.m replicates these
results.



0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1947:Q2 1952:Q3 1958:Q1 1963:Q2 1968:Q4 1974:Q1 1979:Q3 1984:Q4 1990:Q2 1995:Q4

-12

-8

-4

0

4

8

12

16

-12

 -8

 -4

0

  4

  8

 12

 16

1947:Q2 1952:Q3 1958:Q1 1963:Q2 1968:Q4 1974:Q1 1979:Q3 1984:Q4 1990:Q2 1995:Q4

Figure 3: Smoothed trend growth estimates of US real GDP per capita.



Table 3: Broader replication results of Tables 4 and 5 in Stock and Watson (1998) using per capita real GDP data
from the Federal Reserve Economic Data database (FRED2)

Test Statistic p−value λ 90% CI σ∆β 90% CI

L 0.0467 0.8950 0.0000 [0, 4.099] 0.0000 [0,0.1092]
MW 0.2514 0.8900 0.0000 [0, 4.296] 0.0000 [0,0.1145]
EW 0.1321 0.9000 0.0000 [0, 3.910] 0.0000 [0,0.1042]
QLR 0.8834 0.9800 0.0000 [0, 0.000] 0.0000 [0, 0.0000]

Parameter MPLE MMLE MUE(σL
∆β) MUE(CI−σL

∆β)

σ∆β 0 0 0 0.10926099
σε 3.86603366 3.87619022 3.86603367 3.87574722
AR(1) 0.31646541 0.32120674 0.31646541 0.32138794
AR(2) 0.14652905 0.14903845 0.14652905 0.14924197
AR(3) −0.11122061 −0.10873408 −0.11122061 −0.10846721
AR(4) −0.09512645 −0.09050024 −0.09512645 −0.08983094
β00 2.12011198 — 2.12011200 2.07784473

Log-likelihood −540.49919714 −548.38308851 −540.49919714 −541.89394940

Notes: This table reports replication results that correspond to Tables 4 and 5 in Stock and Watson (1998) on page
354, but now using real GDP per capita data (2012 chained dollars) obtained from the Federal Reserve Economic Data
database (FRED2) with series ID: A939RX0Q048SBEA. The top part of the table shows the 4 different structural break
test statistics together with their p−values in the first two columns, followed by the corresponding MUE estimates of λ
with 90% CIs in square brackets. The last two columns show the implied σ∆β estimate computed from T−1λ×σε/a(1)
and 90% CIs in square brackets. The first two columns of the bottom part of the table report results from Maximum
Likelihood based estimation, where MPLE estimates the initial value of the state vector β00, while MMLE uses a diffuse
prior for the initial value of the state vector with mean zero and the variance set to 106. Columns under the heading
MUE(σL

∆β) and MUE(CI−σL
∆β) show Median Unbiased Estimates when σ∆β is held fixed again at Nyblom’s (1989) L

test statistic based structural break estimate, respectively, when the upper 90% CI value is used. The row Log-likelihood
displays the value of the log-likelihood at the reported parameter estimates. The sample period is the same as in Stock and
Watson (1998), that is, from 1947:Q2 to 1995:Q4. The Matlab file estimate percapita trend growth v1.m replicates
these results.



Table 4: Stage 1 parameter estimates

θ1
HLW Prior Diffuse Prior

HLW.R-File by ≥ 0.025 Alt.Init.Vals by Free by ≥ 0.025 by Free

ay,1 1.517069 1.517069 1.557667 1.459697 1.646444 1.567830
ay,2 −0.528804 −0.528804 −0.622443 −0.463828 −0.672732 −0.577830
bπ 0.712494 0.712494 0.669957 0.729089 0.717871 0.733063
by 0.025000 0.025000 0.097185 0.005741 0.025000 −0.000947
g 0.776397 0.776396 0.743775 0.779472 0.709483 0.604655
σỹ 0.534943 0.534943 0.405380 0.617190 0.406360 0.474077
σπ 0.807736 0.807736 0.790683 0.811801 0.809171 0.813024
σy∗ 0.511911 0.511910 0.617689 0.418977 0.574747 0.530756

Log-likelihood −531.874714 −531.874714 −531.451446 −531.051066 −536.980336 −535.959612

Notes: This table reports replication results for the Stage 1 model parameter vector θ1 of Holston et al. (2017). The table
is split in two blocks. The left block (under the heading HLW Prior) reports estimation results of the Stage 1 model using
the initialisation of Holston et al. (2017) for the state vector ξt, where ξ00 = [806.45, 805.29, 804.12] and P00 as defined
in (12c). The right block (under the heading Diffuse Prior) uses a diffuse prior for ξt with P00 = 106 × I3, where I3 is
a 3 dimensional identity matrix. In the left block, 4 sets of results are reported. The first column (HLW.R-File) reports
estimates obtained by running Holston et al.’s (2017) R-Code for the Stage 1 model. The second column (by ≥ 0.025)
shows estimation results using Holston et al.’s (2017) initial values for parameter vector θ1 in the optimisation routine,
together with the lower bound restriction by ≥ 0.025. Footnote 32 describes how these initial values were found. The
third column (Alt.Init.Vals) shows estimates when alternative initial values for θ1 are used, with the by ≥ 0.025 restriction
still in place. The fourth column (by Free) reports estimates when the restriction on by is removed. The right column
block displays estimates of θ1 with and without the restriction on by being imposed, but with a diffuse prior on the state
vector. The last row (Log-likelihood) reports the value of the log-likelihood function at these parameter estimates. The
Matlab file Stage1 replication.m computes these results.



Table 5: Stage 1 MUE results of λg for various θ̂1 and structural break tests

λg
HLW Prior Diffuse Prior

HLW.R-File by ≥ 0.025 Alt.Init.Vals by Free by ≥ 0.025 by free

L — 0.0732880 0.0941991 0.0328624 0.0475203 0
MW 0.0651806 0.0651807 0.0894533 0.0314654 0.0418274 0
EW 0.0538690 0.0538691 0.0806758 0.0253835 0.0423790 0
QLR 0.0493818 0.0493818 0.0792015 0.0194289 0.0411877 0

Notes: This table reports Stage 1 estimates of the ratio λg = σg/σy∗ which is equal to Stock and Watson’s (1998) MUE
λ/T for the various estimates of θ1 reported in Table 4 and the four different structural break tests. The table is split into
left and right column blocks as in Table 4. Under the heading HLW.R-File, estimates of λg obtained from running Holston
et al.’s (2017) R-Code are reported for reference. These are computed for the MW, EW and QLR structural break tests
only. The remaining columns report the replicated λg from the various θ1 estimates from Table 4.



Table 6: Stage 1 MUE results of λg after AR(1) filtering ∆ŷ∗t|T as in Stock and Watson (1998)

Test Statistic p−value λ 90% CI λg = λ
T

L 2.2815 0.0050 20.3833 [4.36, 80.00] 0.0906
MW 15.3544 0.0050 20.5840 [4.47, 80.00] 0.0915
EW 8.4581 0.0050 15.9903 [3.53, 52.81] 0.0711
QLR 20.7596 0.0050 14.8164 [3.14, 48.48] 0.0659

Notes: This table reports Stock and Watson’s (1998) MUE estimation results after the constructed
∆ŷ∗t|T variable was AR(1) filtered to remove the serial correlation. The first two columns report the

4 different structural break test statistics together with the corresponding p−values, followed by the
implied MUE estimates of λ with 90% CIs in square brackets. The last column lists Holston et al.’s
(2017) λg = λ

T to facilitate the comparison to the results listed under column one in Table 5.



Table 7: MUE estimates of the transformed Stage 1 model using an AR(4) model for ut

Test Statistic p−value λ 90% CI σg 90% CI

L 0.3162 0.1200 5.914619 [0, 23.95] 0.154213 [0, 0.62]
MW 1.7875 0.1450 5.650431 [0, 23.88] 0.147325 [0, 0.62]
EW 1.0663 0.1800 4.883719 [0, 20.97] 0.127335 [0, 0.54]
QLR 4.6029 0.2850 3.511961 [0, 17.65] 0.091568 [0, 0.46]

Parameter MPLE MMLE MUE(λEW) MUE(λUp
EW)

σg 0 0.10621861 0.12733451 0.54678211
σε 2.99782490 2.98030099 2.97346405 2.90800215
AR(1) 0.28603147 0.27433173 0.26988229 0.24291126
AR(2) 0.16828174 0.16079307 0.15789805 0.14866124
AR(3) −0.02046076 −0.02734562 −0.02996691 −0.03106235
AR(4) 0.06570210 0.05750551 0.05423838 0.06119692
g00 3.02198581 — 4.09740642 5.17204700

Log-likelihood −566.39181043 −573.64230971 −566.57435245 −570.81021839

Notes: This table reports MUE estimation results of the transformed (expressed in local level model form) Stage 1 model,
using an AR(4) process for ut. The top part of the table shows the 4 different structural break test statistics together
with their p−values in the first two columns, followed by the corresponding MUE estimates of λ with 90% CIs in square
brackets. The last two columns show the implied σg estimate computed from T−1λ ×σε/a(1) and 90% CIs in square
brackets. The first two columns of the bottom part of the table report results from Maximum Likelihood based estimation,
where MPLE estimates the initial value of the state vector g00, while MMLE uses a diffuse prior for the initial value of the
state vector with mean zero and the variance set to 106. Columns under the heading MUE(λEW) and MUE(λUP

EW) show
Median Unbiased Estimates when σg is held fixed at its MUE point estimate and upper 90% CI, respectively, from the EW
structural break test. The row Log-likelihood displays the value of the log-likelihood at the reported parameter estimates.
The Matlab file Stage1 local level model SW98 MUE Clark UC.m replicates these results.



Table 8: Parameter estimates of Clark’s (1987) UC model

Parameter Clark’s UC0 Std.error Clark’s UC Std.error

ay,1 1.66886173 0.10948741 1.29544818 0.23535955
ay,2 −0.72428051 0.11242749 −0.56748691 0.21688350
σy∗ 0.58984175 0.05842091 1.15753826 0.22509014
σg 0.04632149 0.02276935 0.03219018 0.02221788
σỹ 0.34626037 0.09727028 0.80950722 0.36461143
Corr(ε̊ỹ

t ,εy∗
t ) 0 — −0.94263135 0.09714541

Log-likelihood −270.00071839 — −269.87504061 —

Notes: This table reports parameter estimates of Clark’s (1987) UC model. Two sets of results are reported. In the left part

of Table 8, parameter estimates and standard errors (Std.errors) from Clark’s UC0 model which assumes Corr(ε̊ỹ
t ,εy∗

t ) = 0
are reported. In the right part, parameter estimates and standard errors for Clark’s correlated UC model are shown, where

Corr(ε̊ỹ
t ,εy∗

t ) is explicitly estimated. Standard errors are computed from the inverse of the Hessian matrix of the log-

likelihood. I use a diffuse prior for the I(1) part of the state vector, with the variance set to 106. The stationary part of the
state vector is initialized at its unconditional mean and variance. I do not estimate the initial value of the state vector. This
is analogous to MMLE in Stock and Watson (1998). The Matlab file Stage1 local level model SW98 MUE Clark UC.m

replicates these results.
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Figure 4: Smoothed trend growth estimates from the modified Stage 1 model.



Table 9: Stage 2 parameter estimates

θ2 HLW.R-File Replicated MLE(σg) MLE(σg).M0

ay,1 1.5139909 1.5139909 1.4735945 1.4947611
ay,2 −0.5709339 −0.5709339 −0.5321668 −0.5531451
ar −0.0736647 −0.0736647 −0.0831539 −0.0755563
a0 −0.2630694 −0.2630694 −0.2548597 —
ag 0.6078666 0.6078666 0.6277124 —
bπ 0.6627428 0.6627428 0.6655286 0.6692919
by 0.0844720 0.0844720 0.0819058 0.0802934
σỹ 0.3582701 0.3582702 0.3636498 0.3742316
σπ 0.7872280 0.7872280 0.7881906 0.7895137
σy∗ 0.5665698 0.5665698 0.5534537 0.5526273
σg (implied) (0.0305205) (0.0305205) 0.0437061 0.0448689
λg (implied) 0.0538690 0.0538690 (0.0789697) (0.0811920)

Log-likelihood −513.5709576 −513.5709576 −513.2849625 −514.1458026

Notes: This table reports replication results for the Stage 2 model parameter vector θ2 of Holston et al. (2017).
The first column (HLW.R-File) reports estimates obtained by running Holston et al.’s (2017) R-Code for the Stage
2 model. The second column (Replicated) shows the replicated results using the same set-up as in Holston et al.’s
(2017). The third column (MLE(σg)) reports estimates when σg is freely estimated by MLE together with the
other parameters of the Stage 2 model, rather than imposing the ratio λg = σg/σy∗ = 0.0538690378 obtained
from Stage 1. The last column (MLE(σg).M0) provides estimates of the ”correctly specified” Stage 2 model in
(42), with σg again estimated directly by MLE. Values in round brackets give the implied σg or λg values when
either λg is fixed or when σg is estimated. The last row (Log-likelihood) reports the value of the log-likelihood
function at these parameter estimates. The Matlab file Stage2 replication.m replicates these results.
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Table 11: Summary statistics of the λz estimates obtained from applying Holston et al.’s (2017) Stage 2 MUE
procedure to simulated data

Summary Statistics
DGPs whenθ2 held fixed at θ̂2 DGPs whenθ2 is re-estimated

r∗t = 4gt r∗t = 4gt + zt r∗t = 4gt r∗t = 4gt + zt

Minimum 0 0 0 0
Maximum 0.101220 0.096427 0.116886 0.116445
Standard deviation 0.016245 0.016582 0.018512 0.019647
Mean 0.028842 0.030726 0.025103 0.027462
Median 0.028394 0.029609 0.022215 0.025115
Pr(λ̂s

z > 0.030217) 0.457000 0.490000 0.339000 0.393000

Notes: This table reports summary statistics of the λz estimates that one obtains from implementing Holston et al.’s (2017)
Stage 2 MUE procedure on artificial data that was simulated from two different data generating processes (DGPs). The
first DGP simulates data from the full structural model in (1) under the parameter estimates of Holston et al. (2017), but
where the natural rate is determined solely by trend growth. That is, in the output gap equation in (1c), r∗t = 4gt. The
second DGP simulates data from the full model of Holston et al. (2017) where r∗t = 4gt + zt. The summary statistics
that are reported are the minimum, maximum, standard deviation, mean, median, as well as the empirical frequency of
observing a value larger than the estimate of 0.030217 obtained by Holston et al. (2017), denoted by Pr(λ̂s

z > 0.030217).
The table shows four different estimates, grouped in 2 block pairs. The left block under the heading ‘DGPs when θ2
is held fixed’ shows the simulation results for the two DGPs when the Stage 2 parameter vector θ2 is held fixed at the
Stage 2 estimates and is not re-estimated on the simulated data. The right block under the heading ‘DGPs when θ2 is
re-estimated’ shows the simulation results when θ2 is re-estimated for each simulated series. Simulations are performed on
a sample size equivalent to the empirical data, with 1000 repetitions.
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Figure 6: Histograms of the estimated
{
λ̂s

z
}S

s=1 sequence corresponding to the summary statistics shown in Table 11.
On the left and right columns, histograms for the two different DGPs are shown. To top two histograms show the
results when θ2 is held fixed in the simulations and is not re-estimated, while the bottom plots show the results when
θ2 is re-estimated on each simulated series that is generated.



Table 12: Stage 3 parameter estimates

θ3 HLW.R-File Replicated MLE(σg|λHLW
z ) MLE(σg|λM0

z ) MLE(σg,σz)

ay,1 1.52957249 1.52957247 1.49442462 1.49566712 1.49566147
ay,2 −0.58756415 −0.58756414 −0.55370268 −0.55448942 −0.55448212
ar −0.07119569 −0.07119569 −0.07941598 −0.07525496 −0.07525240
bπ 0.66820705 0.66820705 0.67128197 0.66919468 0.66919993
by 0.07895778 0.07895778 0.07593604 0.08054901 0.08054716
σỹ 0.35346845 0.35346847 0.36043114 0.37381376 0.37382935
σπ 0.78919487 0.78919487 0.79029982 0.78948921 0.78949094
σy∗ 0.57241925 0.57241924 0.55915743 0.55293818 0.55293018
σg (implied) (0.03083567) (0.03083567) 0.04583852 0.04497450 0.04497414
σz (implied) (0.15002080) (0.15002080) (0.13714150) (0.00374682) 0.00000001
λg (implied) 0.05386904 0.05386904 (0.08197784) (0.08133730) (0.08133782)
λz (implied) 0.03021722 0.03021722 0.03021722 0.00075430 (0.00000000)

Log-likelihood −515.14470528 −515.14470599 −514.83070544 −514.28987426 −514.28958969

Notes: This table reports replication results for the Stage 3 model parameter vector θ3 of Holston et al. (2017). The first
column (HLW.R-File) reports estimates obtained by running Holston et al.’s (2017) R-Code for the Stage 3 model. The
second column (Replicated) shows the replicated results using the same set-up as in Holston et al.’s (2017). The third
column (MLE(σg|λHLW

z )) reports estimates when σg is directly estimated by MLE together with the other parameters

of the Stage 3 model, while λz is held fixed at λHLW
z = 0.030217 obtained from Holston et al.’s (2017) ”misspecified”

Stage 2 procedure. In the forth column (MLE(σg|λM0
z )), σg is again estimated directly by MLE together with the other

parameters of the Stage 3 model, but with λz now fixed at λ
M0
z = 0.000754 obtained from the ”correctly specified” Stage

2 model in (42). The last column (MLE(σg,σg)) shows estimates when all parameters are computed by MLE. Values in
round brackets give the implied {σg,σz} or {λg, λz} values when either is fixed or estimated. The last row (Log-likelihood)
reports the value of the log-likelihood function at these parameter estimates. The Matlab file Stage3 replication.m

replicates these results.
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Figure 7: Filtered estimates of the natural rate r∗t , annualized trend growth gt, ‘other factor’ zt, and the output gap
(cycle) variable ỹt.
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Figure 8: Smoothed estimates of the natural rate r∗t , annualized trend growth gt, ‘other factor’ zt, and the output
gap (cycle) variable ỹt.
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Figure 9: Filtered estimates of annualized trend growth gt, ‘other factor’ zt and the natural rate r∗t based on different
starting dates
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Figure 10: Smoothed estimates of annualized trend growth gt, ‘other factor’ zt and the natural rate r∗t based on
different starting dates
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Appendix

This appendix provides additional information on the Holston et al. (2017) model, their estimation

procedure as well as snippets of R-Code. Matrix details regarding the three stages of their procedure

are taken from the file HLW Code Guide.pdf which is contained in the HLW Code.zip file available from

John Williams’ website at the Federal Reserve Bank of New York: https://www.newyorkfed.org/

medialibrary/media/research/economists/williams/data/HLWCode.zip.

The state-space model notation is:

yt = Axt + Hξt +νt

ξt = Fξt−1 + Sεt︸︷︷︸
εt

, where

[
νt

εt

]
∼ MNorm

([
0
0

]
,

[
R 0
0 W

])
, (A.1)

where Sεt = εt, so that Var(Sεt) = Var(εt) = SWS′ = Q, with εt and Q being the notation used in

the online appendix of Holston et al. (2017) for the state vector’s disturbance term and its variance-

covariance matrix.

A.1. Stage 1 Model

The first Stage model is defined by the following system matrices:

yt = [yt, πt]
′ (A.2a)

xt = [yt−1, yt−2, πt−1, πt−2,4]
′ (A.2b)

ξt = [y∗t , y∗t−1, y∗t−2]
′, (A.2c)

A =

[
ay,1 ay,2 0 0

by 0 bπ (1− bπ )

]
, H =

[
1 −ay,1 −ay,2

0 −by 0

]
, F =


1 0 0

1 0 0

0 1 0

 , S =


1

0

0

 .

From this, the measurement relations are:

yt = Axt + Hξt +νt

[
yt

πt

]
=

[
ay,1 ay,2 0 0

by 0 bπ (1− bπ )

]
yt−1

yt−2

πt−1

πt−2,4

+

[
1 −ay,1 −ay,2

0 −by 0

]
y∗t

y∗t−1

y∗t−2

+

[
ε

ỹ
t

επt

]
(A.3)

with the corresponding state equations being:

ξt = Fξt−1 + Sεt
y∗t

y∗t−1

y∗t−2

 =


1 0 0

1 0 0

0 1 0




y∗t−1

y∗t−2

y∗t−3

+


1

0

0

 [εy∗
t

]
. (A.4)

A-1

https://www.newyorkfed.org/medialibrary/media/research/economists/williams/data/HLWCode.zip
https://www.newyorkfed.org/medialibrary/media/research/economists/williams/data/HLWCode.zip


Expanding (A.3) and (A.4) yields:

yt = y∗t + ay,1(yt−1 − y∗t−1) + ay,2(yt−2 − y∗t−2) +ε
ỹ
t

πt = by(yt−1 − y∗t−1) + bππt−1 + (1− bπ ) πt−2,4 +ε
π
t

and

y∗t = y∗t−1 +ε
y∗
t

y∗t−1 = y∗t−1

y∗t−2 = y∗t−2,

respectively, for the measurement and state equations. Defining output yt as trend plus cycle, and

ignoring the identities, yields then the following relations for the Stage 1 model:

yt = y∗t + ỹt (A.6a)

πt = bππt−1 + (1− bπ ) πt−2,4 + by ỹt−1 +ε
π
t (A.6b)

ỹt = ay,1 ỹt−1 + ay,2 ỹt−2 +ε
ỹ
t (A.6c)

y∗t = y∗t−1 +ε
y∗
t . (A.6d)

If we disregard the inflation equation (A.6b) for now, the decomposition of output into trend and

cycle can be recognized as the standard Unobserved Component (UC) model of Harvey (1985), Clark

(1987), Kuttner (1994), Morley et al. (2003) and others. Holston et al. (2017) write on page S64: ”. . . we
follow Kuttner (1994) and apply the Kalman filter to estimate the natural rate of output, omitting the real rate
gap term from Eq. (4) [our Equation (A.6c)] and assuming that the trend growth rate, g, is constant.”

One key difference is, nevertheless, that no drift term is included in the trend specification in

(A.6d), so that y∗t follows a random walk without drift. Evidently, this cannot match the upward

sloping pattern in the GDP series. The way that Holston et al. (2017) deal with this mismatch is by

‘detrending’ output yt in the estimation. This is implemented by re-placing {yt− j}2
j=0 in yt and xt in

(A.2) by (yt − gt), where g is a parameter (and not a trend growth state variable) to be estimated,

and t is a linear time trend defined as t = [1, . . . , T]′. This is hidden away from the reader and is not

described in the documentation in either text or equation form. Only from the listing of the vector of

parameters to be estimated by MLE, referred to asθ1 in the middle of page 10 in the documentation,

does it become evident that an additional parameter — confusingly labelled as g — is included in the

estimation. That is, the vector of Stage 1 parameters to be estimated is defined as:

θ1 = [ay,1, ay,2, bπ , by, g, σỹ, σπ , σy∗ ]
′. (A.7)

Note that the parameter g inθ1 is not found in any of the system matrices that describe the Stage

1 model on page 10 of the documentation. This gives the impression that it is a typographical error in

the documentation, rather than a parameter that is added to the model in the estimation. However,

from their R-Code file unpack.parameters.stage1.R, which is reproduced in R-Code 3, one can see

that part of the unpacking routine, which is later called by the log-likelihood estimation function,

A-2



‘detrends’ the data (see the highlighted lines 29 to 31 in R-Code 3, where ∗ parameter[5] refers to pa-

rameter g inθ1). Due to the linear time trend removal in the estimation stage, it has to be added back

to the Kalman Filter and Smoother extracted trends y∗t , which is is done in kalman.states.wrapper.R

(see the highlighted lines 29 to 30 in R-Code 4, where the if statement: if (stage == 1) { on line

28 of this file ensures that this is only done for the Stage 1 model). The actual equation for the trend

term y∗t is thus:

y∗t = g + y∗t−1 +ε
y∗
t (A.8)

= y∗0 + gt +
t∑

s=1

ε
y∗
s , (A.9)

where g is an intercept term that captures constant trend growth, and y∗0 is the initial condition of the

state vector set to 806.45 from the HP filter output as discussed in Footnote 27. Why Holston et al.
(2017) prefer to use this way of dealing with the drift term rather than simply adding an intercept

term to the state equation in (A.4) is not clear, and not discussed anywhere.

In the estimation of the Stage 1 model, the state vector ξt is initialized using the same procedure

as outlined in (12a) and Footnote 27 with the numerical value of ξ00 and P00 set at:

ξ00 = [806.4455, 805.2851, 804.1248] (A.10)

P00 =


0.4711 0.2 0.0

0.2 0.2 0.0

0.0 0.0 0.2

 . (A.11)

A.2. Stage 2 Model

The second Stage model of Holston et al. (2017) is defined by the following model matrices:

yt = [yt, πt]
′ (A.12)

xt = [yt−1, yt−2, rt−1, rt−2, πt−1, πt−2,4, 1]′ (A.13)

ξt = [y∗t , y∗t−1, y∗t−2, gt−1]
′ (A.14)

A =

[
ay,1 ay,2

ar
2

ar
2 0 0 a0

by 0 0 0 bπ (1− bπ ) 0

]
, H =

[
1 −ay,1 −ay,2 ag

0 −by 0 0

]
,

F =


1 0 0 1

1 0 0 0

0 1 0 0

0 0 0 1

 , S =


1 0

0 0

0 0

0 1

 .

The measurement and state relations are given by:

yt = Axt + Hξt +νt

A-3



[
yt

πt

]
=

[
ay,1 ay,2

ar
2

ar
2 0 0 a0

by 0 0 0 bπ (1− bπ ) 0

]


yt−1

yt−2

rt−1

rt−2

πt−1

πt−2,4

1


+

[
1 −ay,1 −ay,2 ag

0 −by 0 0

]
y∗t

y∗t−1

y∗t−2

gt−1

+

[
ε

ỹ
t

επt

]

(A.15)

and

ξt = Fξt−1 + Sεt
y∗t

y∗t−1

y∗t−2

gt−1

 =


1 0 0 1

1 0 0 0

0 1 0 0

0 0 0 1




y∗t−1

y∗t−2

y∗t−3

gt−2

+


1 0

0 0

0 0

0 1


[
ε

y∗
t

ε
g
t−1

]
. (A.16)

Note that σ2
g in Var(εt) = W = diag([σ2

y∗ , σ
2
g ]) is replaced by (λ̂gσy∗)2 where λ̂g is the estimate from

the first Stage, so that we obtain:

Var(Sεt) = SWS′

=


1 0

0 0

0 0

0 1


[
σ2

y∗ 0

0 (λ̂gσy∗)2

]
1 0

0 0

0 0

0 1


′

Q =


σ2

y∗ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 (λ̂gσy∗)2

 , (A.17)

which is then used in the Kalman Filter routine and ML to estimate the Stage 2 model parameters.

Expanding the relations in (A.15) and (A.16) leads to the measurement:

yt = y∗t + ay,1(yt−1 − y∗t−1) + ay,2(yt−2 − y∗t−2) +
ar
2 (rt−1 + rt−2) + a0 + aggt−1 +ε

ỹ
t (A.18a)

πt = by(yt−1 − y∗t−1) + bππt−1 + (1− bπ ) πt−2,4 +ε
π
t (A.18b)

and corresponding state relations

y∗t = y∗t−1 + gt−2 +ε
y∗
t (A.19a)

y∗t−1 = y∗t−1 (A.19b)

y∗t−2 = y∗t−2 (A.19c)

gt−1 = gt−2 +ε
g
t−1. (A.19d)
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Defining output yt as before as trend plus cycle, dropping identities, simplifying and rewriting gives

the following Stage 2 system relations:

yt = y∗t + ỹt (A.20a)

πt = bππt−1 + (1− bπ ) πt−2,4 + by ỹt−1 +ε
π
t (A.20b)

ay(L)ỹt = a0 +
ar
2 (rt−1 + rt−2) + aggt−1 +ε

ỹ
t (A.20c)

y∗t = y∗t−1 + gt−2 +ε
y∗
t (A.20d)

gt−1 = gt−2 +ε
g
t−1, (A.20e)

where the corresponding vector of parameters to be estimated by MLE is:

θ2 = [ay,1, ay,2, ar, a0, ag, bπ , by, σỹ, σπ , σy∗ ]
′. (A.21)

The state vector ξt in the estimation of the Stage 2 model is initialized using the procedure outlined

in (12a) and Footnote 27, with the numerical value of ξ00 and P00 set at:

ξ00 = [806.4455, 805.2851, 804.1248, 1.1604] (A.22)

P00 =


0.7185 0.2 0.0 0.2

0.2 0.2 0.0 0.0

0.2 0.2 0.0 0.0

0.2 0.0 0.2 0.2009

 . (A.23)

Notice from the trend specification in (A.20d) that gt−2 instead of gt−1 is included in the equation.

This is not a typographical error, but rather a ‘feature’ of the Stage 2 model specification of Holston et
al. (2017), and is not obvious until the Stage 2 model relations are written out as above in equations

(A.15) to (A.20). I use the selection matrix S to derive what the variance-covariance matrix of Sεt,

that is, Var(Sεt) = Var(εt) = SWS′ = Q, should look like. Holston et al. (2017) only report the Q
matrix in their online appendix included in the R-Code zip file (see page 10, lower half of the page in

Section 7.4).

In the Stage 3 model, Holston et al. (2017) use a ‘trick’ to arrive at the correct trend specification for

y∗t by including both, the εg
t−1 as well as the εy∗t

t error terms in the equation for y∗t (see (A.32) below).

This can also be seen from the Q matrix on page 11 in Section 7.5 of their online appendix or (A.31)

below, which now includes off-diagonal terms in the Stage 3 model.

A.2.1. Getting the correct Stage 2 Model from the Stage 3 Model

We can apply this same ‘trick’ for the Stage 2 model, by taking the Stage 3 model state-space form and

deleting the row, respectively, column entries of the F, H, and S matrices to make them conformable

with the required Stage 2 model. The state and measurement equations of the correct Stage 2 model

then look as follows:

yt = Axt + Hξt +νt
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[
yt

πt

]
=

[
ay,1 ay,2

ar
2

ar
2 0 0

by 0 0 0 bπ (1− bπ )

]


yt−1

yt−2

rt−1

rt−2

πt−1

πt−2,4


+

[
1 −ay,1 −ay,2 − ar

2 − ar
2

0 −by 0 0 0

]


y∗t
y∗t−1

y∗t−2

gt−1

gt−2


+

[
ε

ỹ
t

επt

]

(A.24)

ξt = Fξt−1 + Sεt

y∗t
y∗t−1

y∗t−2

gt−1

gt−2


=



1 0 0 1 0

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 1 0





y∗t−1

y∗t−2

y∗t−3

gt−2

gt−3


+



1 1

0 0

0 0

0 1

0 0


[
ε

y∗
t

ε
g
t−1

]
,

which, upon expanding and dropping of identities, yields:

yt = y∗t + ỹt

πt = bππt−1 + (1− bπ ) πt−2,4 + by ỹt−1 +ε
π
t

ay(L)ỹt =
ar
2 (rt−1 − gt−1) +

ar
2 (rt−2 − gt−2) +ε

ỹ
t

y∗t = y∗t−1 +

gt−1︷ ︸︸ ︷
gt−2 +ε

g
t−1 +ε

y∗
t

gt−1 = gt−2 +ε
g
t−1.

These last relations correspond to (42), with εỹ
t being the counterpart to ε̊ỹ

t = −ar(L)zt +ε
ỹ
t if we take

the full Stage 3 model as the true model.

Using the Stage 3 state-space form and simply adjusting it as shown above yields the correct Stage

2 equations for trend y∗t and the output gap ỹt. With this form of the state-space model, it is also clear

that the variance-covariance matrix Q = Var(Sεt) will be:

Q = SWS′

=



1 1

0 0

0 0

0 1

0 0


[
σ2

y∗ 0

0 (λgσy∗)2

]


1 1

0 0

0 0

0 1

0 0



′

=



σ2
y∗ + (λ̂gσy∗)2 0 0 (λ̂gσy∗)2 0

0 0 0 0 0

0 0 0 0 0

(λ̂gσy∗)2 0 0 (λ̂gσy∗)2 0

0 0 0 0 0


, (A.25)
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where (λ̂gσy∗)2 again replaces σ2
g , as before. Since the Q matrix in Holston et al. (2017) takes the form

of (A.17) and not (A.25), we can see that this ‘trick’ of rewriting the trend growth equation as in the

Stage 3 model specification was not applied to the Stage 2 model. Given that the correct Stage 2

model is easily obtained from the full Stage 3 model specification, it is not clear why the Stage 2

model is defined incorrectly as in (36).

A.3. Stage 3 Model

The third and final Stage model is defined as follows:

yt = [yt, πt]
′ (A.26)

xt = [yt−1, yt−2, rt−1, rt−2, πt−1, πt−2,4]
′ (A.27)

ξt = [y∗t , y∗t−1, y∗t−2, gt−1, gt−2, zt−1, zt−2]
′ (A.28)

A =

[
ay,1 ay,2

ar
2

ar
2 0 0

by 0 0 0 bπ (1− bπ )

]
, H =

[
1 −ay,1 −ay,2 − ar

2 − ar
2 − ar

2 − ar
2

0 −by 0 0 0 0 0

]
,

F =



1 0 0 1 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 1 0


, S =



1 1 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 1

0 0 0


.

The measurement and state relations are:

yt = Axt + Hξt +νt

[
yt

πt

]
=

[
ay,1 ay,2

ar
2

ar
2 0 0

by 0 0 0 bπ (1− bπ )

]


yt−1

yt−2

rt−1

rt−2

πt−1

πt−2,4


+

[
1 −ay,1 −ay,2 − ar

2 − ar
2 − ar

2 − ar
2

0 −by 0 0 0 0 0

]


y∗t
y∗t−1

y∗t−2

gt−1

gt−2

zt−1

zt−2


+

[
ε

ỹ
t

επt

]

(A.29)and

ξt = Fξt−1 + Sεt
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

y∗t
y∗t−1

y∗t−2

gt−1

gt−2

zt−1

zt−2


=



1 0 0 1 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 1 0





y∗t−1

y∗t−2

y∗t−3

gt−2

gt−3

zt−2

zt−3


+



1 1 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 1

0 0 0




ε

y∗t
t

ε
g
t−1

εz
t−1

 . (A.30)

In the Stage 3 model, Holston et al. (2017) replace σ2
g and σ2

z in Var(εt) = W = diag([σ2
y∗ , σ

2
g , σ2

z ])

with (λ̂gσy∗)2 and (λ̂zσỹ/ar)2, respectively, from the two previous estimation steps, so that:

Var(Sεt) = SWS′

=



1 1 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 1

0 0 0




σ2

y∗ 0 0

0 (λ̂gσy∗)2 0

0 0 (λ̂zσỹ/ar)2





1 1 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 1

0 0 0



′

Q =



σ2
y∗ + (λ̂gσy∗)2 0 0 (λ̂gσy∗)2 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

(λ̂gσy∗)2 0 0 (λ̂gσy∗)2 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 (λ̂zσỹ/ar)2 0

0 0 0 0 0 0 0


, (A.31)

which enters the Kalman Filter routine and ML estimation of the final Stage 3 parameters.

Expanding the relations in (A.29) and (A.30) leads to the following measurement:

yt = y∗t + ay,1(yt−1 − y∗t−1) + ay,2(yt−2 − y∗t−2) +
ar
2 (rt−1 − gt−1 − zt−1) +

ar
2 (rt−2 − gt−2 − zt−2) +ε

ỹ
t

πt = by(yt−1 − y∗t−1) + bππt−1 + (1− bπ ) πt−2,4 +ε
π
t

and corresponding state relations

y∗t = y∗t−1 +

gt−1︷ ︸︸ ︷
gt−2 +ε

g
t−1 +ε

y∗t
t (A.32)

y∗t−1 = y∗t−1

y∗t−2 = y∗t−2

gt−1 = gt−2 +ε
g
t−1

gt−2 = gt−2

zt−1 = zt−2 +ε
z
t−1

zt−2 = zt−2.

A-8



Defining output yt once again as trend plus cycle, dropping identities and simplifying gives the

following system of Stage 3 relations:

yt = y∗t + ỹt (A.33a)

πt = bππt−1 + (1− bπ ) πt−2,4 + by ỹt−1 +ε
π
t (A.33b)

ay(L)ỹt =
ar
2 (rt−1 − gt−1 − zt−1) +

ar
2 (rt−2 − gt−2 − zt−2) +ε

ỹ
t (A.33c)

y∗t = y∗t−1 + gt−1 +ε
y∗
t (A.33d)

gt−1 = gt−2 +ε
g
t−1 (A.33e)

zt−1 = zt−2 +ε
z
t−1, (A.33f)

with the corresponding vector of Stage 3 model parameters to be estimated by MLE being:

θ3 = [ay,1, ay,2, ar, bπ , by, σỹ, σπ , σy∗ ]
′. (A.34)

For the Stage 3 model, the variance of the state vector ξt is initialized once more as outlined in (12a)

and Footnote 27, with the numerical value of ξ00 and P00 being:

ξ00 = [806.4455, 805.2851, 804.1248, 1.1604, 1.1603, 0, 0] (A.35)

P00 =



0.7272 0.2 0 0.2009 0.2 0 0

0.2 0.2 0 0 0 0 0

0 0 0.2 0 0 0 0

0.2009 0 0 0.2009 0.2 0 0

0.2 0 0 0.2 0.2 0 0

0 0 0 0 0 0.2227 0.2

0 0 0 0 0 0.2 0.2


. (A.36)

A.4. Additional simulation results

As an additional experiment, I simulate entirely unrelated univariate time series processes as inputs

into the Yt and X t vector series needed for the structural break regressions in (54). As before, the

simulated inputs that are required are the cycle variable ỹt, trend growth gt as well as the real rate rt.

To avoid having to use the observed exogenous interest rate series that makes up the real rate via the

relation rt = it − π e
t (π e

t is expected inflation as defined in (3)) as it will be function of r∗t and hence

gt and zt, I fit a low order ARMA process to rt. I then use the coefficients from this estimated ARMA

model to generate a simulated sequence of T observations from the real interest rate. I follow the

same strategy to generate a simulated series for ỹt. Note that I do not simply use the AR(2) model

structure for the cycle series ỹt as is implied by the left hand side of (36c) together with the ay,1 and

ay,2 estimates from the Stage 2 model in the simulation. The reason for this is that the empirical ˆ̃yt|T

series that Holston et al. (2017) use in their procedure is the Kalman Smoother based estimate of ỹt

which portrays a more complicated autocorrelation pattern than an AR(2) process. In order to match

the autocorrelation pattern of the ˆ̃yt|T series as closely as possible, I fitted the best (low order) ARMA

process to ˆ̃yt|T, and used those coefficients to generate the simulated cycle series.
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For the gt series, I use three different simulation scenarios. First, I replace the trend growth esti-

mate in X t by the Kalman Smoother estimate of gt denoted by ĝt−1|T above. This is the same series

that Holston et al. (2017). Second, I simulate gt−1 from a pure random walk (RW) process with the

standard deviation of the error term set equal to σ̂g = 0.0305205, the implied estimate reported in

column 1 of (9). Third, I simulate a simple (Gaussian) white noise (WN) for gt−1. And last, I fit a low

order ARMA process to the first difference of ĝt−1|T. The ”empirical” ĝt−1|T series is very persistent

and its dynamics are not sufficiently captured by a pure RW. I therefore use the coefficients from a

fitted ARMA model to ∆ĝt−1|T to simulate the first difference process ∆gt−1, and then construct the

gt−1 as the cumulative sum of ∆ĝt−1|T in X t. All simulation scenarios are based on 1000 repetitions

of sample size T and the EW structural break test.

In Table A.1, summary statistics of the λz estimates obtained from implementing Holston et al.’s
(2017) MUE procedure in Stage 2 are shown. The summary statistics are means and medians, as well

as empirical probabilities of observing an λz estimate computed from the simulated data being larger

than the Stage 2 estimate of 0.030217 from Holston et al. (2017). In Figure A.1, I show histogram

plots corresponding to the summary statistics of the λz estimates computed from the simulated data.

These are shown as supplementary information to complement the summary statistics in Table A.1

and to avoid concerns related to unusual simulation patterns.

Table A.1: Summary statistics of λz estimates of the Stage 2 MUE procedure applied to data simulated
from unrelated univariate ARMA processes

Summary Statistic gt−1 = ĝt−1|T gt−1 ∼ RW gt−1 ∼ WN ∆gt−1 ∼ ARMA

Minimum 0 0 0 0
Maximum 0.097019 0.095914 0.096789 0.093340
Standard deviation 0.015240 0.015858 0.016803 0.016335
Mean 0.031798 0.029708 0.026117 0.030449
Median 0.030165 0.028647 0.024254 0.029435
Pr(λs

z > 0.030217) 0.498000 0.456000 0.384000 0.482000

Notes: This table reports summary statistics of the Stage 2 estimates of λz that one obtains when applying Holston
et al.’s (2017) MUE procedure to simulated data without the zt process. The summary statistics that are reported are
the minimum, maximum, standard deviation, mean, median, as well as the empirical frequency of observing a value
larger than the estimate of 0.030217 obtained by Holston et al. (2017), denoted by Pr(λ̂s

z > 0.030217). The columns
show the estimates for the four different data generating processes for trend growth gt. The first column reports
results when the Kalman Smoothed estimate ĝt−1|T is used for gt−1. The second and third columns show estimates
when gt−1 is generated as pure random walk (RW) or (Gaussian) white noise (WN) process. The last column reports
results when gt−1 is computed as the cumulative sum of ∆gt−1, which is simulated from the coefficients obtained
from a low order ARMA process fitted to ∆ĝt−1|T.The cycle and real rate series are also constructed by first finding
the best fitting low order ARMA processes to the individual series and then simulating from fitted coefficients.

Looking over the results in Table A.1 and histograms in Figure A.1, it is clear that there are many

instances where the estimates of λz from the simulated data are not only non-zero, but rather sizeable,

being larger than the estimate of λz = 0.030217 that Holston et al. (2017) compute from the empirical

data. Note that there is no zt process simulated, yet with Holston et al. (2017) Stage 2 MUE procedure

one can recover an estimate that is at least as large as the empirical one around 40 to 50 percent of

the time, depending on how gt is simulated. This simulation exercise thus highlights how spurious

Holston et al.’s (2017) MUE procedure to estimate λz is. As the downward trend in the zt process

drives the movement in the natural rate, where the severity of the downward trend is related to the
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Figure A.1: Histograms of the estimated {λ̂s
z}S

s=1 sequence corresponding to the summary statistics shown
in Table A.1

magnitude of σz, which is through λz, Holston et al.’s (2017) estimates of the natural rate are likely to

be downward biased.

A.5. Additional figures and tables

This section presents additional figures and tables to complement the results reported in the main

text. Some of these results are based on an expanded sample period using data that ends in 2019:Q2.
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Figure A.2: Kalman smoothed estimates of (annualized) trend growth gt and output gap (cycle) ỹt from
Holston et al.’s (2017) ‘misspecified’ Stage 2 model (HLW blue solid line) and the ‘correctly specified’
Stage 2 model (MLE(σg).M0 red dashed lined). These are used as inputs into the structural break
dummy variable regression in (54).
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Figure A.3: Sequences of {F(τ)}τ1
τ=τ0 statistics from the structural break dummy variable regressions in

(54) for the different scenarios that are considered.
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Table A.3: Stage 3 parameter estimates using data up to 2019:Q2

θ3 HLW.R-File Replicated MLE(σg|λHLW
z ) MLE(σg|λM0

z ) MLE(σg,σz)

ay,1 1.53876458 1.53876459 1.51083223 1.51659115 1.51669620
ay,2 −0.59700264 −0.59700265 −0.57053684 −0.57637540 −0.57645931
ar −0.06854043 −0.06854043 −0.07561113 −0.07029671 −0.07000675
bπ 0.67331545 0.67331545 0.67638900 0.67463450 0.67483411
by 0.07755450 0.07755451 0.07454055 0.07888427 0.07885243
σỹ 0.33590693 0.33590692 0.33598381 0.34747670 0.34826106
σπ 0.78812554 0.78812554 0.78921814 0.78854952 0.78862036
σy∗ 0.57577319 0.57577320 0.56789520 0.56359236 0.56327803
σg (implied) (0.03082331) (0.03082331) 0.04517849 0.04386169 0.04378982
σz (implied) (0.17251762) (0.17251762) 0.15642060 0.06065982 0.05250494
λg (implied) 0.05353377 0.05353377 (0.07955428) (0.07782519) (0.07774103)
λz (implied) 0.03520151 0.03520151 (0.03520151) (0.01227186) (0.01055443)

Log-likelihood −533.36984524 −533.36984550 −533.16547501 −532.82874860 −532.82637541

Notes: This table reports replication results for the Stage 3 model parameter vector θ3 of Holston et al. (2017). The first
column (HLW.R-File) reports estimates obtained by running Holston et al.’s (2017) R-Code for the Stage 3 model. The
second column (Replicated) shows the replicated results using the same set-up as in Holston et al.’s (2017). The third column
(MLE(σg|λHLW

z )) reports estimates when σg is directly estimated by MLE together with the other parameters of the Stage 3

model, while λz is held fixed at λHLW
z = 0.035202 obtained from Holston et al.’s (2017) ”misspecified” Stage 2 procedure.

In the forth column (MLE(σg|λM0
z )), σg is again estimated directly by MLE together with the other parameters of the Stage

3 model, but with λz now fixed at λ
M0
z = 0.012272 obtained from the ”correctly specified” Stage 2 model in (42). The

last column (MLE(σg,σg)) shows estimates when all parameters are computed by MLE. Values in round brackets give the
implied {σg,σz} or {λg, λz} values when either is fixed or estimated. The last row (Log-likelihood) reports the value of the
log-likelihood function at these parameter estimates. The Matlab file Stage3 replication.m replicates these results.
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Figure A.5: Filtered estimates of the natural rate r∗t , annualized trend growth gt, ‘other factor’ zt, and
the output gap (cycle) variable ỹt up to 2019:Q2.
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Figure A.6: Smoothed estimates of the natural rate r∗t , annualized trend growth gt, ‘other factor’ zt, and
the output gap (cycle) variable ỹt up to 2019:Q2.
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Figure A.7: GDP growth and recursively estimated mean of GDP growth from 2009:Q3 to 2019:Q2.
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Figure A.8: Mean and Median 10 year (real) GDP growth forecasts from the Survey of Professional fore-
casters (SPF) obtained from https://www.philadelphiafed.org/research-and-data/real-time-center/
survey-of-professional-forecasters/data-files/rgdp10. The blue shaded region marks the 25th to 75th

percentile region of the cross-section of forecaster.

Figure II: Average Responses to Expectation Survey
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(B) 10-Year Expected Stock Returns (annualized)
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(C) 3-Year Expected GDP Growth (annualized)
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(D) 10-Year Expected GDP Growth (annualized)
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Note: Figure shows average beliefs across all respondents in each wave of the GMSU-Vanguard survey. Panel A shows
the 1-year expected stock market return, Panel B the 10-year expected stock market return (annualized), Panel C the
expected real GDP annual growth over the next 3 years, Panel D the expected real GDP annual growth over the next
10 years, Panel E the probability of stock market returns being lower than -30% over the next year, and Panel F the
probability of GDP growth being less than zero on average over the next 3 years.

5

Figure A.9: GMSU-Vanguard survey based expected 3 year and 10 year (real) GDP growth from February
2017 to April 2020, taken from Figure II on page 5 in Giglio et al. (2020) (see the appendix in Giglio et al.
(2020) for more details on the design of the client/investor survey).
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A.6. R-Code Snippets

This sections shows various parts of the R-Code that is provided by Holston et al. (2017) in the

zip file from https://www.newyorkfed.org/medialibrary/media/research/economists/williams/

data/HLWCode.zip. Below the code next to each of the headers, the name of the R-file is listed

from which the code is displayed.

1 #------------------------------------------------------------------------------#
2 # File: rstar.stage3.R
3 #
4 # Description: This file runs the model in the third stage of the HLW estimation.
5 #------------------------------------------------------------------------------#
6 rstar.stage3 <- function(log.output,
7 inflation,
8 real.interest.rate,
9 nominal.interest.rate,

10 lambda.g,
11 lambda.z,
12 a3.constraint=NA,
13 b2.constraint=NA,
14 run.se = TRUE) {
15
16 stage <- 3
17
18 # Data must start 4 quarters before the estimation period
19 T <- length(log.output) - 4
20
21 # Original output gap estimate
22 x.og <- cbind(rep(1,T+4), 1:(T+4))
23 y.og <- log.output
24 output.gap <- (y.og - x.og %*% solve(t(x.og) %*% x.og, t(x.og) %*% y.og)) * 100
25
26 # Initialization of state vector for Kalman filter using HP trend of log output
27 log.output.hp.trend <- hpfilter(log.output,freq=36000,type="lambda",drift=FALSE)$trend
28 g.pot <- log.output.hp.trend[(g.pot.start.index):length(log.output.hp.trend)]
29 g.pot.diff <- diff(g.pot)
30 xi.00 <- c(100*g.pot[3:1],100*g.pot.diff[2:1],0,0)
31
32 # IS curve
33 y.is <- output.gap[5:(T+4)]
34 x.is <- cbind(output.gap[4:(T+3)], output.gap[3:(T+2)],
35 (real.interest.rate[4:(T+3)] + real.interest.rate[3:(T+2)])/2,
36 rep(1,T))
37 b.is <- solve(t(x.is) %*% x.is, t(x.is) %*% y.is)
38 r.is <- as.vector(y.is - x.is %*% b.is)
39 s.is <- sqrt(sum(r.is^2) / (length(r.is)-(dim(x.is)[2])))
40
41 # Phillips curve
42 y.ph <- inflation[5:(T+4)]
43 x.ph <- cbind(inflation[4:(T+3)],
44 (inflation[3:(T+2)]+inflation[2:(T+1)]+inflation[1:T])/3,
45 output.gap[4:(T+3)])
46 b.ph <- solve(t(x.ph) %*% x.ph, t(x.ph) %*% y.ph)
47 r.ph <- y.ph - x.ph %*% b.ph
48 s.ph <- sqrt(sum(r.ph^2) / (length(r.ph)-(dim(x.ph)[2])))
49
50 y.data <- cbind(100 * log.output[5:(T+4)],
51 inflation[5:(T+4)])
52 x.data <- cbind(100 * log.output[4:(T+3)],
53 100 * log.output[3:(T+2)],
54 real.interest.rate[4:(T+3)],
55 real.interest.rate[3:(T+2)],
56 inflation[4:(T+3)],
57 (inflation[3:(T+2)]+inflation[2:(T+1)]+inflation[1:T])/3)
58
59 # Starting values for the parameter vector
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60 initial.parameters <- c(b.is[1:3], b.ph[1], b.ph[3], s.is, s.ph, 0.7)
61
62 # Set an upper and lower bound on the parameter vectors:
63 # The vector is unbounded unless values are otherwise specified
64 theta.lb <- c(rep(-Inf,length(initial.parameters)))
65 theta.ub <- c(rep(Inf,length(initial.parameters)))
66
67 # Set a lower bound for the Phillips curve slope (b_2) of b2.constraint, if not NA
68 # In HLW, b2.constraint = 0.025
69 if (!is.na(b2.constraint)) {
70 print(paste0("Setting a lower bound on b_2 of ",as.character(b2.constraint)))
71 if (initial.parameters[5] < b2.constraint) {
72 initial.parameters[5] <- b2.constraint
73 }
74 theta.lb[5] <- b2.constraint
75 }
76
77 # Set an upper bound for the IS curve slope (a_3) of a3.constraint, if not NA
78 # In HLW, a3.constraint = -0.0025
79 if (!is.na(a3.constraint)) {
80 print(paste0("Setting an upper bound on a_3 of ",as.character(a3.constraint)))
81 if (initial.parameters[3] > a3.constraint) {
82 initial.parameters[3] <- a3.constraint
83 }
84 theta.ub[3] <- a3.constraint
85 }
86
87 # Set the initial covariance matrix (see footnote 6)
88 P.00 <- calculate.covariance(initial.parameters, theta.lb, theta.ub, y.data, x.data, stage,

lambda.g, lambda.z, xi.00)
89
90 # Get parameter estimates via maximum likelihood
91 f <- function(theta) {return(-log.likelihood.wrapper(theta, y.data, x.data, stage, lambda.g,

lambda.z, xi.00, P.00)$ll.cum)}
92 nloptr.out <- nloptr(initial.parameters, f, eval_grad_f=function(x) {gradient(f, x)},
93 lb=theta.lb,ub=theta.ub,
94 opts=list("algorithm"="NLOPT_LD_LBFGS","xtol_rel"=1.0e-8))
95 theta <- nloptr.out$solution
96
97 log.likelihood <- log.likelihood.wrapper(theta, y.data, x.data, stage, lambda.g, lambda.z, xi

.00, P.00)$ll.cum
98
99 # Get state vectors (xi.tt, xi.ttm1, xi.tT, P.tt, P.ttm1, P.tT) via Kalman filter

100 states <- kalman.states.wrapper(theta, y.data, x.data, stage, lambda.g, lambda.z, xi.00, P.00)
101
102 # If run.se = TRUE, compute standard errors for estimates of the states (see footnote 7) and

report run time
103 if (run.se) {
104 ptm <- proc.time()
105 se <- kalman.standard.errors(T, states, theta, y.data, x.data, stage, lambda.g, lambda.z, xi

.00, P.00, niter, a3.constraint, b2.constraint)
106 print("Standard error procedure run time")
107 print(proc.time() - ptm)
108 }
109
110 # One-sided (filtered) estimates
111 trend.filtered <- states$filtered$xi.tt[,4] * 4
112 z.filtered <- states$filtered$xi.tt[,6]
113 rstar.filtered <- trend.filtered + z.filtered
114 potential.filtered <- states$filtered$xi.tt[,1]/100
115 output.gap.filtered <- y.data[,1] - (potential.filtered * 100)
116
117 # Two-sided (smoothed) estimates
118 trend.smoothed <- states$smoothed$xi.tt[,4] * 4
119 z.smoothed <- states$smoothed$xi.tt[,6]
120 rstar.smoothed <- trend.smoothed + z.smoothed
121 potential.smoothed <- states$smoothed$xi.tt[,1]/100
122 output.gap.smoothed <- y.data[,1] - (potential.smoothed * 100)

R-Code 1: rstar.stage3.R
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1 #------------------------------------------------------------------------------#
2 # File: calculate.covariance.R
3 #
4 # Description: This function calculates the covariance matrix of the
5 # initial state from the gradients of the likelihood function.
6 #------------------------------------------------------------------------------#
7 calculate.covariance <- function(initial.parameters,theta.lb,theta.ub,y.data,x.data,stage,lambda.g

=NA,lambda.z=NA,xi.00){
8
9 n.state.vars <- length(xi.00)

10
11 # Set covariance matrix equal to 0.2 times the identity matrix
12 P.00 <- diag(0.2,n.state.vars,n.state.vars)
13
14 # Get parameter estimates via maximum likelihood
15 f <- function(theta) {return(-log.likelihood.wrapper(theta, y.data, x.data, stage, lambda.g,

lambda.z, xi.00, P.00)$ll.cum)}
16 nloptr.out <- nloptr(initial.parameters, f, eval_grad_f=function(x) {gradient(f, x)},
17 lb=theta.lb,ub=theta.ub,opts=list("algorithm"="NLOPT_LD_LBFGS","xtol_rel"

=1.0e-8))
18 theta <- nloptr.out$solution
19
20 # Run Kalman filter with above covariance matrix and corresponding parameter estimates
21 states <- kalman.states.wrapper(theta, y.data, x.data, stage, lambda.g, lambda.z, xi.00, P.00)
22
23 # Save initial covariance matrix
24 P.00 <- states$filtered$P.ttm1[1:n.state.vars,]
25
26 return(P.00)
27 }

R-Code 2: calculate.covariance.R
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1 #------------------------------------------------------------------------------#
2 # File: unpack.parameters.stage1.R
3 #
4 # Description: This file generates coefficient matrices for the stage 1
5 # state-space model for the given parameter vector.
6 #
7 # Stage 1 parameter vector: [a_y,1, a_y,2, b_pi, b_y, g, sigma_y~, sigma_pi, sigma_y*]
8 #------------------------------------------------------------------------------#
9 unpack.parameters.stage1 <- function(parameters, y.data, x.data, xi.00, P.00) {

10 A <- matrix(0, 4, 2)
11 A[1:2, 1] <- parameters[1:2] # a_y,1, a_y,2
12 A[1, 2] <- parameters[4] # b_y
13 A[3, 2] <- parameters[3] # b_pi
14 A[4, 2] <- 1-parameters[3] # 1 - b_pi
15
16 H <- matrix(0, 3, 2)
17 H[1, 1] <- 1
18 H[2:3, 1] <- -parameters[1:2] # -a_y,1, -a_y,2
19 H[2, 2] <- -parameters[4] # -b_y
20
21 R <- diag(c(parameters[6]^2, parameters[7]^2)) # sigma_y~, sigma_pi
22 Q <- matrix(0, 3, 3)
23 Q[1, 1] <- parameters[8]^2 # sigma_y*
24
25 F <- matrix(0, 3, 3)
26 F[1, 1] <- F[2, 1] <- F[3, 2] <- 1
27
28 # Make the data stationary
29 y.data[, 1] <- y.data[, 1] - 1:dim(y.data)[1] * parameters[5] # g
30 x.data[, 1] <- x.data[, 1] - 0:(dim(x.data)[1]-1) * parameters[5]
31 x.data[, 2] <- x.data[, 2] - -1:(dim(x.data)[1]-2) * parameters[5]
32
33 return(list("xi.00"=xi.00, "P.00"=P.00, "F"=F, "Q"=Q, "A"=A, "H"=H, "R"=R, "x.data"=x.data, "y.

data"=y.data))
34 }

R-Code 3: unpack.parameters.stage1.R
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1 #------------------------------------------------------------------------------#
2 # File: kalman.states.wrapper.R
3 #
4 # Description: This is a wrapper function for kalman.states.R that specifies
5 # inputs based on the estimation stage.
6 #------------------------------------------------------------------------------#
7 kalman.states.wrapper <- function(parameters, y.data, x.data, stage = NA,
8 lambda.g=NA, lambda.z=NA, xi.00=NA, P.00=NA){
9

10 if (stage == 1) {
11 out <- unpack.parameters.stage1(parameters, y.data, x.data,
12 xi.00, P.00)
13 } else if (stage == 2) {
14 out <- unpack.parameters.stage2(parameters, y.data, x.data,
15 lambda.g, xi.00, P.00)
16 } else if (stage == 3) {
17 out <- unpack.parameters.stage3(parameters, y.data, x.data,
18 lambda.g, lambda.z, xi.00, P.00)
19 } else {
20 stop(’You need to enter a stage number in kalman.states.wrapper.’)
21 }
22
23 for (n in names(out)) {
24 eval(parse(text=paste0(n, "<-out$", n)))
25 }
26 T <- dim(y.data)[1]
27 states <- kalman.states(xi.00, P.00, F, Q, A, H, R, y.data, x.data)
28 if (stage == 1) {
29 states$filtered$xi.tt <- states$filtered$xi.tt + cbind(1:T,0:(T-1),-1:(T-2)) * parameters[5]
30 states$smoothed$xi.tT <- states$smoothed$xi.tT + cbind(1:T,0:(T-1),-1:(T-2)) * parameters[5]
31 }
32 return(states)
33 }

R-Code 4: kalman.states.wrapper.R
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1 #------------------------------------------------------------------------------#
2 # File: rstar.stage2.R
3 #
4 # Description: This file runs the model in the second stage of the HLW estimation.
5 #------------------------------------------------------------------------------#
6 rstar.stage2 <- function(log.output,
7 inflation,
8 real.interest.rate,
9 lambda.g,

10 a3.constraint=NA,
11 b2.constraint=NA) {
12
13 stage <- 2
14
15 # Data must start 4 quarters before the estimation period
16 T <- length(log.output) - 4
17
18 # Original output gap estimate
19 x.og <- cbind(rep(1,T+4), 1:(T+4))
20 y.og <- log.output
21 output.gap <- (y.og - x.og %*% solve(t(x.og) %*% x.og, t(x.og) %*% y.og)) * 100
22
23 # Initialization of state vector for Kalman filter using HP trend of log output
24 log.output.hp.trend <- hpfilter(log.output,freq=36000,type="lambda",drift=FALSE)$trend
25 g.pot <- log.output.hp.trend[(g.pot.start.index):length(log.output.hp.trend)]
26 g.pot.diff <- diff(g.pot)
27 xi.00 <- c(100*g.pot[3:1],100*g.pot.diff[2])
28
29 # IS curve
30 y.is <- output.gap[5:(T+4)]
31 x.is <- cbind(output.gap[4:(T+3)], output.gap[3:(T+2)],
32 (real.interest.rate[4:(T+3)] + real.interest.rate[3:(T+2)])/2,
33 rep(1,T))
34 b.is <- solve(t(x.is) %*% x.is, t(x.is) %*% y.is)
35 r.is <- as.vector(y.is - x.is %*% b.is)
36 s.is <- sqrt(sum(r.is^2) / (length(r.is)-(dim(x.is)[2])))
37
38 # Phillips curve
39 y.ph <- inflation[5:(T+4)]
40 x.ph <- cbind(inflation[4:(T+3)],
41 (inflation[3:(T+2)]+inflation[2:(T+1)]+inflation[1:T])/3,
42 output.gap[4:(T+3)])
43 b.ph <- solve(t(x.ph) %*% x.ph, t(x.ph) %*% y.ph)
44 r.ph <- y.ph - x.ph %*% b.ph
45 s.ph <- sqrt(sum(r.ph^2) / (length(r.ph)-(dim(x.ph)[2])))
46
47 y.data <- cbind(100 * log.output[5:(T+4)],
48 inflation[5:(T+4)])
49 x.data <- cbind(100 * log.output[4:(T+3)],
50 100 * log.output[3:(T+2)],
51 real.interest.rate[4:(T+3)],
52 real.interest.rate[3:(T+2)],
53 inflation[4:(T+3)],
54 (inflation[3:(T+2)]+inflation[2:(T+1)]+inflation[1:T])/3,
55 rep(1,T))
56
57 # Starting values for the parameter vector
58 initial.parameters <- c(b.is, -b.is[3], b.ph[1], b.ph[3], s.is, s.ph, 0.5)
59
60 # Set an upper and lower bound on the parameter vectors:
61 # The vector is unbounded unless values are otherwise specified
62 theta.lb <- c(rep(-Inf,length(initial.parameters)))
63 theta.ub <- c(rep(Inf,length(initial.parameters)))
64
65 # Set a lower bound for the Phillips curve slope (b_2) of b2.constraint, if not NA
66 # In HLW, b2.constraint = 0.025
67 if (!is.na(b2.constraint)) {
68 if (initial.parameters[7] < b2.constraint) {
69 initial.parameters[7] <- b2.constraint
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70 }
71 theta.lb[7] <- b2.constraint
72 }
73
74 # Set an upper bound for the IS curve slope (a_3) of a3.constraint, if not NA
75 # In HLW, a3.constraint = -0.0025
76 if (!is.na(a3.constraint)) {
77 if (initial.parameters[3] > a3.constraint) {
78 initial.parameters[3] <- a3.constraint
79 }
80 theta.ub[3] <- a3.constraint
81 }
82
83 # Set the initial covariance matrix (see footnote 6)
84 P.00 <- calculate.covariance(initial.parameters, theta.lb, theta.ub, y.data, x.data, stage,

lambda.g, NA, xi.00)
85
86 # Get parameter estimates via maximum likelihood
87 f <- function(theta) {return(-log.likelihood.wrapper(theta, y.data, x.data, stage, lambda.g, NA,

xi.00, P.00)$ll.cum)}
88 nloptr.out <- nloptr(initial.parameters, f, eval_grad_f=function(x) {gradient(f, x)},
89 lb=theta.lb,ub=theta.ub,
90 opts=list("algorithm"="NLOPT_LD_LBFGS","xtol_rel"=1.0e-8))
91 theta <- nloptr.out$solution
92
93 log.likelihood <- log.likelihood.wrapper(theta, y.data, x.data, stage, lambda.g, NA, xi.00, P

.00)$ll.cum
94
95 # Get state vectors (xi.tt, xi.ttm1, xi.tT, P.tt, P.ttm1, P.tT) via Kalman filter
96 states <- kalman.states.wrapper(theta, y.data, x.data, stage, lambda.g, NA, xi.00, P.00)
97
98 # Two-sided (smoothed) estimates
99 trend.smoothed <- states$smoothed$xi.tt[,4] * 4

100 potential.smoothed <- c(states$smoothed$xi.tT[1, 3:2], states$smoothed$xi.tT[,1])
101 output.gap.smoothed <- 100 * log.output[3:(T+4)] - potential.smoothed
102
103 # Inputs for median.unbiased.estimator.stage2.R
104 y <- output.gap.smoothed[3:length(output.gap.smoothed)]
105 x <- cbind(output.gap.smoothed[2:(length(output.gap.smoothed)-1)],

output.gap.smoothed[1:(length(output.gap.smoothed)-2)],
(x.data[,3]+x.data[,4])/2,
states$smoothed$xi.tT[,4],
rep(1,T))

R-Code 5: rstar.stage2.R
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1 #------------------------------------------------------------------------------#
2 # File: median.unbiased.estimator.stage2.R
3 #
4 # Description: This file implements the median unbiased estimation of the
5 # signal-to-noise ratio lambda_z following Stock and Watson (1998).
6 #------------------------------------------------------------------------------#
7 median.unbiased.estimator.stage2 <- function(y, x) {
8 T <- dim(x)[1]
9 stat <- rep(0, T-2*4+1)

10 for (i in 4:(T-4)) {
11 xr <- cbind(x, c(rep(0, i), rep(1, T-i)))
12 xi <- solve(t(xr)%*%xr)
13 b <- solve(t(xr)%*%xr,t(xr)%*%y)
14 s3 <- sum((y-xr%*%b)^2)/(T-dim(xr)[2])
15 stat[i+1-4] <- b[dim(xr)[2]]/sqrt(s3*xi[dim(xr)[2],dim(xr)[2]])
16 }
17 ew <- 0
18 for (i in 1:length(stat)) {
19 ew <- ew+exp((stat[i]^2)/2)
20 }
21 ew <- log(ew/length(stat))
22 mw <- mean(stat^2)
23 qlr <- max(stat^2)
24
25 # Values are from Table 3 in Stock and Watson (1998)
26 # Test Statistic: Exponential Wald (EW)
27 valew <- c(0.426, 0.476, 0.516, 0.661, 0.826, 1.111,
28 1.419, 1.762, 2.355, 2.91, 3.413, 3.868, 4.925,
29 5.684, 6.670, 7.690, 8.477, 9.191, 10.693, 12.024,
30 13.089, 14.440, 16.191, 17.332, 18.699, 20.464,
31 21.667, 23.851, 25.538, 26.762, 27.874)
32 # Test Statistic: Mean Wald (MW)
33 valmw <- c(0.689, 0.757, 0.806, 1.015, 1.234, 1.632,
34 2.018, 2.390, 3.081, 3.699, 4.222, 4.776, 5.767,
35 6.586, 7.703, 8.683, 9.467, 10.101, 11.639, 13.039,
36 13.900, 15.214, 16.806, 18.330, 19.020, 20.562,
37 21.837, 24.350, 26.248, 27.089, 27.758)
38 # Test Statistic: QLR
39 valql <- c(3.198, 3.416, 3.594, 4.106, 4.848, 5.689,
40 6.682, 7.626, 9.16, 10.66, 11.841, 13.098, 15.451,
41 17.094, 19.423, 21.682, 23.342, 24.920, 28.174, 30.736,
42 33.313, 36.109, 39.673, 41.955, 45.056, 48.647, 50.983,
43 55.514, 59.278, 61.311, 64.016)
44
45 lame <- NA
46 lamm <- NA
47 lamq <- NA
48
49 # Median-unbiased estimator of lambda_g for given values of the test
50 # statistics are obtained using the procedure described in the
51 # footnote to Stock and Watson (1998) Table 3.
52 if (ew <= valew[1]) {
53 lame <- 0
54 } else {
55 for (i in 1:(length(valew)-1)) {
56 if ((ew > valew[i]) & (ew <= valew[i+1])) {
57 lame <- i-1+(ew-valew[i])/(valew[i+1]-valew[i])
58 }
59 }
60 }

R-Code 6: median.unbiased.estimator.stage2.R
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