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Abstract

Hamiltonian Monte Carlo (HMC) samples efficiently from high-dimensional

posterior distributions with proposed parameter draws obtained by iterating

on a discretized version of the Hamiltonian dynamics. The iterations make

HMC computationally costly, especially in problems with large datasets, since

it is necessary to compute posterior densities and their derivatives with respect

to the parameters. Naively computing the Hamiltonian dynamics on a subset

of the data causes HMC to lose its key ability to generate distant parame-

ter proposals with high acceptance probability. The key insight in our article

is that efficient subsampling HMC for the parameters is possible if both the

dynamics and the acceptance probability are computed from the same data

subsample in each complete HMC iteration. We show that this is possible to

do in a principled way in a HMC-within-Gibbs framework where the subsam-

ple is updated using a pseudo marginal MH step and the parameters are then

updated using an HMC step, based on the current subsample. We show that

our subsampling methods are fast and compare favorably to two popular sam-

pling algorithms that utilize gradient estimates from data subsampling. We

also explore the current limitations of subsampling HMC algorithms by vary-

ing the quality of the variance reducing control variates used in the estimators

of the posterior density and its gradients.
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1 Introduction

Bayesian inference relies on computing expectations with respect to the posterior

density of the model parameter given the data. The functional form of the pos-

terior density often does not correspond to a known density and hence obtaining

independent samples to compute the expectation by Monte Carlo integration is dif-

ficult, especially when the dimension of the model parameter is moderate to large.

Markov Chain Monte Carlo (MCMC) is a generic sampling algorithm that produces

correlated draws from the posterior density.

Metropolis-Hastings (MH) (Metropolis et al., 1953; Hastings, 1970) is arguably

the most popular MCMC algorithm. Its most common implementation uses a ran-

dom walk proposal, in which a new sample is proposed based on the current state

of the Markov chain. While Random walk MH is easy to implement, it explores the

posterior very slowly in high-dimensional problems and gives highly correlated draws

and imprecise estimators of posterior integrals.

Hamiltonian Monte Carlo (HMC) (Duane et al., 1987) can produce distant pro-

posals while maintaining a high acceptance probability (Neal, 2011; Betancourt,

2017). HMC augments the target posterior by adding fictitious momentum vari-

ables and carries out the sampling on an extended target density. The extended

target is proportional to the exponential of a Hamiltonian function that describes

the total energy of the system, which is the sum of the potential energy (negative log

posterior) and the kinetic energy (negative log density of the momentum variables).

The Hamiltonian dynamics describes how the total energy evolves through time.

One particularly interesting feature of the Hamiltonian is that it conserves energy as

time evolves, a property that is approximately maintained even when the dynamics

is approximated in discrete time. Hence, a MH proposal obtained by simulating the

dynamics has approximately the same value of the extended target density as that of

the current draw, resulting in a high acceptance probability, even when the proposed

draw is far from the current draw. This typically avoids the inherently slow explo-

ration of the parameter space evident in random walk proposals (Betancourt, 2017).

HMC simulates the evolution of Hamiltonian dynamics for a given period of time. Up

to a point, the longer the integration time the more effectively the dynamics explore

the posterior distribution, while small integration times approach diffusive Langevin

methods (Roberts and Rosenthal, 1998; Roberts and Stramer, 2002). In practice, the

simulation of the dynamics is implemented with a numerical integrator. The more

accurate the integrator, the larger the step size and the fewer total steps needed to

simulate the dynamic for a chosen time. Smaller step sizes typically require larger in-

tegration times to achieve the same efficient exploration of the posterior distribution.
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In either case, HMC requires computing the gradient of the log-posterior in each step

when simulating the dynamics, and in practice a large number of steps may be per-

formed. The extra computations are often worthwhile as HMC greatly improves the

sampling efficiency of the generated samples compared to a proposal which does not

use gradient information. Even with the improved performance of HMC, however,

the cost can be too prohibitive for the limited computational resources available in

a given application. Consequently, some algorithms use subsampling of the data to

reduce the cost of computing the posterior density and its gradients. Unfortunately,

naive subsampling methods are often problematic and in particular they compromise

many of the features that give HMC its scalability (Betancourt, 2015). In this article

we introduce a subsampling HMC scheme that can tackle very large datasets and

maintain the scalability.

Our article speeds up computation by using subsets of the data to compute both

the dynamics and the subsequent MH correction performed when deciding to accept a

proposal. More precisely, we propose a HMC-within-Gibbs algorithm that alternates

i) sampling small subsets of data using a pseudo-marginal step and ii) sampling

parameters using the HMC dynamics and the MH correction based on the current

subset of the data. We will here focus on HMC algorithms where the Hamiltonian

Dynamics are used to generate a proposal which is subsequently accepted or rejected

using a MH step, which we refer to as HMC. Extensions to other HMC algorithms

that utilize the entire trajectory generated by the dynamics (Hoffman and Gelman,

2014; Betancourt, 2017) are interesting future research direction discussed in Section

7.

We propose two different subsampling versions of the HMC algorithm. In the

first perturbed approach we use a slightly biased likelihood estimator and show that

the algorithm targets a perturbed posterior which gets close to the true posterior

density as the subsample size and the number of observations of the dataset becomes

large; see Section 4.2 for details. The second approach uses an unbiased but pos-

sibly negative likelihood estimator which allows us to obtain simulation consistent

estimators of the posterior expectation of any function of the parameters. However,

this approach is harder to implement efficiently than the perturbed approach and is

typically slower computationally.

We compare our algorithms to Stochastic Gradient Langevin Dynamics (Welling

and Teh, 2011, SGLD) and Stochastic Gradient Hamiltonian Monte Carlo (Chen

et al., 2014, SG-HMC), two of the most popular subsampling algorithms that utilize

gradient information in machine learning. To make the comparison more challenging

we implement both methods with control variates for improved performance (Baker

et al., 2017). We demonstrate that our algorithms compare favorably to SGLD and
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SG-HMC. It is by now well known that all proposed subsampling MCMC and HMC

algorithms need accurate control variates to lower the variance of the estimated

posterior and gradients, and we explore the robustness of the algorithms when the

control variates are degraded.

The paper is organized as follows. Section 2 reviews previous research and the

methods we compare against. Section 3 presents our methodology using a gen-

eral likelihood estimator and argues that it circumvents the incompatibility of data

subsampling and HMC raised in recent literature. Sections 4 and 5 present two algo-

rithms based on two specific likelihood estimators. Finally, Section 6 demonstrates

the usefulness of the methods on two large datasets and compares with alternative

approaches. This section also explores the limitation of subsampling approaches by

experimenting with successively degrading the quality of the control variates used

for variance reduction. Section 7 concludes and discusses future research.

2 Related work

High-dimensional MCMC for large datasets

There has recently been a surge of interest in developing posterior simulation al-

gorithms that scale with respect to both the number of observations n and the

number of parameters d. Since simulation methods have the ambitious goal of ex-

ploring all regions in parameter space with sizable probability mass, they naturally

require many more iterations than posterior optimization algorithms. Posterior op-

timization is computationally attractive for big data, but does not quantify the pos-

terior uncertainty, which is often a central task in science. Although there exist

optimization-based methods that aim to approximate the entire posterior distribu-

tion, e.g. variational Bayes (Blei et al., 2017), Laplace approximations (Bernardo and

Smith, 2001, Chapter 5) or integrated nested Laplace approximations (Rue et al.,

2009), in practice it is nearly impossible to know how they perform without com-

paring the results to a posterior simulation method. It is thus important to develop

posterior simulation methods that:

i) remain computationally efficient when n is large and

ii) explore the posterior distribution efficiently when d is large.

Two distinct approaches exist to resolve i). The first is to utilize parallel computing

by dividing the n data observations into K parts, performing independent posterior

simulation on each of the K subposteriors and subsequently merge the draws to

represent the full data posterior. See, for example, Scott et al. (2013); Neiswanger
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et al. (2014); Wang and Dunson (2014); Minsker et al. (2014); Nemeth and Sherlock

(2018). The second approach, which is the focus of our article, is to work with

subsamples of m observations to estimate the full data posterior (Maclaurin and

Adams, 2014; Korattikara et al., 2014; Bardenet et al., 2014, 2017; Maire et al.,

2018; Bierkens et al., 2018; Quiroz et al., 2018a,c,b; Gunawan et al., 2018) or its

gradient (Welling and Teh, 2011; Chen et al., 2014; Ma et al., 2015; Shang et al.,

2015; Baker et al., 2017). The rest of this section reviews samplers which utilize

gradient information about the posterior density.

The primary problem confronted in ii) is how to generate proposals which main-

tain a high acceptance probability and are also distant enough to avoid a highly

persistent Markov chain for the model parameter. A useful approach is to simu-

late a discretized Langevin diffusion (Roberts and Rosenthal, 1998; Nemeth et al.,

2016) or, more generally, Hamilton’s equations (Duane et al., 1987) and use the sim-

ulated draw as a proposal in the MH algorithm to correct for the bias introduced by

the discretization (Neal, 2011). HMC provides a solution to ii) (Neal, 2011; Betan-

court, 2017), but when combined with i), the algorithm becomes computationally

intractable since simulating the Hamiltonian dynamics requires a large number of

costly gradient evaluations for every proposed parameter value.

Subsampling HMC algorithms and related approaches

A computationally attractive way to accelerate HMC is to use a fixed subsample of

the data to unbiasedly estimate the computationally costly gradients in each step of

the discretized Hamiltonian trajectory, and skip the MH correction to avoid evaluat-

ing the posterior on the full data. Betancourt (2015) demonstrates that this simple

strategy produces highly biased trajectories, where the bias depends upon the qual-

ity of the gradient estimator. Moreover, Betancourt (2015) shows that attempts to

average out the bias by renewing the subsample in each step of the trajectory still

perform poorly; see also the naive stochastic gradient HMC in Chen et al. (2014).

Betancourt (2015) illustrates that adding a MH correction step based on the full data

to fully correct for the biased trajectories leads to a rapid deterioration of the accep-

tance probability of HMC as d increases, and concludes that there is a fundamental

incompatibility of HMC and data subsampling. As a remedy to the poor perfor-

mance by the naive stochastic gradient HMC, Chen et al. (2014) propose adding a

friction term to the dynamics to correct for the bias. For the rest of our article, we

refer to the method using the friction term in the dynamics as Stochastic Gradient

Hamiltonian Monte Carlo (SG-HMC). Chen et al. (2014) omit the MH correction

step and the resulting bias in the posterior depends on the quality of the discretiza-
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tion of the continuous dynamics. Hence, in order to traverse the parameter space

effectively, the integrator potentially needs a large number of steps to compensate for

the small step size used when discretizing the dynamics, which may be very costly.

A different approach, but related in the sense that it uses an estimated gradient,

is Stochastic Gradient Langevin Dynamics (Welling and Teh, 2011, SGLD). SGLD

combines Stochastic Gradient Optimization (Robbins and Monro, 1951, SGO) and

Langevin dynamics (Roberts and Rosenthal, 1998), by allowing the initial iterates to

resemble a SGO and gradually traverse to Langevin Dynamics so as to not collapse

to the posterior mode. SGLD avoids a costly MH correction by arguing that it is not

needed because the discretization step size of the Langevin dynamics is decreased as

a function of the iterates (Welling and Teh, 2011). However, this decreases the rate

of convergence of estimators based on its output to R−1/3, where R is the number

of samples from the posterior (Teh et al., 2016), as opposed to R−1/2 for MCMC

(Roberts and Rosenthal, 2004), and in particular HMC. Practical implementations

of SGLD use a sequence of step sizes that does not decrease to zero in the limit,

and Vollmer et al. (2016) show that the posterior approximated by SGLD can then

be quite far from the true posterior; see also Brosse et al. (2018). Bardenet et al.

(2017) also demonstrate that SGLD can be accurate for the posterior mode, but

gives a poor approximation of the full posterior distribution on a toy example with

d = 2 and highly redundant data, i.e. superfluous amounts of data in relation to the

complexity of the model. Recently, Dubey et al. (2016) improve SGLD using control

variates, see also Baker et al. (2017) who, in addition, use control variates in the

SG-HMC algorithm proposed in Chen et al. (2014). We implement both SGLD and

SG-HMC with highly efficient control variates when comparing them to our method.

We also implement the methods without control variates as it has been shown that

sometimes variance reduction may be detrimental (Chatterji et al., 2018).

All the problems discussed above with subsampling in HMC and related algo-

rithms stem from the fact that subsampling disconnects the Hamiltonian from its

own dynamics. This disconnect causes HMC proposals to lose their energy conserv-

ing property and their attractive ability to sample efficiently in high dimensions. The

next section presents a new energy conserving approach to subsampling in HMC that

keeps the connection intact by estimating both the Hamiltonian and its correspond-

ing dynamics from the same subsample. By updating the subsample in a separate

pseudo-marginal step we make sure that the HMC algorithm still targets the pos-

terior based on all data. Put differently, our new approach creates a Hamiltonian

system with corresponding dynamics for a given subset of data. This allows for

the scalability of HMC to be maintained for each subsample, as is demonstrated in

Section 6.7.
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3 Energy conserving subsampling in HMC

This section presents our new approach to subsampling in HMC and discusses why

our approach avoids the pitfalls described in Betancourt (2015). In order to not

distract from the main ideas, we first present our approach for a general unbiased

and almost surely positive likelihood estimator from data subsampling. Sections 4

and 5 then present practical algorithms based on likelihood estimators proposed in

Quiroz et al. (2018a) and Quiroz et al. (2018c), respectively.

3.1 Pseudo-marginal MCMC

Denote the model parameter vector by θ ∈ Θ ⊂ Rd, where Rd is the space of d-

dimensional real vectors, and let π(θ) be its posterior density given a dataset y

with n observations. We first briefly describe pseudo-marginal MCMC (Andrieu and

Roberts, 2009), which serves as inspiration for one building block in our subsampling

HMC approach. Pseudo-marginal algorithms target the augmented posterior

πm(θ, u) ∝ L̂m(θ)pΘ(θ)pU(u), (1)

where L̂m(θ) is an unbiased and non-negative estimator of the likelihood L(θ) based

on m auxiliary variables, u, with density pU(u). In the particular application to

subsampling, u ∈ {1, . . . , n}m, contains the indices for the data observations used

in estimating the likelihood and m denotes the subsample size, see Section 4.1 for

details. Note that L̂m and any quantity included in its definition depend on n, but

this is suppressed in the notation for conciseness. We can now design an MCMC

chain to sample θ and u jointly from (1) and, since L̂m(θ) is unbiased, the θ iterates

are samples from π(θ).

The choice of m is crucial for pseudo-marginal methods. An m that is too small

results in a noisy likelihood estimator and the Markov chain may get stuck due to

severely overestimating the likelihood at the current draw, subsequently rejecting

nearly all proposals. Conversely, taking m too large wastes useful computational

resources. A natural aim is to choose an m that minimizes the Computational

Time (CT) needed to generate the equivalent of a single independent draw from the

posterior, with

CT := IF× Total number of density and gradient evaluations, (2)

where the Inefficiency Factor (IF) is proportional to the asymptotic variance when

estimating a posterior functional based on the MCMC output, and is interpreted
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as the number of samples needed to obtain the equivalent of a single independent

sample. The second term is proportional to the computing time for a single draw, a

measure that is independent of the implementation. Starting with Pitt et al. (2012),

there is a large literature showing that CT is minimized by an m that targets a vari-

ance of the log of the likelihood estimator around 1 (Doucet et al., 2015; Sherlock

et al., 2015; Tran et al., 2017; Deligiannidis et al., 2018; Schmon et al., 2018). Re-

cent developments in pseudo-marginal methods induce dependence in the auxiliary

variables u over the MCMC iterations such that the likelihood estimates over the

iterations become dependent (Deligiannidis et al., 2018). This makes it possible to

tolerate a substantially larger variance of the likelihood estimator, and hence smaller

subsamples in our context. We follow Tran et al. (2017) and induce the dependence

over the iterations by partioning the u’s into blocks and only update a subset of the

blocks in each iteration. The optimal subsample size m is then obtained by targeting

a certain value for the conditional variance of the likelihood estimator for a given

induced correlation ρ (Tran et al., 2017).

3.2 An energy conserving HMC-within-Gibbs framework

Following the standard HMC algorithm, our subsampling HMC algorithm introduces

a fictitious continuous momentum vector ~p ∈ P ⊂ Rd of the same dimension as the

continuous parameter vector θ. The extended target in (1) is then further augmented

by ~p to

πm(θ, ~p, u) ∝ exp
(
−Ĥ(θ, ~p)

)
pU(u), Ĥ(θ, ~p) = Û(θ) +K(~p) (3)

with

Û(θ) = − log L̂m(θ)− log pΘ(θ) and K(~p) =
1

2
~p ′M−1~p, (4)

where M is a symmetric positive-definite matrix. In (3) we assume that the Hamil-

tonian Ĥ is separable. We propose a HMC-within-Gibbs method to sample from (3),

alternating sampling from

1. u|θ, ~p, y - Pseudo-marginal MH update (Section 3.3)

2. θ, ~p |u, y - HMC update given u from Step 1 (Section 3.4).

This scheme has (3) as its invariant distribution. Integrating out the momentum

variables yields πm(θ, u) in (1) and, further integrating out u, yields π(θ) if the like-

lihood estimator L̂m(θ) is unbiased. Lindsten and Doucet (2016) propose the related

pseudo-marginal HMC sampler, in which a momentum vector is also introduced

for the auxiliary variables u. That scheme, however, is not applicable here as the
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pseudo-marginal variables we employ are discrete and not amenable to Hamiltonian

dynamics themselves.

The next subsections describe in detail the two updates of our algorithm and

explain why our approach does not compromise the Hamiltonian flow.

3.3 Updating the data subset

Given θ(j−1), ~p (j−1) and u(j−1), at iteration j we propose u′ ∼ pU(u) and set u(j) = u′

with probability

αu = min

{
1,

L̂m(θ(j−1);u′)

L̂m(θ(j−1);u(j−1))

}
, (5)

where the notation emphasizes that the estimators are based on different data sub-

sets. If the proposal is rejected we set u(j) = u(j−1).

Since u′ is proposed independently of u(j−1), the log of the ratio in (5) can be

highly variable, possibly getting the sampler stuck when the numerator is signifi-

cantly overestimated. To prevent this, we implement the block update of u for data

subsampling in Quiroz et al. (2018a,c) with G blocks, which gives a correlation ρ of

roughly 1− 1/G between the log L̂m at the current and proposed draws (Tran et al.,

2017; Quiroz et al., 2018c). Setting G = 100, gives ρ ≈ 0.99, which helps the chain

to mix well.

3.4 Updating the parameters

Given u(j), we use Hamilton’s equations

dθl
dt

=
∂Ĥ(θ, ~p)

∂~pl
,

d~pl
dt

= −∂Ĥ(θ, ~p)

∂θl
, l = 1, . . . , d, (6)

to propose θ and ~p. Note that this trajectory follows the Hamiltonian flow for Ĥ
viewed as a function of θ and ~p for a given data subset selected by u(j) since u(j) is

fixed through time t. We obtain the proposal as in standard HMC, using a leapfrog

integrator with integration time εL, but with Ĥ in place of H. Specifically, at

iteration j, given the data subset u(j), if the leapfrog integrator starts at (θ(j−1), ~p0)

with ~p0 ∼ K(~p) and ends at (θL,−~pL), we let (θ(j), ~p (j)) = (θL,−~pL) with probability

αθ,~p = min
{

1, exp
(
−Ĥ(θL,−~pL) + Ĥ(θ(j−1), ~p0)

)}
, (7)

with Ĥ in (3). If (θL,−~pL) is rejected, we set (θ(j), ~p (j)) = (θ(j−1), ~p0). In practice,

it is unnecessary to store the sampled momentum.
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Using the terminology in Betancourt (2015), we can think of the dynamics in

(6) as generating a trajectory following a modified level set (Ĥ), as opposed to the

exact level set obtained using dynamics that do not subsample the data (H). A

key property of our framework is that the same estimate Ĥ is used in generating the

discretized leapfrog trajectory as in the acceptance probability in (7). The connection

between the modified level set Ĥ and its dynamics is kept intact, and thus the original

energy conserving property of HMC remains, even for distant proposals. We therefore

name our algorithm Hamiltonian Monte Carlo with Energy Conserving Subsampling

(HMC-ECS). Note that energy conservation is only possible because of the pseudo-

marginal mechanism where we update the subsample in each Gibbs iteration, thereby

guaranteeing that our samples are from the target posterior based on all data.

Betancourt (2015) clearly illustrates the problems with using Ĥ for the dynamics,

but H in the acceptance probability. Given a sensible step length ε, discretizing the

Hamiltonian with a symplectic integrator introduces an error of O(ε2) (Neal, 2011)

relative to the modified level set and hence the discretization error is very small.

Betancourt (2015) notes that the modified level set and the discretized trajectory

based on it might be very far from the exact level set, resulting in low acceptance

probabilities no matter how small ε is. SG-HMC (Chen et al., 2014) deliberately

circumvent the disconnect problem by generating proposals from the trajectories

based on a modified Hamiltonian, but skip the rejection step. The disadvantage of

SG-HMC is therefore that the bias in the targeted posterior now grows with the step

length ε. Keeping ε small makes SG-HMC very computationally demanding since a

very large number of leapfrog steps are needed for distant proposals. In contrast, the

dynamics of HMC-ECS target the subsampled Hamiltonian, and so maintain a high

acceptance probability even for a large ε. The bias introduced by the subsampling is

then confined to the pseudo-marginal step, which is chosen so that the bias is very

small as our theoretical analysis below shows.

Algorithm 1 shows one iteration of our proposed HMC-ECS algorithm based on

the leapfrog integrator using the estimated likelihood L̂m(θ). The next two sections

consider previously proposed likelihood estimators and show how we use them in

HMC-ECS.
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Algorithm 1: One iteration of HMC-ECS.

Input: Current position u(j−1), θ(j−1), stepsize ε and integrating time εL

Propose u′ ∼ pU(u)

Set u(j) ← u′ with probability

αu = min

{
1,

L̂m(θ(j−1);u′)

L̂m(θ(j−1);u(j−1))

}
,

else u(j) ← u(j−1)

Given u(j) :

~p0 ∼ K(~p); θ0 ← θ(j−1); Ĥ0 ← Ĥ(θ(j−1), ~p0)

~p0 ← ~p0 − ε
2
∇θÛ(θ0)

for l = 1 to L do

θl ← θl−1 + εM−1~pl−1

if i < L then ~pl ← ~pl−1 − ε∇θÛ(θl);

else ~pL ← ~pL−1 − ε
2
∇θÛ(θl);

end
~pL ← −~pL
ĤL ← Ĥ(θL, ~pL)

Set (θ(j), ~p
(j)

)← (θL, ~pL) with probability

αθ,~p = min
{

1, exp
(
−Ĥ(θL,−~pL) + Ĥ(θ(j−1), ~p0)

)}
,

else (θ(j), ~p
(j)

)← (θ(j−1), ~p0)

Output: u(j), θ(j)
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4 Perturbed HMC-ECS

4.1 Efficient estimators of the log-likelihood

Quiroz et al. (2018a) propose samplingm observations with replacement and estimate

an additive log-likelihood

`(θ) = logL(θ) =
n∑
k=1

`k(θ), `k(θ) = log p(yk|θ)

by the unbiased difference estimator

̂̀
m(θ) =

n∑
k=1

qk(θ) + d̂m(θ), (8)

where

d̂m(θ) =
1

m

m∑
i=1

`ui(θ)− qui(θ)
ωui(θ)

, ui ∈ {1, . . . , n} iid with Pr(ui = k) = ωk, (9)

and qk(θ) are control variates. We continue to suppress dependence on n in the

notation for many quantities introduced in this section. If the qk(θ) approximate the

`k(θ) reasonably well, then we obtain an efficient estimator by taking ωk = 1/n for

all k. Quiroz et al. (2018a) estimate σ2(θ) = V
[̂̀
m(θ)

]
by

σ̂2
m(θ) =

n2

m2

m∑
i=1

(
dui(θ)− du(θ)

)2
, with dui(θ) = `ui(θ)− qui(θ) (10)

where du denotes the mean of the dui in the sample u = (u1, . . . , um).

To obtain efficient control variates, Quiroz et al. (2018a) follow Bardenet et al.

(2017) and let qk(θ) be a Taylor approximation around a fixed central value θ?,

qk(θ) = `k(θ
?)+∇θ`k(θ

?)>(θ−θ?)+1

2
(θ−θ?)>Hk(θ

?)(θ−θ?), Hk(θ
?) := ∇θ∇>θ `k(θ?).

(11)

After processing the full data once before the MCMC to compute simple summary

statistics,
∑n

k=1 qk(θ) can be computed in O(1) time (Bardenet et al., 2017).
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4.2 Efficient estimators of the likelihood and its gradient

Quiroz et al. (2018a) use the likelihood estimator

L̂m(θ) = exp

(̂̀
m(θ)− 1

2
σ̂2
m(θ)

)
(12)

first proposed by Ceperley and Dewing (1999) and Nicholls et al. (2012). The mo-

tivation for this estimator is that it is unbiased for the likelihood if i) ̂̀m(θ) ∼
N (`(θ), σ2(θ)) (justified by the central limit theorem) and ii) σ̂2

m(θ) in (12) is re-

placed by the population quantity σ2(θ). However, σ2(θ) is not available in practice

and the estimator in (12) is biased. This bias makes the MCMC algorithm in Quiroz

et al. (2018a) target a slightly perturbed posterior πm(θ). Assuming that the expan-

sion point θ? in the control variates is the posterior mode based on all data, Quiroz

et al. (2018a) prove that

ˆ
Θ

|πm(θ)− π(θ)|dθ = O

(
1

nm2

)
and |Eπm [h(θ)]− Eπ[h(θ)]| = O

(
1

nm2

)
, (13)

where πm(θ) = EpU

[
L̂m(θ)

]
is the perturbed marginal for θ when using the likelihood

estimator in (12). These results carry over to our Hamiltonian approach straightfor-

wardly as we obtain the augmented target in Quiroz et al. (2018a) after integrating

out the momentum in (3) and using (12). Hence, the θ iterates from HMC-ECS

converge to a perturbed posterior which may get arbitrarily close to the true poste-

rior by increasing the subsample size m, or by increasing n and letting m = O(nν)

for some ν > 0. For example, if ν = 1/2, then the above orders are O(1/n2) with

respect to n. However, this extremely rapidly vanishing perturbation is usually not

practically attainable since the result in (13) assumes that θ? is the posterior mode

based on all data. Corollary 1 in Quiroz et al. (2018a) proves rates under the more

realistic assumption that θ? is the posterior mode based on a fixed subset of ñ� n

observations. If, for example, ñ = O(
√
n) then the rates in (13) become O(1/

√
n).

Importantly, the optimal subsample size in this case becomes m = O(
√
n), which

shows that HMC-ECS scales well with the size of the data. See Quiroz et al. (2018a)

for suggestions on how to get closer to the rates in (13) in a computationally tractable

way.

In addition to estimating the likelihood and the log-likelihood, our Hamiltonian

approach needs to also estimate a gradient. It is straightforward to modify (8) to

instead provide an unbiased estimator of the gradient of the log-likelihood. With
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ωk = 1/n and ∇θqk(θ) = ∇θ`k(θ
?) +Hk(θ

?)(θ − θ?),

∇θ
̂̀
m(θ) = A(θ?) +B(θ?)(θ − θ?) +

n

m

m∑
i=1

(∇θ`ui(θ)−∇θqui(θ)) , (14)

where

A(θ?) :=
n∑
k=1

∇θ`k(θ
?) ∈ Rd and B(θ?) :=

n∑
k=1

Hk(θ
?) ∈ Rd×d

are obtained at the cost of computing over the full dataset once before the MCMC

since θ? is fixed. It is also straightforward to compute ∇θσ̂
2
m(θ) using (10) with this

choice of control variate.

It is important to note that the perturbation in the targeted posterior in perturbed

HMC-ECS is independent of the step length in the leapfrog iterations, ε. Hence,

we can generate distant proposals from a small number of leapfrog steps without

increasing the posterior bias.

5 Signed HMC-ECS

We now present an alternative HMC-ECS algorithm based on the Block-Poisson esti-

mator in Quiroz et al. (2018c). This algorithm gives simulation consistent estimates

of expectations with respect to the true posterior density without any perturbation.

5.1 The block-Poisson estimator

Quiroz et al. (2018c) propose the block-Poisson estimator, formed by sampling Xl ∼
Pois(1) for l = 1, . . . λ, and computing d̂

(h,l)
m , h = 1, . . . ,Xl, using (9) based on a

mini-batch sample size m, and then estimate the likelihood by

L̂m(θ) = exp

(
n∑
k=1

qk(θ)

)
λ∏
l=1

ξl, ξl = exp

(
a+ λ

λ

) Xl∏
h=1

(
d̂

(h,l)
m (θ)− a

λ

)
, (15)

where λ is a positive integer, a is a real number and ξl = exp ((a+ λ)/λ) if Xl = 0.

Pois(1) denotes the Poisson distribution with mean 1. Note that the total subsample

size mλXl is random with mean mλ in a given MCMC iteration.

Since L̂m(θ) is unbiased for L(θ), defining the augmented density as in (3) gives

ˆ
U

ˆ
P
πm(θ, ~p, u)d~pdu = π(θ).
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Hence, if (3) is a proper density using (15), we obtain samples from the desired

marginal for θ. However, (3) is a proper density only if τ := Pr
(
L̂m(θ) ≥ 0

)
= 1,

which requires that a in (15) is a lower bound of d̂
(h,l)
m (Jacob and Thiery, 2015)

which results in a prohibitively costly estimator (Quiroz et al., 2018c). Instead, we

follow Quiroz et al. (2018c) who use the approach of Lyne et al. (2015) for exact

inference on an expectation of an arbitrary function ψ(θ) with respect to π(θ). For

our Hamiltonian approach, this entails noting that we can define a proper augmented

density,

π̃m(θ, ~p, u) ∝
∣∣∣L̂m(θ)

∣∣∣ pΘ(θ)pU(u) exp (−K(~p)) , (16)

and write

Eπ[ψ] =

´
Θ
ψ(θ)L(θ)pΘ(θ)dθ´
Θ
L(θ)pΘ(θ)dθ

=

´
U

´
P

´
Θ
ψ(θ)S(θ, u)π̃(θ, ~p, u)dθd~pdu´

U

´
P

´
Θ
S(θ, u)π̃(θ, ~p, u)dθd~pdu

=
Eπ̃[ψS]

Eπ̃[S]
,

(17)

where S(θ, u) = sign
(
L̂m(θ)

)
and sign(·) = 1 if L̂m(θ) ≥ 0 and sign(·) = −1

otherwise. Equation (17) suggests that we can run our HMC-ECS sampler outlined

in Section 3.2 on the target (16), and then estimate (17) by

ÎR =

∑R
j=1 ψ(θ(j))s(j)∑R

j=1 s
(j)

,

where s(j) is the sign of the estimate at the jth iteration. We follow Quiroz et al.

(2018c) and use the term signed PM for any pseudo-marginal algorithm that uses

the technique in Lyne et al. (2015) where a pseudo-marginal sampler is run on the

absolute value of the estimated posterior and subsequently sign-corrected by impor-

tance sampling. Similarly, we call the algorithm described in this section signed

HMC-ECS.

The block-Poisson estimator in (15) has more tuning parameters than the estima-

tor in (12). Quiroz et al. (2018c) extend the optimal tuning approach in Pitt et al.

(2012) to the signed pseudo-marginal algorithm with the block-Poisson estimator.

The Computational Time (CT) measure in (2) now becomes

CT :=
IF

(2τ − 1)2
× Total number of density and gradient evaluations, (18)

where τ := Pr
(
L̂m(θ) ≥ 0

)
. Quiroz et al. (2018c) derive analytical expressions for

both V[log |L̂m|] and Pr(L̂m ≥ 0) needed to optimize CT. The fact that Quiroz

et al. (2018c) take Pr(L̂m ≥ 0) into account when tuning the algorithm avoids the

instability from changing signs in signed PMMH. Quiroz et al. (2018c) also consider
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optimal tuning when correlating the estimators of the log of the likelihood at the

current and proposed values of the MCMC. This correlation, ρ, is achieved by only

updating u for a subset of the products in (15) in each iteration, keeping the others

fixed. Quiroz et al. (2018c) show that if u is updated in κ products, then ρ ≈ 1−κ/λ.

6 Applications

6.1 Model

We consider the logistic regression

p(yk|xk, θ) =

(
1

1 + exp(−x>k θ)

)yk ( 1

1 + exp(x>k θ)

)1−yk
, with pθ(θ) = N (θ|0, λ−2

θ I),

where λθ is a global shrinkage factor which we treat as constant for simplicity. We

estimate the model on two large datasets described below.

6.2 Competing algorithms and performance measure

We compare the performance of both the perturbed and the signed HMC-ECS algo-

rithms against SGLD and SG-HMC. All subsampling methods use the same control

variates based on a second order Taylor expansion for comparability; see Section 6.8

for experiments with control variates based on lower order Taylor expansions. The

expansion point θ? is unique to each experiment and will be discussed later.

Following Vollmer et al. (2016); Baker et al. (2017), we implement SGLD using a

fixed small step size ε instead of decreasing it (which gives worse results). This gives

the following dynamics after discretization

θi = θi−1 −
ε

2
∇θÛ(θi) + ζi, i = 1, . . . , R,

where Û(θ) = −∇θ
̂̀
m(θ)− log pΘ(θ) with ∇θ

̂̀
m(θ) in (14) and ζi ∼ N (0, εI).

Following Chen et al. (2014), we implement SG-HMC using a discretized dynam-

ics with momentum ~p with covariance matrix M of the form

θl = θl−1 + εM−1~pl−1

~pl = ~pl−1 − ε∇θÛ(θl)− εCM−1~pl−1 + ζl, l = 1, . . . , L,

where Û(θ) = −∇θ
̂̀
m(θ) − log pΘ(θ) with ∇θ

̂̀
m(θ) in (14), ζl ∼ N (0, 2(C − B̂)ε).

We set B̂ = 0 (Chen et al., 2014) and C = I (Ma et al., 2015).
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The algorithms are compared with respect to CT as defined in (2) when the

likelihood estimator is non-negative, where IF is computed using the CODA package

in R (Plummer et al., 2006). For signed HMC-ECS, the CT is given by (18) and we

estimate τ by the fraction of positive signs. Note that CT does not take into account

that some of the compared algorithms can give a substantially biased estimate of the

posterior, and we assess the bias separately.

The Relative Computational Time (RCT) between algorithmA1 andA2 is defined

as

RCTA1,A2 =
CTA2

CTA1

. (19)

6.3 Tuning and settings of our algorithms

We first outline how our algorithms are tuned. These settings are used through all

the experiments unless otherwise stated.

The choice of the positive-definite mass matrix M in (4) is crucial for the perfor-

mance of any HMC type algorithm: an M that closely resembles the covariance of

the posterior facilitates sampling, especially when θ is highly correlated in the pos-

terior (Neal, 2011; Betancourt, 2017). In logistic regression, we set M = −Σ−1(θ?),

where Σ(θ?) is the Hessian of the log posterior evaluated at some θ?. We initial-

ize M = I and, during a burn-in period of 1,000 iterations, update M every 200

iterations based on the new θ?. We use the same tuning of M in HMC-ECS when

updating θ and ~p conditional on the data subsample u. However, since it is imprac-

tical to compute the Hessian of the conditional posterior at each iteration, we use

the full dataset when evaluating M (and include the cost in the CT), which performs

well in practice although we stress that it is not optimal.

To select the step size ε in the leapfrog integrator, we utilize the dual averaging

approach of Hoffman and Gelman (2014), which requires a predetermined trajectory

length εL. We have found that εL = 1.2 is sensible for our examples. The dual

averaging algorithm uses this trajectory length and adaptively changes ε during the

burn-in period in order to achieve a desired level of acceptance rate δ. We follow

Hoffman and Gelman (2014) and set δ = 0.8. The tuning for the logistic regression

is relatively simple since Σ can be computed analytically, which is useful for both

setting M and ε. More complex models are harder to tune, but this fact is unlikely to

influence the comparisons between HMC-ECS and the other algorithms here, which

is our primary concern. We stress that these tuning issues are inherent to HMC itself

and not due to our subsampling approach. This strategy gives ε = 0.2 and L = 6 for

our algorithm which is the default in our experiments unless otherwise stated.

In HMC-ECS we generate subsamples with a correlation of ρ = 0.99. The sub-
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sample size m in the perturbed HMC-ECS approach is set according to the guidelines

in Quiroz et al. (2018a), see Section 4. In the signed HMC-ECS approach, we follow

Quiroz et al. (2018c) who set the mini-batch size m = 30 and set λ optimally to

minimize CT according to the formulas in Quiroz et al. (2018c). For our examples,

λ = 100 and λ = 200, for the HIGGS dataset and bankruptcy dataset, respectively.

6.4 Tuning and settings of the competing algorithms

We run full data HMC using the tuning strategy for ε and M outlined in Section

6.3. We use M = Σ−1(θ?) with θ? as the posterior mean in SG-HMC. This favours

SG-HMC over HMC-ECS, which needs to learn θ? as the algorithm progresses.

We are unaware of any tuning strategies for setting ε in SGLD and SG-HMC and

therefore use trial and error. We conclude different values of ε depending on which

dataset or algorithm was considered; see Sections 6.5 and 6.6. For SG-HMC we also

need to set the number of steps L and we explore two choices. First, notice that

HMC-ECS use the trajectory length εL = 1.2. We thus set L = 1.2/ε so that SG-

HMC can traverse the space as swiftly as HMC-ECS. We also compare with SG-HMC

using a value of L which gives the same number of likelihood and gradient evaluations

as HMC-ECS. For SGLD, we run the algorithm for R iterations that correspond to

the number of gradient evaluations used post burn-in in HMC-ECS. For example,

R = 12,000 iterations if L = 6 and HMC-ECS performs 2, 000 iterations.

Finally, as it is outside the scope of this paper to derive optimality results for

SGLD and SG-HMC, we use the same m as HMC-ECS for these algorithms.

6.5 Results for the HIGGS data

Baldi et al. (2014) use the HIGGS dataset which contains 11 million observations,

where the response detected particle is predicted by 29 attributes. We use 10.5

millions observations for training and 500,000 for testing.

Unless otherwise stated, we start all algorithms at a θ? obtained as the posterior

mean from running HMC on 1% of a randomly chosen subset of the data. This

θ? is also used to initialize the control variates. We first run the algorithms using

a full mass matrix M , chosen as explained above. The subsample size was set to

m = 1, 300 for all methods. For SG-HMC and SGLD, ε = 0.06 and ε = 0.000001 is

used, respectively. The resulting L is 20 for SG-HMC.

Table 1 displays the CT for each algorithm compared to the perturbed HMC-ECS

algorithm. The table shows the minimum, median and maximum RCT across all pa-

rameters. The best algorithm is perturbed HMC-ECS closely followed by signed
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RCT Signed HMC-ECS SG-HMC SGLD

min 0.8 2.43 3.58

median 1.15 2.97 12.46

max 1.95 4.08 326.80

Table 1: HIGGS data. Relative computational time compared to perturbed HMC-
ECS. The computational cost is (number of likelihood/gradient evaluations)×IF. For
HMC-ECS and signed HMC-ECS the cost is computed for the entire run including
training and warmup period. The RCT for the stochastic gradient methods are based
on post-burnin iterations only.

HMC-ECS, both have RCTs that are roughly three times better than the best com-

petitor SG-HMC. Although our metrics do not allow for direct comparison be-

tween biased (our approaches, SG-HMC and SGLD) methods and unbiased methods

(HMC), we note that implementing HMC using the full data in this example is, for

the perturbed and exact approach respectively, 642.8 and 554.1 times more expensive

in terms of posterior density and gradient evaluations.

RCT does not take the bias into account, however. Figure 1 displays kernel

density estimates of the marginal posterior of four randomly selected parameters,

and Figure 2 plots the posterior mean and variance for all the parameters from each

algorithm against the true posterior mean and variance obtained from HMC based

on the full dataset. Figures 1 and 2 clearly show that both HMC-ECS algorithms

and SG-HMC do a very good job in approximating the posterior, while SGLD gives

biased estimates. We have also added the results for SG-HMC and SGLD without

control variates as variance reduction is not always optimal for these algorithms

(Chatterji et al., 2018). In this example, control variates are indeed helpful, except

for SGLD which does not provide an accurate approximation regardless.

We conclude this example by demonstrating that HMC-ECS can safely be used

for obtaining the predictive distribution. Figure 3 shows that the Receiver Operating

Characteristic (ROC) curve for the 500, 000 test observations obtained with either

of the two HMC-ECS algorithms are indistinguishable from the ROC curve obtained

with HMC on the full dataset.

6.6 Results for the Bankruptcy data

This dataset contains annual observations on the bankruptcy status (binary y) of

Swedish firms in the time period 1991-2008. We follow Giordani et al. (2014) and
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Figure 1: HIGGS data. The figure shows kernel density estimates of the posterior
from the compared subsampling algorithms for four randomly selected parameters
(green lines) and the corresponding posterior from HMC on the full dataset (red
lines). All algorithms use the negative inverse Hessian from all the data as mass
matrix. HMC-ECSP and HMC-ECSS denote, respectively, the perturbed and signed
HMC-ECSS. For SGLD and SG-HMC, subscript 1 refers to the second order control
variate and subscript 2 refers to the version without control variates.
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Figure 2: HIGGS data. The figure plots the estimated posterior mean and variance
for all parameters from the subsampling algorithm against their true values obtained
by HMC on the full dataset. All algorithms use the negative inverse Hessian from
all the data as mass matrix. HMC-ECSP and HMC-ECSS denote, respectively, the
perturbed and signed HMC-ECSS. For SGLD and SG-HMC, subscript 1 refers to
the second order control variate and subscript 2 refers to the version without control
variates.
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Perturbed HMC-ECS Signed HMC-ECS

αθ,~p 0.980 0.979

αu 1 0.993

L 6 6

IF 2.185 2.192

ESS 927 922

τ̂ 1

100(m/n) 0.012 0.029

Table 2: HIGGS data. Summary of settings and efficiencies of HMC-ECS. The table
shows the average acceptance probabilities (as a benchmark HMC has 0.980) in the
post burn-in period for the two Gibbs steps, the number of steps L in the integrator
used to obtain a predetermined trajectory length εL = 1.2, the average Inefficiency
Factor (IF) (as a benchmark HMC has 2.084), the Effective Sample Size ESS = R/IF,
the estimated probability of a positive likelihood estimator τ and the percentage of
data used by each of the algorithms.

Figure 3: Prediction performance for the HIGGS data. The figure shows the Receiver
Operating Characteristic (ROC) curves for the 500, 000 test observations with HMC
and HMC-ECSP (left panel, perturbed HMC-ECS) and HMC-ECSS (right panel,
signed HMC-ECS).
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RCT HMC-ECSS SG-HMC1 SG-HMC2 SGLD

min 1.2 6.8 48.6 53.9

median 1.6 9.5 100.2 230.1

max 2.6 682.3 246.7 2784.2

Table 3: Bankruptcy data. Relative computational time compared to perturbed
HMC-ECS. For the two HMC-ECS algorithms, the cost is computed for the entire
run including training and warmup period. The RCT with respect to stochastic
gradient methods are based on post-burnin iteration only. HMC-ECSS is the signed
HMC-ECS. SG-HMC1 and SG-HMC2 denote, respectively, the SG-HMC with L =
60 and L = 7 leapfrog steps.

model the log odds of the firm failure probability as a non-linear function of six firm-

specific financial ratios and two macroeconomic variables using an additive spline

model. Giordani et al. (2014) estimate the model using frequentist methods. We

use a Bayesian approach with an 81 dimensional posterior distribution (an intercept

and 10 basis spline functions for each covariate) given the n = 4,748,089 firm-year

observations.

Experimentation shows that ε = 0.02 is a sensible choice for SG-HMC. Using

the same trajectory length as in HMC-ECS gives L = 60 for SG-HMC. We also

compare with SG-HMC using L = 7 for which SG-HMC has the same number

of gradient evaluations as HMC-ECS has gradient and likelihood evaluations. For

SGLD, ε = 0.00002 is a sensible choice.

The subsample size for perturbed HMC-ECS was initially set to the optimal

m = 62,000 following the guidelines in Quiroz et al. (2018a) based on the initial value

for θ?. We then ran perturbed HMC-ECS for 100 iterations to obtain a better θ? and

recalibrated to the now optimal m = 1,000 for this improved θ?. This improved θ?

is also used to tune λ in signed HMC-ECS, as explained in Section 5. All iterations

used for tuning are included in the computational cost.

Figures 4 and 5 show that the two HMC-ECS algorithms give clearly better pos-

terior approximations. The figures also show that SG-HMC with L = 60 leapfrog

steps performs reasonably well in terms of accuracy and much better than SGLD,

although some expectation estimates are biased. SG-HMC with L = 7 has substan-

tially higher inefficiency factors and these figures show the degraded accuracy of the

algorithm.

Figure 6 shows the probability of bankruptcy for the fitted model and the em-

pirical bankruptcy frequencies as a function of one of the covariates, Earnings ratio,
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Figure 4: Bankruptcy data. The figure shows kernel density estimates of the posterior
from the compared subsampling algorithms for four randomly selected parameters
(green lines) and the corresponding posterior from HMC on the full dataset (red
lines). HMC-ECSP and HMC-ECSS denote, respectively, the perturbed and signed
HMC-ECSS. SG-HMC1 and SG-HMC2 denote, respectively, the SG-HMC with L =
60 and L = 7 leapfrog steps.
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Figure 5: Bankruptcy data. The figure plots the estimated posterior mean and vari-
ance for all parameters from the subsampling algorithm against their true values
obtained by HMC on the full dataset. HMC-ECSP and HMC-ECSS denote, respec-
tively, the perturbed and signed HMC-ECSS. SG-HMC1 and SG-HMC2 denote,
respectively, the SG-HMC with L = 60 and L = 7 leapfrog steps.
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Perturbed HMC-ECS Signed HMC-ECS

αθ,~p 0.967 0.962

αu 0.994 0.964

L 6 6

IF 2.202 2.31

ESS 912 871

τ̂ 1

100(m/n) 0.021 0.126

Table 4: Bankruptcy data. Summary of settings and efficiencies of HMC and HMC-
ECS. The table shows the average acceptance probabilities (as a benchmark HMC
has 0.966) in the post burn-in period for the two Gibbs steps, the number of steps
L in the integrator used to obtain a predetermined trajectory length εL = 1.2, the
average Ineffiency Factor (IF) (as a benchmark HMC has 2.195), the Effective Sample
Size ESS = R/IF, the estimated probability of a positive likelihood estimator τ and
the percentage of data used by each of the algorithms.

with details in the caption. The posterior mean and posterior predictive intervals

obtained by HMC and the perturbed HMC-ECS are indistinguishable.

Finally, we note that implementing HMC using the full data in this example

is, for the perturbed and exact approach respectively, 478.7 and 311.5 times more

expensive in terms of posterior density and gradient evaluations.

6.7 Scalability of HMC-ECS

Beskos et al. (2013) show that, in an optimally tuned HMC algorithm, the step

size ε needs to be scaled as O(d−1/4) to keep the acceptance probability constant

as the dimension d increases. This is more favorably than the rate O(d−1/3) of

Langevin Monte Carlo (Roberts and Rosenthal, 1998). We have argued that since

our algorithm is performing a HMC step using a Hamiltonian based on a subset of

the data it should scale with dimension similarly to HMC.

We set out to test this hypothesis empirically as follows. First, we consider a

sequence of d, obtained as d = 2h, h = 1, . . . , 8 and obtain eight simulated datasets

with n = 10, 000 each. For each d, we run the dual averaging algorithm as de-

scribed in Section 6.3 to find the optimal εand check if ε = O(d−1/4) is reasonable.

In agreement with Beskos et al. (2013) we set M optimally from the curvature of

the conditional target posterior. This is easily achieved by considering a Gaussian

regression model where we set the prior pΘ(θ) = N (0, 52Id), such that the optimal
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Figure 6: Realized and predicted bankruptcy probabilities as a function of the co-
variate Earnings ratio from the perturbed HMC-ECS (left panel) and HMC (right
panel). Realized mean bankruptcy probabilities (blue dots) are computed by di-
viding the data into 100 equally sized groups based on the earnings ratio variable
and estimating the bankruptcy probability by the fraction of bankrupt firms in each
group. The solid line is the predictive mean and the shaded regions are point wise
90% equal tail posterior credible intervals.

M for the conditional target is, assuming the bias-correction term to be negligible,

M =
n

m

m∑
i=1

X>uiXui +
1

52
,

where Xui denotes the uith row of the design matrix. We note that, since the

Gaussian model is quadratic in its log-density, the second order control variate will

yield a perfect fit, i.e. the variance of l̂m(θ) is zero. Thus, we also experiment with

a first order control variate. We scale m to maintain the variance around 1 (Pitt

et al., 2012). The results are shown in Figure 7 and we deduce that the algorithm

does indeed maintain the scalability.

6.8 Limitations of subsampling HMC

Variance reduction by control variates is crucial in any subsampling MCMC algo-

rithm. This subsection explores the role of control variates by successively degrading

the quality of the control variates by lowering the order of their Taylor approxima-

tion. Figure 8 shows the estimated variance of l̂m(θ) as a function of the iterates

when the control variates are based on a Taylor series expansions of different orders.

We note that the algorithm survives a substantial variance during the training it-
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Figure 7: Empirical illustration of the scaling of HMC-ECS, see Section 6.7 for the
experimental settings. The left figure shows the optimal step size as a function of
the dimension. HMC (O(d−1/4)) and Langevin (O(d−1/3)) are plotted for reference.
The right figure shows the acceptance rate targeted for optimality. The IF of our
methods are close to 1, regardless of if the 1st or 2nd control variate is used. The
variance of the log-likelihood estimator for the second order control variate is nearly
zero (quadratic target) and for the first order control variate is kept around 1 (Pitt
et al., 2012) by selecting m appropriately.

Figure 8: Variance of l̂m. The figure shows the estimated variance as a function
of the iterations for three different orders in the Taylor expansion for the control
variates. The dashed vertical lines correspond to the end of the training period used
the solid vertical line corresponds to the end of the burn-in period.
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erations when applying the first order control variates, and this variance eventually

settles down once a sensible θ? is found. Figure 9 shows that the expectation and

variance estimates are very accurate for the first order control variates. Figures 8

and 9 also shows that control variates of zero order are too crude for HMC-ECS in

this example. While it seems that the competing methods are more robust to the

quality of the control variates, we again stress that all competitors are placed in the

unrealistically favorable scenario of having M equal to the inverse Hessian evaluated

at the posterior mean.

The control variates (Bardenet et al., 2017) used in this paper are quadratic

in θ centered around θ?. This means that they are expected to work well for any

model which has a log-density that is reasonably quadratic in θ in a neighborhood of

θ?. Examples are Poisson regression (Quiroz et al., 2018d) and Student-t regression

(Quiroz et al., 2018a). While the locally approximately quadratic feature is found

in many models, there are clearly models in which this local approximation can be

poor, for example deep neural nets. To find efficient control variates, which are also

computationally feasible, in a class of complex models remains an open challenging

problem. We stress however that this is problem for all existing subsampling MCMC

approaches, and any progress on improved control variates can be straightforwardly

incorporated in HMC-ECS.

7 Conclusions and Future Research

We propose a method to speed up Bayesian inference while maintaining high sam-

pling efficiency in moderately high-dimensional parameter spaces by combining data

subsampling and Hamiltonian Monte Carlo such that the energy is conserved. We

show how to implement the method using two estimators of the likelihood. The first

implementation, which we refer to as perturbed HMC-ECS, produces iterates from

a perturbed density that may get arbitrarily close to the true density, as measured

by the total variation metric, at the rate O(n−1m−2). The second implementation,

which we refer to as signed HMC-ECS, gives iterates which are then used in an

importance sampling estimator to obtain a simulation consistent estimator of the

expectation of any posterior functional.

We apply the methods to simulate from the posterior distribution in two datasets,

with d = 29 and d = 81 dimensions, respectively. Our two HMC-ECS algorithms

perform highly accurate inference, comparable to HMC without subsampling, but

are computationally much faster. This is a major step forward since Bardenet et al.

(2017) and Quiroz et al. (2018a) demonstrate that most subsampling approaches

cannot even beat standard MH without subsampling on toy examples with d = 2
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Figure 9: Results for the zeroth and first order control variate. The figure shows
the estimates of posterior expectations and posterior variances using the zeroth or-
der control variate (upper panel) and first order control variate (lower panel). All
comparisons are versus HMC which represents the ground truth.
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and highly redundant data. We also show that HMC-ECS is very competitive against

SGLD and SG-HMC, both in terms of sampling efficiency and accuracy.

Control variates to reduce the variance of subsampling estimators are well known

to be crucial for any subsampling MCMC algorithm. We use very efficient control

variates based on a second order Taylor expansion in our applications, but explore

the effects of less accurate control variates. We find that HMC-ECS still performs

well with a more crude first order approximation, but that a Taylor approximation

of order zero is too crude and gives a too large variance for HMC-ECS.

Similarly to HMC, HMC-ECS is difficult to tune. Self-tuning algorithms such as

the no-U-Turn sampler (Hoffman and Gelman, 2014) have been proposed for HMC

and it would be interesting to see if our ideas can be applied there. It would also be

interesting to consider Riemann Manifold HMC (Girolami and Calderhead, 2011),

which has been demonstrated to be very effective when a high-dimensional posterior

exhibits strong correlations. Scaling up such an algorithm opens up the possibility

of simulating the posterior density of highly complex models with huge datasets.

Finally, until recently, one of the limitations of HMC was its inability to cope with

discrete parameters. Nishimura et al. (2017) overcomes this limitation and extending

HMC-ECS in this direction would be an interesting undertaking.
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