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Abstract

Stablecoins promise a stable and secure way to park funds in the crypto universe. However, stablecoin
issuers are vulnerable to runs triggered by negative information about the quality and liquidity of their
reserves, as well as custodial, operational, and technological risks. I propose a framework for analyzing
the factors influencing stablecoin adoption and fragility, which offers insights for risk assessment and
appropriate regulation, as well as new testable implications. Under the premise that payment preferences
are heterogeneous across potential stablecoin holders, a wider adoption of stablecoins is associated with a
destabilizing composition effect. Positive network effects mitigate the destabilizing composition effect, but
theymay also undermine the role of bank deposits as ameans of payment. Themarginal stablecoin adopter
does not internalize these effects. Consequently, adoption is likely to be excessive. Factors that increase the
issuer’s income from fees and seigniorage promote stability, as do congestion effects. A stablecoin lending
market promotes both stability and adoption, if it is not undermined by speculation. The introduction of a
moral hazard problem provides additional insights into reserve management and disclosure.
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1 Introduction

The goal of this paper is to explore the factors that determine stablecoin adoption and fragility, as well as the
relationship between the two. Key research questions addressed in this paper include how the fragility of
stablecoins is influenced by their adoption, what conditions can lead to excessive stablecoin adoption, and
how fragility is affected by various factors such as payment preferences, network effects, transaction costs,
stablecoin lending, and moral hazard problems faced by stablecoin issuers. To answer these questions and
to provide insights for the appropriate regulation of stablecoins, I develop a theoretical framework.

Stablecoins are a new formof digital privatemoney that promises a stable and secureway to park funds in
the crypto universe. The dominant stablecoins are pegged one-to-one to the US dollar and serve as a critical
link between the rapidly evolving crypto universe and traditional financial markets. Figure 1 shows the
evolution of themarket capitalization of the top stablecoins since January 2020. After a breakneck expansion
in 2021, when the market grew nearly five-fold, the pace of growth slowed down markedly, followed by
a correction during the crypto market turmoil in May/June 2022, when the total market capitalization
dropped from close to 190bn to around 150bn US dollars after a wave of redemptions. The renewed
crypto market turmoil in November 2022 during the failure of the FTX crypto exchange caused another
correction, particularly affecting Binance Coin, which is affiliated with the rival Binance crypto exchange. In
an increasingly concentratedmarket with a Herfindahl-Hirschman Index of 46%, the two dominant players,
Tether and USD Coin, had a capitalization of 81.8bn and 30.5bn US dollars, respectively, in April 2023.
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Figure 1: End of month market capitalization of top stablecoins over the period from January 2020 to April
2023, when the combined end-of-period capitalization stood at around $130bn. Source: coingecko.com.

While most crypto assets like Bitcoin or Ether have no intrinsic value and are highly volatile, the leading
stablecoins are backed by fiat currency or by other assets and promise a stable and secure way for crypto
investors to park their funds and to reduce trading costs across cryptocurrency exchanges. Stablecoin
arrangements can also offer users greater privacy and transaction speeds. Other use cases include low cost
remittances and possibly the access to a substitute for volatile fiat currencies facing devaluation pressures.
This makes stablecoins suitable as a form of private money, with a potential for wider adoption in cross-
border transactions and financialmarketsmore generally. It is, however, unclearwhether today’s stablecoins
can serve as an effective and widely accepted medium of exchange beyond certain use cases due to their
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inherent susceptibility to runs and technical limitations in payments processing.1
Financial regulators were alerted to stablecoins after social media platform Facebook announced in June

2019 that it would launch its own digital currency called "Libra," sparking extensive policy discussion (G7
2019; FSB 2019; Brainard 2019; Cœuré 2019; Adrian and Mancini-Griffoli 2019). While Facebook abandoned
the project in January 2022 after facing regulatory headwinds, the potential for widespread adoption of
stablecoins, their fragility, as well as their impact on the stability of traditional financial markets and the
monetary system remains a major concern for policymakers, which I discuss in more detail in the paper.

There have already been instances of runs against stablecoins. Most prominently, the destructive run
against the algorithmic stablecoin Terra USD. Up until May 2022, UST has been trading in a narrow band
around its peg to the US dollar for almost one year, which includes a period of rapid growth in its market
capitalization from 2.8bn US dollars at the end of October 2021 to 18.7bn US dollars in early May 2022.
On May 9 UST suffered a wave of redemptions that resulted in the unmooring of the peg to the US dollar,
the halting of the Terra blockchain and a rapid collapse of the market price during the subsequent days.2
Terra’s end of May market capitalization fell to around 0.3bn US dollars and its price to 0.03. Since it’s
collapse UST has not recovered, as can be seen in Figure 1. On May 12, Tether, the dominant stablecoin that
is mostly backed by fiat currency, also suffered a short-lived 5% price drop after experiencing a 3-4bn US
dollars redemption wave. While the market capitalization of USDC and BUSD increased moderately after
the period of distress, USDT and DAI experienced sustained outflows, which are visible in the substantially
lower end of June market capitalizations. After the turmoil, the market stabilized in July and August 2022
with the remaining top stablecoins trading in narrow bands around their pegs.

More recently, the fully backed USDC broke its peg to the dollar and sank to 0.87 cents onMarch 11, 2023
after the collapse of Silicon Valley Bank (SVB) and Signature Bank. The temporary unpegging happened for
fundamental reasons, as its issuer Circle held 3.3bn US dollars of its reserves at SVB.3 Ultimately, the swift
announcement by U.S. regulators to protect all uninsured deposits at SVB came before Circle’s treasury had
to begin meeting redemption requests, potentially saving USDC from a destructive run.

The risk of concentrated holdings of uninsured deposits is only one of the risks facing today’s stablecoins.
Most stablecoin issuers engage in some degree of maturity and liquidity transformation, similar to money
market funds. In addition, issuers hold assets with varying degrees of credit risk. The actual risk exposure
is often difficult for coin holders to assess due to a lack of detailed and verifiable information about issuers’
asset holdings. A case in point is the largest stablecoin, USDT, which is pegged to the US dollar. While
Tether claims that each "token is always 100% backed by our reserves," this has been challenged in court,4
and the transparency about the asset composition and risk profile remains limited. Table 1 shows Tether’s
self-reported asset breakdown as of June 2022 and September 2022, when it was backed by a range of
risky assets, including corporate bonds, secured loans, investments in digital tokens, commercial paper and
deposits in non-US regulated financial institutions. Granular data on asset holdings is not available, and
Tether’s quarterly reporting is published with a substantial delay. It was, for instance, only made public on
August 10 that the high redemption volumes in May and June 2022 were met by selling a significant portion
of the most liquid treasury bills and commercial paper. However, Tether was apparently able to rebuild a
stronger treasury bill position by the end of the third quarter of 2022, as can be seen when comparing the

1See Ho, Darbha, Gorelkina and Garcia (2022) for a Bank of Canada review of stablecoin use cases and the risks and benefits.
2See Liu, Makarov and Schoar (2023) for a detailed analysis of the run on UST and Figure A1 in the Appendix on the price collapse.
3See https://www.circle.com/blog/an-update-on-usdc-and-silicon-valley-bank.
4Tether was sued by New York State Attorney General Letitia James for failing to fully back each Tether at all times and agreed to

pay a fine of 18.5m US dollars in February 2021.
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two columns in Table 1. Since Tether’s reserves are located in Cayman Islands, they are not verifiable and
the bankruptcy process is unclear. Besides, there are operational, custodial and technological risks (e.g.
cyber risk). These risk exposures make stablecoins vulnerable to runs and thus the value of the coins, is
information sensitive (Dang, Gorton and Holmström 2021); in stark contrast to insured bank deposits.5

Assets Value in bn USD
06/30/2022 09/30/2022

Commercial Paper & Certificates of Deposit 8,402 50
A-1+ rating 1,434 50
A-1 rating 5,465
A-2 rating 1,499

Cash & Bank Deposits 5,418 6,077
Money Market Funds 6,810 7,102
Treasury Bills 28,856 39,678
Non-U.S. Treasury Bills 397 182
Secured Loans 4,494 6,136
Reverse Repurchase Agreements 2,992 3,024
Corporate Bonds, Funds & Precious Metals 3,487 3,194
Other Investments (including digital tokens) 5,551 2,617
Total 66,410 68,061

Table 1: Tether asset breakdown at 30 June 2022 and 30 September 2022. Assurance opinion by BDO, Italy.

I develop a theoretical framework that captures the fragility of stablecoins stemming from concerns about
the quality of the issuer’s assets and potential exposures to custodial, operational, and technological risk.
The theory allows to study the determinants of stablecoin adoption and fragility, as well as aspects related to
disclosure of information about the quality of assets and the appropriate regulation of stablecoins. I model
a stablecoin run as a global game of regime change (Carlsson and van Damme 1993; Vives 2005). Global
games have been used extensively to study bank runs, currency attacks and debt runs. This class of models
is particularly well suited to studying stablecoin runs, since stablecoin issuers operate a unilateral exchange
rate peg and share the same vulnerabilities as uninsured bank debt. Compared to standard bankingmodels,
the main theoretical contribution is the introduction of a stablecoin adoption game at the ex-ante stage and
of heterogeneous payment preferences, which requires allowing for heterogeneous payoffs (Sákovics and
Steiner 2012). While the liability structure is typically taken as given in a Diamond and Dybvig (1983)-type
model, where the bank chooses assets to trade off returns, liquidity provision and run risk, my theory
endogenizes the liability side bymodeling stablecoin adoption, where consumers trade off the benefits from
stablecoins with the return differential relative to insured bank deposits and the risk of devaluation.

The baseline model has three dates and considers a stablecoin that is pegged to a single fiat currency. At
the initial date, consumers decide whether to invest their cash in stablecoins or in insured bank deposits.
Thereby, consumers take into account the likelihood that stablecoins or bank deposits are the preferred
means of payment in the terminal period, which matters because consumers incur transaction costs if
they are not in possession of the means of payment that is accepted by the consumption good seller with

5In addition to the described risks associated with the leading stablecoins USDT, USDC and BUSD, which are (fully) backed by
(mostly) traditional financial assets, the so called algorithmic stablecoins like DAI and the now defunct UST are either crypto-backed or
unbacked, which exposes them to additional vulnerabilities. They use algorithmic stabilization mechanisms maintain the peg with a
fiat currency. In the case of DAI the stablecoins are collateralizedwith other crypto assets, while UST relied on an arbitrage relationship
with another crypto asset called Luna. This exposes algorithmic stablecoins to the risk that the underlying crypto assets abruptly loose
value or become illiquid, as happened to UST in May 2022, thereby compounding the inherent vulnerabilities described above.

3



whom they are randomly matched. At the intermediate date a stablecoin run occurs if enough coin holders
demand conversion to cash, such that the stablecoin issuer becomes insolvent. As standard in the global
games literature, coin holders receive a noisy private signal that is correlated with the issuer’s fundamental
before deciding whether or not to demand conversion. The unobserved fundamental captures the issuer’s
profitability, which may be affected by an adverse shock to the quality of the assets backing the stablecoins,
by risk exposures such as a cyber attack, or by other factors such as monetary policy. There exists a unique
monotone equilibrium of the conversion game where coin holders optimally demand conversion at the
intermediate date whenever they receive a private signal that is below a certain threshold, suggesting an
unfavorable fundamental realization. I analyze how this signal threshold and, hence, the probability of
runs depends on various factors that play an important role in the market for stablecoins. Moreover, I take
the effect on stablecoin adoption at the initial date into account.

In practice, crypto investors are very diverse, and their demand for stablecoins is influenced by pref-
erences, such as a love for anonymity, the convenience relative to other means of payment and potential
transaction cost advantages for specific use cases such as for remittances.6 Motivated by this diversity, I
generate the demand for stablecoins by introducing a heterogeneity of consumers in their induced payment
preference. Specifically, consumers face a group-specific probability of being matched with a consumption
good seller at the terminal date who has a payment preference for stablecoins instead of bank deposits. As
a result, consumers belonging to groups with a higher probability of meeting a seller with a preference for
stablecoins find it optimal to adopt stablecoins at the initial date, while others decide to deposit their cash.

I find two mechanisms that can justify the regulatory community’s concern about excessive stablecoin
adoption. First, themarginal adopter of stablecoins does not internalize that a wider adoption of stablecoins
is associated with a destabilizing composition effect. The destabilizing composition effect arises because
new coin holders, in contrast to early adopters who are often referred to as "crypto enthusiasts," display less
enthusiasm towards the adoption of stablecoins. Therefore, the flightiness of coin holders at the interim
date increases, as does the fragility of the stablecoin issuer. From a regulatory perspective, I call this the
"Tether scenario," where a wider adoption of stablecoins for new use cases raises concerns about stability.
Second, the marginal adopter of stablecoins does not internalize network effects, which can undermine the
role of bank deposits as a means of payment. I call this the "Facebook Libra scenario," where a key concern
for regulators is the potential for a rapid and widespread adoption that leads to bank disintermediation.

Regarding the determinants of fragility, I find that most factors that increase the attractiveness of sta-
blecoins also reduce fragility. Intuitively, factors that promote stablecoin adoption also tend to make the
stablecoin holdings of the marginal coin holder, who is indifferent between keeping her stablecoins and de-
manding conversion to cash at the interim date, less flighty. This is the case for an increase in the likelihood
that stablecoins are the preferred means of payment. A higher adoption, in turn, can reduce fragility if fixed
operating costs can be spread across a larger user base and if there are positive network effects that promote
the use of stablecoins as a means of payment. However, in the absence of such factors, higher adoption
increases the likelihood of runs due to the destabilizing composition effect described above.

Also factors that increase the issuer’s revenue from fees and seigniorage promote stability, as do con-
gestion effects that are associated with an increase in transaction costs during times of stress. Congestion
effects are a widespread phenomenon in crypto networks using decentralized ledger technologies such as

6Cryptocurrency exchange platforms see remittances as an area with growth potential. In 2022 the Coinbase platform began
offering crypto remittances to Mexico. The new service allows to instantly send crypto assets and stablecoins, promising 25− 50%
lower transaction costs when compared to traditional cross-border transactions.
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the Ethereum blockchain. Due to capacity limits, the transaction fees for on-chain transactions are posi-
tively associated with trading volumes. The run against Terra USD in May 2022 is a case in point, when the
Ethereum gas price quadrupled (see Figure A1 in the Appendix), which may have contributed to stabilizing
the peg of Tether. Perhaps surprisingly the stabilizing effect of an endogenous cost to convert stablecoins
leads to a lower probability of runs, even if the endogenous conversion cost is lower than the exogenous
conversion cost used in the benchmark model for a significant range of aggregate conversion demands.

I consider several other extensions to the baseline model. Crypto lending markets have become increas-
ingly popular, and I find that the introduction of a stablecoin lending market promotes both stability and
adoption, as long as the benefits are not undermined by speculation. In another extension, I introduce a
moral hazard problem. A regulatory disclosure regime may allow the stablecoin issuer to credibly commit
to a low-risk portfolio choice, but it may be insufficient to achieve the socially optimal portfolio risk level.
This finding can rationalize the use of capital requirements and of additional regulatory measures that infer
with the issuer’s portfolio risk choice, as to ensure the quality of the assets backing the stablecoins and to
reduce operational and custodial risks. Finally, I analyze the impact of monetary policy, which affects the
profitability of the issuer and the attractiveness of bank deposits. While stablecoin adoption is higher in a
low interest rate environment when bank deposit rates are less attractive, a negative relationship between
issuer profitability and the remuneration of reserves threatens stability in a low interest rate environment.

There is a growing body of empirical studies on stablecoins, which I discuss in the paper. The proposed
theoretical framework allows me to develop a set of novel testable implications that link measurable market
characteristics with market outcomes. Moreover, I offer a discussion of pathways to bring the testable
implications to the data. From a policy viewpoint, I highlight the built-in fragility of the latest innovation
in the history of private money and the determinants of fragility identified in this paper can inform the
ongoing policy debate. Whilemy focus is exclusively on the adoption and fragility of stablecoins, abstracting
from important implications for monetary systems, traditional financial intermediaries, and the payments
landscape, my findings are relevant to the stability of the broader financial system due to the increasing
interconnectedness between crypto asset markets and traditional financial markets combined with the
critical role that stablecoins play as a bridge between both markets (see, e.g., FSB (2022)).

This paper relates to the extensive theoretical research on currency attacks (Krugman 1979; Flood and
Garber 1984; Obstfeld 1986; Morris and Shin 1998; Corsetti, Dasgupta, Morris and Shin 2004) and bank
runs (Rochet and Vives 2004; Goldstein and Pauzner 2005). In a recent paper Routledge and Zetlin-Jones
(2021) analyze a currency attack model and study the vulnerability of a currency, or stablecoin, that is not
100% backed by a reserve currency and study how a commitment to devalue the currency conditional on
the size of a speculative attack can successfully stabilize the exchange rate. Motivated by the fall of the
Bank of Amsterdam, Bolt, Frost, Shin and Wierts (2023) show how a negative shock to the service value
of fiat money can make it more vulnerable to adverse fundamentals and to an insufficient capitalization
of the central bank. Gorton, Klee, Ross, Ross and Vardoulakis (2022b) offer a compelling rationale why
stablecoin lending can drive demand for stablecoins, while Ma, Zeng and Zhang (2023) investigate the
effects of centralized arbitrage on the run-risk and secondary market price dislocations of stablecoins, using
a global games framework. My focus differs in that I am offer a closer examination of the determinants
of adoption and fragility of stablecoins with a view on the risk assessment and appropriate regulation. In
other related work, Uhlig (2022) offers a theory that generates a gradual unfolding of the LUNA and UST
crash, as well as a quantitative interpretation. Li and Mayer (2022) develop a dynamic model of stablecoin
and crypto shadow banking to characterize an instability trap where tokens are debased in states where the
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issuer has a low level of reserves. Meanwhile, d’Avernas, Maurin and Vandeweyer (2022) explore the use of
smart contracts to enforce pre-determined rules that prevent over-issuance, and Klages-Mundt and Minca
(2021) study alternative stabilization mechanisms.

My paper also relates to the growing literatures on digital money, crypto assets and central bank digital
currencies (CBDC). Agur, Ari and Dell’Ariccia (2022) study the optimal design of a CBDCwith an emphasis
on network effects and the convenience of different means of payment; two aspects that also feature in this
paper. Adoption also plays an important role for e-commerce platforms such as Alibaba. Chiu and Wong
(2021) study the business model of platforms, who have the choice between accepting cash and issuing
digital money, and whether to allow the digital money they issue to circulate outside the platform. Cong, Li
and Wang (2021) study how user network externalities shape crypto asset adoption and increase the price,
which in turn accelerates adoption. Ahnert, Hoffmann andMonnet (2022) analyze the choice of using CBDC
for payments with a view on privacy. Andolfatto (2021a) and Chiu, Davoodalhosseini, Jiang and Zhu (2022)
argue that CBDC does not lead to undesirable disintermediation and can enhance the competitiveness of
the banking sector. Other papers on the effect of an introduction of a CBDC on disintermediation and
the stability of banks include Whited, Wu and Xiao (2022), Barrdear and Kumhof (2021), Davoodalhosseini
(2021), Schilling, Uhlig and Fernández-Villaverde (2021), Keister and Monnet (2020) andWilliamson (2021).

The paper is organized as follows. Section 2 describes the model. Section 4 solves for the equilibrium
of the conversion game and analyzes how different factors affect stablecoin fragility. Section 5 solves the
equilibrium of the adoption game and discusses potential choices of the stablecoin issuer that can affect
adoption and fragility. Thereafter, Section 6 examines various extensions and the robustness of the paper’s
findings to alternative model specifications. Section 7 discusses testable implications for future empirical
work. Finally, Section 8 summarizes the policy implications and concludes. All proofs are in the Appendix.

2 Environment

Consider a game with three dates (t = 0,1,2) that comprises an initial stablecoin adoption (or investment)
game played at t = 0 and a stablecoin conversion (or withdrawal) game played at t = 1, which takes the form
of a global game of regime change. The economy has a unit continuum of risk-neutral consumers indexed
by i ∈ [0,1], a monopolistic stablecoin issuer and three competitive consumption good sellers indexed by A,
B and C. There are two different monies: insured bank deposits and stablecoins.

Endowments and production. Consumers derive utility from consuming at t = 2. At t = 0 each consumer
is endowed with a bank deposit that is worth $1. Consumption good sellers have no endowment and
operate a constant returns to scale technology to produce a divisible consumption good at t = 2. The unit
cost of production is normalized to $1, meaning that the competitive sellers charge consumers a price of $1.
The quantities produced by sellers A, B and C are denoted with cA, cB and cC, respectively.

Insured bank deposits and stablecoins. Consumers can transfer their dollar endowments from t = 0 to
the consumption stage at t = 2 by holding insured bank deposits or stablecoins. Deposits are modeled as
an "outside option" with an exogenous risk-free interest rate rD ≥ 0 when held from t = 0 to t = 2 and with
a (cash-like) zero interest rate when held short-term from t = 0 to t = 1 or from t = 1 to t = 2. Instead,
stablecoins are pegged one-to-one to the dollar, as observed in practice.

Accepted formofpayment by sellers. SellerA (SellerB) only accepts a transfer of stablecoins (bankdeposits)
with the corresponding dollar value as payment, and seller C accepts both bank deposits and stablecoins of
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equal value. Importantly, all sellersmust payproduction costs at the end of t = 2 by transferring government-
backed bank deposits (or dollars), meaning that sellers A and C must convert the stablecoins they receive.

Consumption preference risk. Consumers buy the good from sellers and cannot trade directly with each
other. They face idiosyncratic risk about their consumption preference (or payment type), which is realized
at t = 2. With probability 0 < αi < 1 consumer i only values the good sold by seller A, with probability
0< βi < 1 she only values the good sold by seller B, and with probability 0≤ 1−αi−βi < 1 she only values
the good sold by seller C. The utility function of consumer i reflects the heterogeneity in payment types:7

payment type

ui(ci,A,ci,B,ci,C) =


ci,A ,w.p. αi > 0
ci,B ,w.p. βi > 0
ci,C ,w.p. 1−αi−βi ≥ 0

stablecoins
bank deposits

both

where ci,A, ci,B and ci,C denote consumer i’s date t = 2 consumption of goods sold by sellers of type A, B

and C, respectively. The preference states are drawn independently, meaning that in the aggregate a mass
α =

∫
i αidi of consumers want to buy from seller A, a mass β =

∫
i βidi from seller B, and a mass 1−α −β

from seller C. Date t = 2 goods market clearing implies that cA =
∫

i ci,Adi, cB =
∫

i ci,Bdi and cC =
∫

i ci,Cdi.
A key model ingredient is that consumers differ in how attractive they find different monies (see,

e.g., Agur, Ari and Dell’Ariccia (2022)), which generates a demand schedule for stablecoins. Formally, it is
assumed that there are G groups of consumers indexed by g∈ {1, ...,G}, where gi denotes the group towhich
consumer i belongs. Each group has a measure mg, where ΣG

g=1mg = 1. The payment type probabilities have
common and a group specific components, αg(N) = α(N)+γg and βg(1−N) = β (1−N)−γg, where N ∈ [0,1]
is the mass of consumers adopting the stablecoin at t = 0 and γg+1 > γg ≥ 0,∀g ∈ {1, ...,G−1}. The common
component allows for the introduction of network effects. If α ′(N),β ′(1−N)≥ 0 hold with strict inequality,
then the probability of the payment type stablecoins (bank deposits) increases (decreases) as stablecoins
becomemorewidely adopted. The group specific component generates a higher attractiveness of stablecoins
for consumers belonging to a group with a higher g. To assure that αg,βg ≥ 0 and αg +βg ∈ [0,1] holds for
all groups, let α(0) ≥ 0, β (1) ≤ 1, α(1)+ γG ≤ 1, β (0)− γG ≥ 0 and α(N)+β (1−N) ∈ [0,1],∀N ∈ [0,1].

The consumption preference risk matters because of two frictions: (a) consumption good sellers accept
different monies and (b) consumers who don’t have the money that is accepted for the purchase of the
desired good at t = 2 must first convert monies, which involves transaction costs, as described below. The
resulting induced payment preference is as a proxy for the medium of exchange function of the two monies,
and the heterogeneity generates a demand for stablecoins that captures the varying interest of consumers
in crypto applications and aspects such as anonymity, or real-world use cases such as low-cost remittances.

Transaction costs. When converting deposits into stablecoins and vice versa, consumers incur fixed trans-
action costs that are exogenously given and designed to capture transaction fees and convenience costs.
The transaction costs at dates t = 0,1,2 are measured in $ and denoted with τ0, τ1 and τ2. A key model
assumption is that there is an advantage to have the "right money on hand" at t = 2, i.e., the transaction cost
of converting from one money to another at short notice is higher than the cost of an ex-ante conversion at
t = 0, i.e. τ0 ≤ τ1,τ2. This assumption can, for instance, be motivated by transaction processing times and the
inability to time the conversion for a window of low network activity. For simplicity, I assume that τ0 = 0.8

7The exclusive preference for a seller simplifies the exposition and can be relaxed to a relative preference.
8The results are robust as long as τ0 is sufficiently small relative to future transaction costs. Section 6 discusses the robustness of

the results in extensions of the model where part (or all) of the transaction costs are captured by the stablecoin issuer, and where
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Stablecoin issuer. The monopolistic issuer offers to convert deposits into a digital token (stablecoin) and
vice versa at a one-to-one conversion rate at dates t = 0,1,2.9 Unlike deposits, stablecoins pay no interest
and the issuer may not always be able to redeem the coins at par as promised due to the risk of insolvency.
Formally, the funds collected by the issuer at t = 0 are invested in a risky asset that pays off θ dollars at
t = 2 per dollar invested at t = 0, where θ ∼U [θ ,θ ], with 0 ≤ θ < 1 ≤ θ . If divested prematurely the asset
pays off 0< r ≤ θ dollars at t = 1 per dollar invested at t = 0.10 Moreover, there is a bankruptcy cost ψ > 0 if
the value of the issuer’s assets falls below the dollar face value of the remaining coins in circulation. In this
case, the coins are devalued in accordance with the liquidation value of the issuer. In practice, the riskiness of
the issuer’s balance sheet may stem from the quality of the assets or from potential exposures to custodial,
operational or technological risks (e.g. cyber risk). The fundamental θ is meant to capture these risks in a
reduced form. Importantly, θ < 1 gives rise to states of the world where the value of stablecoins falls below
$1 even if there are no redemption requests at t = 1. This assumption is consistent with the current business
models of the leading stablecoin issuers, which hold risky assets (see Table 1) and are thinly capitalized.11

Stablecoin adoption game. At t = 0 consumers simultaneously decide whether to keep their endowment
of $1 in bank deposits or, alternatively, convert their deposits to stablecoins. In their decision consumers
take their expected payment type, the interest rate differential and the potential devaluation of stablecoins
into account. Given the linearity, it is sufficient to restrict attention to a binary action game. Let a0,i ∈ {0,1}
denote the action of consumer i at t = 0, where a0,i = 1 if she converts all her deposits to stablecoins and
a0,i = 0 if she keeps all deposits till t = 2. The stablecoin adoption rate is defined as N =

∫ n
0 a0,idi ∈ [0,1].

Stablecoin conversion game. At t = 1 stablecoin holders are randomly assigned a type, with probability
0 < κ ≤ 1 they become active holders and with probability 1−κ they are passive holders. Active coin holders
decide at t = 1 whether to reallocate their funds, while passive holders are dormant till the end of t = 2. In
the baseline model there will be an upper bound on κ to simplify the model by ruling out the possibility of
rationing at t = 1, as in Chen et al. (2010).12 Following Carlsson and van Damme (1993), there is incomplete
information about θ . At the beginning of t = 1 active stablecoin holder receives a noisy private signal xi that
is correlated with the fundamental realization:

xi = θ +σεi. (1)

The idiosyncratic noise is independently and uniformly distributed, εi ∼U [− ε,+ ε] with ε> 0 and σ ≥ 0,
where gi and εi are uncorrelated. Moreover, active and passive coin holders are equally distributed across
groups. Upon receiving their private signal, active stablecoin holders simultaneously decide whether to
demand conversion to deposits at the promised one-to-one conversion rate, knowing that the issuer serves

τ1 endogenously responds to the spikes in transaction volumes. Figure A1 illustrates the elevated level of transaction fees during
a period of crypto market turmoil. Transaction fees depend on market-wide conditions, as the same blockchain is used by many
cryptocurrencies. Therefore, assuming an exogenous conversion cost is a good starting point. In practice, transaction costs for on-
chain transactions and for peer-to-peer transactions are largely outside the control of stablecoin issuers (e.g. they depend on the
transaction fees on the Ethereum blockchain or of a peer-to-peer exchange). Instead, issuers may have some influence over the fees
on cryptocurrency exchange platforms (e.g. USD Coin is co-owned by the exchange Coinbase and Binance USD is owned by the
exchange Binance), which also offer VISA/MasterCard payment cards that are linked to a cryptocurrency wallet and can be used for
ATM withdrawals (e.g. Coinbase offers a VISA card issued by MetaBank that allows to spend USD Coins).

9This one-to-one conversion promise is used by all of the top stablecoin issuers, as well as by mobile money operators, and it would
require a richer modeling environment for it to be an optimal contract. The closest analogy is a fixed exchange rate regime.

10The implicit assumption that early closure is never ex-post efficient is standard. See Rochet and Vives (2004) for a distinction
between efficient and inefficient liquidations based on a moral hazard consideration.

11Section 6.6 considers an extensionwith θ ≥ 1, r′(θ )> 0 and 0< r(θ )≤ 1,∀θ ∈ [θ ,θ ], where the focus is purely on liquidity concerns.
12This modeling trick does not affect the key insights and can be motivated empirically.
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redemption request sequentially and that she may not be able to meet all requests.13 The action to demand
conversion is denoted with a1,i = 1 and the action to keep the coins with a1,i = 0.

Table A1 in the Appendix summarizes the game. The key difference from a standard bank run or
currency attack model is the ex-ante adoption game that links stablecoin adoption and fragility, and the
heterogeneity in stablecoin demand across consumers captured by the group specific induced payment
preference. A necessary condition for a positive demand for stablecoins will be that the crypto enthusiasts
belonging to the groupswith the highest probability tomeet sellerA have an incentive to adopt stablecoins to
economize on expected transaction costs, despite the interest rate differential and the risk of devaluation.14

3 Transaction Costs and the Beneficial Role of Stablecoins

The uncertain payment type combined with transaction costs makes the consumer problem at t = 0 non-
trivial. To see this, I first consider the limiting case τ2↘ τ0 = 0, where the advantage from having the "right
money on hand" at t = 2 vanishes and holding deposits is the dominant strategy. Second, I consider the
limiting case r,θ ↗ 1, where the liquidation cost vanishes and stablecoins are safe, to illustrate how positive
transaction costs create a trade-off for consumers when they decide whether or not to adopt stablecoins.

In the first case with τ2↘ 0, it is the dominant strategy of consumers in the stablecoins adoption game
at t = 0 to keep their bank deposits, i.e. a∗0,i = 0. To see this, observe that return of bank deposits, 1+ rD,
exceeds the expected return of stablecoins, which is (weakly) smaller than one due to the risk of insolvency.
Formally, the expected utility payoff from holding deposits, 1+ rD−αiτ2 ≈ 1+ rD, is (weakly) larger than
the expected utility payoff from adopting stablecoins at t = 0, which falls short of 1− τ0−βiτ2 ≈ 1.

In the second case, I consider the limiting case where stablecoins are safe, which in the model is
approximately true if r,θ ↗ 1. For τ2 > 0 some consumers may find it optimal to adopt stablecoins and
benefit from transaction cost advantages, especially when stablecoin payments are likely to be accepted at
t = 2 and when the risk of a devaluation of the stablecoins is low. The benchmark with safe stablecoins
serves to illustrate this point. Intuitively, the limit θ ↗ 1 ensures that the issuer will be able to exchange
coins at t = 2 at a rate that is arbitrarily close to the one-to-one conversion promise, as long as there are no
redemption requests at t = 1. Moreover, the limit r↗ θ ≈ 1 ensures that the issuer can do so even if there
are redemption requests, because her liquidation cost is arbitrarily small. This benchmark best captures an
"ideal world" where stablecoins are tightly regulated and backed by central bank reserves, while offering a
technology-enabled access to certain use cases or benefits for consumers that are otherwise unavailable.15

The game is solved by backward induction. At t = 2 consumers enter the consumption stage either
as coin holders or as bank depositors and just use the available funds to consume. At t = 1, consumers
also enter the period either as coin holders or as depositors. Depositors do not find it optimal to convert
their money at t = 1, because they found it optimal to hold deposits at t = 0 and would otherwise forgo the
positive interest rate. Given that the issuer can always assure a stablecoin value that is arbitrarily close to one
dollar at t = 2, it is the dominant strategy for active coin holders not to demand conversion, i.e. a∗1,i = 0,∀i.
Requesting conversion at t = 1 is unattractive due to the fixed conversion cost, as long as τ1 > [βi−αi]τ2.

13The assumption that conversion requests are met sequentially is only needed if the model is generalized to large levels of κ .
14Recall that all stablecoins issued during the game are exchanged for their equivalent dollar value at the end of t = 2. Unlike

consumers, sellers are not atomistic, and for them the fixed transaction cost τ2 to exchange coins earned at t = 2 is negligible.
15In addition, the benchmark will serve as a basis for discussing in Section 6 regulated e-money providers, narrow banks and a

hybrid CBDC through the lens of the model.
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Next, consider the stablecoin adoption game at t = 0. For r,θ ↗ 1 the problem of consumer i reads:

max
a0,i∈{0,1}

(
a0,i(1−βiτ2)+ (1−a0,i)(1+ rD−αiτ2)

)
.

When deciding to adopt stablecoins at t = 0, i.e. a0,i = 1, consumer i receives coins with a nominal value
of $1. Since the coins are safe, consumer i can purchase one consumption good at t = 2 from seller A and C,
but only 1− τ2 units of the consumption good from seller B. Instead, when deciding to keep the deposits at
t = 0, i.e. a0,i = 0, and to hold them till t = 2, consumer i receives a (weakly) positive interest rate. Therefore,
she can purchase 1+ rD goods at t = 2 from seller B and C, but only 1+ rD− τ2 goods from seller A.

Proposition 1 summarizes the solution to the game. Let s ∈ {1, ..,G} be the marginal group of adopters
who have the lowest benefit from adoption.

Proposition 1. (Safe stablecoins) Let r→ θ , θ → 1 and τ1/τ2 > argmaxN [β (1−N)−α(N)]. Absent positive
network effects, i.e. if α ′ = β ′ = 0,∀N ∈ [0,1], each consumer i belonging to group g = gi optimally chooses the action:

a∗0,i =


1 i f rD < Φgi

∈ {0,1} i f rD = Φgi

0 i f rD > Φgi

(2)

at t = 0 , where Φgi ≡ [αi−βi]τ2. Moreover, a∗1,i = 0,∀i at t = 1. A necessary and sufficient condition for a positive
demand for stablecoins at t = 0 is given by rD < ΦG, then there exists a unique marginal group of stablecoin adopters
s∗ = s ∈ {1, ..,G}. If Φs > rD and Φs−1 < rD, the equilibrium stablecoin adoption rate is uniquely determined as
N∗ = ΣG

g=s∗mg. Instead, if Φs = rD, then N∗ ∈ [ΣG
g=s∗+1mg,ΣG

g=s∗mg]. With positive network effects the optimal action
at t = 0 depends on the belief about N∗. Multiple solutions to s∗ may exists. As before, a∗1,i = 0,∀i.

Proposition 1 states that a positive stablecoin adoption rate requires that there are at least some crypto
enthusiastsbelonging togroupswith a sufficientlyhighprobability tohave apreference for sellerA so that they
find it attractive to adopt stablecoins despite the lower interest rate. Moreover, absent network externalities,
there exists a unique solution to the adoption game if no group of consumers is exactly indifferent between
adopting stablecoins and holding deposits. In any case, the marginal group of stablecoin adopters s∗ is
unique. Instead, with positive network effects there can be multiple solutions to the adoption game where
different groups of consumers are the marginal coin holders.

Figure 2 illustrates how stablecoin adoption depends on the remuneration of the outside option to hold
bank deposits from t = 0 to t = 2. The left panel shows the case without positive network effects. The
demand for stablecoins (the equilibrium stablecoin adoption rate N∗) is displayed in thick light blue (left
axis) and themarginal group of adopters s∗ is displayed in thick dark red (right axis). Both aremonotonically
decreasing in the deposit rate rD (horizontal axis). Observe that the non-continuous distribution of groups
translates into a step function for the demand for stablecoins. While there is a range of equilibrium adoption
rates at rD = ΦG, rD = ΦG−1 and rD = ΦG−2, there always exists a unique marginal group s∗, as stated in
Proposition 1. Finally, if rD > ΦG, then even crypto enthusiasts in group G stop adopting stablecoins. The
right panel of shows the casewith positive network effects. Here the group-specific Φs where consumers are
indifferent shift to the right when the adoption rate increases. As a result, multiple solutions to s∗ emerge
when rD is in the neighborhood of the steps, because consumers are more willing to adopt stablecoins when
N is higher. Nevertheless, the highest solution for s∗ remains monotonically decreasing in rD.
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Figure 2: The figure shows the demand for stablecoins, i.e. the equilibrium adoption rate N∗, in thick light
blue for the case without positive network effects (left panel) and for the case with positive network effects
(right panel). The marginal group of adopters s∗ is displayed in thick dark red. The deposit rate rD ≥ 0 is
on the horizontal axis. The left axis shows the adoption rate N ∈ [0,1] and the right axis shows the groups
G, G−1 and G−2. The group-specific Φ’s are depicted as dashed lines in dark blue.

Moving away from the special case with safe stablecoins, I next consider the practically more relevant
version of the model, where the stablecoin issuer is prone to runs due to its risky and illiquid investment.
As before, the model is solved backwards. Section 4 analyzes the continuation equilibrium at t = 1 for a
given rate of stablecoin adoption, N, and Section 5 analyzes the adoption game at t = 0 and solves for N∗.

4 Stablecoin Runs at t = 1

This section proceeds as follows. First, Section 4.1 presents conditions under which the issuer is able to
meet her payment obligations at t = 1,2. Thereafter, Section 4.2 discusses how the expected utility payoff
of an active coin holder depends on whether or not she demands conversion at t = 1, the decision of other
coin holders, and the solvency of the issuer. Building on these results, Section 4.3 states the t = 1 decision
problem of active coin holders and solves for the equilibrium of the stablecoin conversion game at t = 1.

4.1 Solvency of the Stablecoin Issuer

The stablecoin issuer is insolvent, whenever she is unable to redeem the coins at par that have been issued at
t = 0, meaning that she does not have sufficient resources to convert the stablecoins to bank deposits at the
promised one-to-one conversion rate. Let A =

∫
i a1,idi/(κN) be the proportion of active coin holders who

demand conversion at t = 1 conditional on the adoption rate N. As before, let group s denote the marginal
group of coin holderswith the lowest probability, αs = α +γs, of benefitting fromholding stablecoins instead
of deposits. If only consumers belonging to groups g ∈ {s, ...,G} hold stablecoins at the beginning of date
t = 1, then A =

∫
i a1,idi/(κΣG

g=smg) ∈ [0,1], where a1,i = 0 for all passive coin holders.
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The issuer is cash-flow insolvent at t = 1, i.e. unable to meet her immediate payment obligations NκA if:

r < κA. (3)

Similarly, she cannot meet her t = 2 payment obligations, N(κ(1−A)+ 1−κ), if r ≤ κA or if r > κA and:

(r−κA)
θ

r
< 1−κA. (4)

Conversely, solvency at t = 2 implies that the issuer is also able to meet her payment obligations at t = 1.
When deriving the main results below, I invoke a parameter condition in Assumption 1 that implies that
r > κ , meaning that Inequality (3) is violated and the issuer can always meet her t = 1 payment obligation.
This simplifying assumption eases the analysis of the conversion game without affecting the key insights.16

Next, I describe the regions of fundamental realizations where the issuer is fundamentally solvent or
insolvent independent of the conversion demand by active coin holders at t = 1. The region of fundamental
solvency can be derived from Inequality (4), which implies that the issuer is able to meet all redemption
requests at t = 2 ifθ ≥ θh≡ (1−κ)r/(r−κ)> 1. Following theglobal gamesbank run literature, I additionally
invoke the mild parameter assumption that θ > θh, meaning there exist sufficiently favorable fundamental
realizations θ ∈ [θh,θ ] such that the issuer is fundamentally solvent independent of the conversion demand.
The region of fundamental insolvency is derived by isolating θ in Inequality (4) to define a critical threshold
θ̂ (A) ∈ [θ ,θh), such that for a given conversion demand, the issuer is insolvent for all θ < θ̂ (A), where:

θ̂ (A) ≡ (1−κA)r
r−κA

> 1. (5)

Based on Equation (5) there exists a lower bound θ` = 1 such that for all θ < θ` the issuer has insufficient
resources at t = 2 to meet her promise even if there are no conversion demands at t = 1, i.e. if A = 0. Given
that θ < 1, the issuer is fundamentally insolvent for all θ ∈ [θ ,θ`). The two assumptions θ > θh and θ < 1 are
used to establish the existence of an upper and a lower dominance region in Section 4.3.

Importantly, the solvency of the issuer depends on the level of the aggregate conversion demand A in
the intermediate region, θ ∈ (θ`,θh) and Equation (5) allows to trace out how the solvency of the issuer is
governed by the population fraction of active coin holders demanding conversion, as illustrated in Figure
A2 in the Appendix. Notably, a higher κ (a higher r) makes it harder (easier) for the issuer to assure solvency.

4.2 Payoffs

The risk of insolvency only affects stablecoin holders, since bank deposits are insured. When deciding
whether to demand conversion of her stablecoins to bank deposits at t = 1, each active coin holder i

compares the expected utility payoff from doing so with the alternative to keep her coins. Table 2 shows the
utility payoffs of coin holder i of group gi associated with the two actions. Importantly, the payoffs depend
on the realization of θ , on the average action A of others and on expected transaction costs weighted by the
group-specific probabilities of the payment type.

Isolating the average action A in Inequality (4) allows to define a critical threshold Â(θ ), such that for a

16This avoids a payoff structure similar to Goldstein and Pauzner (2005) that does not satisfy global strategic complementarities.
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aggregate action
individual action

A≤ Â(θ )
issuer is solvent

A> Â(θ )
issuer is insolvent

Demand conversion, a1,i = 1 1− τ1−αiτ2 1− τ1−αiτ2

Keep coins, a1,i = 0 1−βiτ2
r−κA

r θ−ψ

1−κA −βiτ2

Table 2: Expected ex-post utility payoffs in the stablecoin conversion game at t = 1 for θ ∈ (θ`,θh).

given fundamental realization, the issuer is insolvent for all A> Â(θ ), where:17

Â(θ ) ≡ (θ −1)r
κ(θ − r)

∈ [0,1],∀θ ∈ [θ`,θh]. (6)

In the intermediate region θ ∈ (θ`,θh) payoffs depend on coin holder’s beliefs about the aggregate action
A and the fundamental θ . First, consider the case when the issuer is solvent, A≤ Â(θ ). The issuer is able to
meet her payment obligations in full to both active coin holders demanding conversion at t = 1 and to the
remaining active coin holders who keep their coins till t = 2, as well as to passive coin holders. Therefore, all
coin holders demanding conversion receive 1− τ1 dollars worth of bank deposits at t = 1, after accounting
for the conversion cost. They use the funds at t = 2 to purchase consumption goods and receive 1− τ1 units
if they have a consumption preference for seller B or C, and 1− τ1− τ2 units if they have a preference for
seller A, which occurs with probability αgi . Given that the coins are not devalued at t = 2 if A ≤ Â(θ ), all
active coin holders who keep their coins at t = 1 receive one unit consumption good if they have a preference
for seller A orC, and 1−τ1−τ2 units if they have a preference for seller B, which occurs with probability βgi .

Next, consider the case when the issuer is insolvent, A > Â(θ ). Now she is unable to meet her payment
obligations in full to the remaining active coin holders who keep their coins till t = 2, as well as to passive
coin holders. However, all active coin holders demanding conversion at t = 1 still receive the promised $1
per stablecoin and have the same utility payoff as in the previous case.18 This is because the first inequality
in (7) bounds κ from above such that r > κ . Moreover, the bound on κ and an additional bound on the
bankruptcy cost ψ ensure that the utility payoffs of both the passive coin holders and the remaining active
coin holders are weakly positive, independent of the conversion demand A:

κ ≤ κ ≡ θ −ψ− τ2

θ − rτ2
r < r ⇒

r−κA
r θ −ψ

1−κA
− τ2 > 0 if ψ < θ ,∀A> Â(θ ),θ ∈ [θ ,θ ]. (7)

The two parameter conditions, κ ≤ κ and ψ ≥ θ , are summarized in Assumption 1 below and simplify the
analysis by allowing to average over the group-specific terms when solving for the equilibrium by applying
the Belief Constraint of Sákovics and Steiner (2012), as explained in Section 4.3.19

Let ∆1,i(A;θ ,N) ≡ E[ui(A,a0,i = 1,a1,i = 1;θ ,N)]− E[ui(A,a0,i = 1,a1,i = 0;θ ,N)] denote coin holder i’s

17Note that Â(θ ) is strictly increasing in θ and in r for all θ ∈ (1,θh), as the issuer is only insolvent at t = 2 for higher levels of
aggregate conversion demand at t = 1. Moreover, Â(θ ) is strictly decreasing in κ , as a higher share of active coin holders translates into
it a higher conversion demand, thereby making it harder for the issuer to be solvent. Finally, note that θ̂ (A) ≤ θh requires A< Â(θh).

18The implicit assumption is that the use of stablecoins as a means of payment is independent of the solvency of the stablecoin issuer.
This assumption could, for instance, be rationalized because a new issuer enters the market or by the ability of the insolvent issuer to
continue operating under resolution with a full backing by cash. The main insights of the paper do not hinge on this assumption, as
shown in the Online Appendix. However, the analysis of the case with more than two different groups of coin holders is facilitated by
the fact that the group-specific terms are not contingent on the aggregate action of coin holders.

19I show in the Online Appendix that the key insights are robust to a relaxation of the bound on κ , which simplifies the payoffmatrix
and the analysis of the run game similar to Rochet and Vives (2004). See Goldstein and Pauzner (2005) for a bank run model with
payoffs that do not satisfy global strategic complementarities, as it is the case in the alternative version of my model with κ = 1.
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differential utility payoff, or benefit, from demanding conversion at t = 1, instead of keeping her coins:

∆1,i(A;θ ,N) =

−Φgiτ2− τ1 if A≤ Â(θ )

−Φgiτ2− τ1 + 1−
r−κA

r θ−ψ

1−κA if A> Â(θ ).
(8)

Note that ∆1,i is weakly decreasing in θ . In the presence of positive network effects, i.e. if = dΦgi /dN =

d[αgi −βgi ]τ2/dN > 0, the benefit from conversion is also decreasing in N. Moreover, ∆1,i is lower for coin
holders belonging to a group with a higher probability to have a preference for seller A, which, as will
become clear below, implies a reduced flightiness, due to a lower benefit from demanding conversion.

Figure 3 illustrates how the differential expected utility payoff ∆1,i(A;θ ,N) varies with A for a given
θ ∈ (1,θh). If the issuer is solvent, i.e. forA< Â(θ ), the differential expected utility payoff is (locally) invariant
in the aggregate conversion demand and negative, meaning that there is no benefit from demanding
conversion. As shown in Section 5, this is because consumer i belonging to group gi would otherwise not
have adopted stablecoins. Formally, ∆1,i = −Φgiτ2− τ1 < 0,∀gi ≥ s if A < Â(θ ). Conversely, ∆1,i(A;θ ,N) is
increasing in A and exceeds −Φgiτ2− τ1 +ψ/((1− r)θ /(θ − r)) if the issuer is insolvent.20 Importantly,
there is a global strategic complementarity in actions; a higher A strictly increases the incentives to demand
conversion for all A > Â(θ ). For A = 1 the differential expected utility payoff reaches its maximum value
∆1,i(θ ) ≡ 1−Φgiτ2− τ1− (θ (r−κ)/r−ψ)/(1−κ). Note that ∆1,i(θ ) > 0,∀θ ∈ (θ`,θh),gi ∈ {s, ...,G} if:

ψ > ψ ≡ ((βG−αG)τ2 + τ1)(1−κ). (9)

The range for permissible bankruptcy costs, ψ ∈ (ψ ,θ ), is non-empty provided the relative attractiveness
from holding stablecoins is not implausibly high for the crypto enthusiasts in group G. Formally, the
lower bound for the bankruptcy cost in Inequality (9) assures that even coin holders belonging to group G

have a benefit from demanding conversion at t = 1 if they know that all other active coin holders demand
conversion, i.e. if A = 1, and that the fundamental realization is below θh. Taken together, the benefit from
demanding conversion, ∆1,i(A;θ ,N), depicted in Figure 3 is negative (positive) for small (large) values of A.

4.3 Equilibrium of the Stablecoin Conversion Game at t = 1

This section analyzes the decision problem of active coin holders at t = 1 and derives the continuation
equilibrium of the incomplete information game where σ > 0, meaning that coin holders receive a noisy
private signal at t = 1 that is correlated with the amount of resources available to the issuer at t = 2.21

Recall that the marginal group s ∈ {1, ...,G} is defined as the group of stablecoin adopters who find
holding stablecoins least attractive, and that the number of groups of coin holders can be arbitrarily large.
Building on the results from Section 4.2, Assumption 1 summarizes the key parameter conditions.

Assumption 1. Let θ < 1−σ ε, θh +σ ε< θ , κ < κ and ψ ∈ (ψ ,θ ).

As common in the global games literature, I consider the case of vanishing private signal noise, i.e. σ↘ 0,
which also ensures that the first two inequalities in Assumption 1 always hold. The upper bound on κ ,
simplifies the payoff structure and assures a global strategic complementarity in actions. The lower bound
on ψ focuses attention on the plausible case where even crypto enthusiasts have a benefit from demanding

20Note that the expression is positive for all g ∈ {s, ...,G} provided the conversion cost is small relative to the bankruptcy cost.
21Appendix Section A.2 discusses the complete information benchmark with σ = 0.
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Figure 3: Differential utility payoff of a coin holder belonging to group gi from demanding conversion at
t = 1 instead of keeping her coins for a given fundamental θ and aggregate conversion demand A.

conversion if they know that everybody else demands conversion and θ < θh,22 while the upper bound on
ψ avoids negative payoffs (an assumption that could be relaxed).

Expected benefit from conversion. Using Equation (8), I define the differential expected utility payoff of
coin holder i from choosing the action to demand conversion, i.e. a1,i = 1, conditional on her signal xi as:

E[∆1,i(A;θ ,N)|xi] ≡ Prob{A≤ Â(θ )|xi} ((β (1−N)−α(N)−2γi)τ2− τ1) (10)

+Prob{A> Â(θ )|xi}
∫

θ

θ

(
1+(β (1−N)−α(N)−2γi)τ2− τ1−

r−κA
r θ −ψ

1−κA

)
h(θ |xi)dθ ,

where h(θ |xi) denotes the posterior probability of a fundamental realization of θ , after observing the private
signal xi. While coin holders potentially face heterogenous type-specific payoff functions, they all share an
identical differential expected utility payoff conditional on their group and private signal.

I use the global games approach (Vives 2005; Morris and Shin 2006) to analyze the conversion game at
t = 1 and to establish conditions for the existence of amonotone Bayesian equilibrium. Recall that θ ∼U [θ ,θ ]
and xi = θ +σεi, where εi ∼U [− ε,+ ε] is independently and identically distributed. Hence, the posterior
belief about the probability that the realization of θ exceeds the level y ∈ [θ +σ ε,θ −σ ε] is:

Prob{θ ≥ y|xi}= Prob{xi−σεi ≥ y|xi}=


1 i f xi > y+σ ε

1
2 +

xi−y
2σε i f xi ∈ [y−σ ε,y+σ ε]

0 i f xi < y−σ ε .

(11)

Based on Equation (11), Appendix Section A.3 establishes an upper and lower dominance region of very

22Intuitively, the condition assures for the intermediate region the co-existence of a pure strategy Nash equilibrium where all coin
holders demand conversion, as stated in Proposition 11 in Appendix Section A.2.
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favorable and very unfavorable private signal realizations, respectively, such that the actions of coin holders
observing a signal that falls in these regions do not depend on the decisions of others. Specifically, given
Assumption 1 there exist two bounds x and x that define the dominance regions [θ −σ ε,x) and (x,θ +σ ε].

Continuation equilibrium. Suppose that x∗g+1 ≤ x∗g,∀g∈ {s, ...,G−1}, meaning that coin holders belonging
to a group with a higher relative convenience benefit from holding stablecoins are less inclined to demand
conversion. For adoption by at least one and up to G− (s−1) groups, the critical mass condition is:

µsms max{0,min{ 1
2 +

x∗s−θ∗

2σε ,1}}+ΣG
g=s+1mg max{0,min{ 1

2 +
x∗g−θ∗

2σε ,1}}
µsms +ΣG

g=s+1mg
= Â(θ ∗,x∗s , ...,x∗G) =

(θ ∗−1)r
κ(θ ∗− r)

, (12)

where I account for the fact that the coin holders belonging to group s, who have the lowest relative
convenience benefit from holding stablecoins, may be indifferent between adopting stablecoins or holding
deposits, as discussed in Section 5. Formally, µs ∈ (0,1].

There are G−(s−1) indifference conditions, one equation for stablecoin holders in each group, that depend
on the fundamental threshold θ ∗ and the group-specific signal thresholds x∗s , ...,x∗G:

E[∆1,i(A;θ
∗,N)|x∗gi=g] = 0,∀g ∈ {s, ...,G}. (13)

For the general case with multiple groups of coin holders, i.e. s<G, the existence of unique equilibrium
threshold strategies can be established by adapting the translation argument of Frankel et al. (2003), which
has also been used by Garcia and Panetti (2022) to study a Diamond-Dybvig bank run model with wealth
heterogeneity across households. Thereafter, I characterize a monotone equilibrium of the continuation
game by application of the Belief Constraint of Sákovics and Steiner (2012). The existence of the upper and
lower dominance regions assures that θ ∈ (x∗G−σ ε,x∗s +σ ε) holds. Moreover, for σ ↘ 0 the critical type-
specific private signal thresholds fall within a cluster of size 2σ ε together with the equilibrium fundamental
threshold θ ∗. This cluster collapses to a point for vanishing private signal noise. As a result, the equilibrium
is fully determined by the G− (s−1) indifference conditions in (13), which are used to back out θ ∗.

The Belief Constraint states that the Laplacian Property holds on average across the different groups of
consumers adopting stablecoins, meaning that coin holders’ posterior distribution ofA is on average uniform
over [0,1]. This property allows to derive a tractable solution where the equilibrium fundamental threshold
is determined by averaging over the indifference conditions, as in Equation (14) below. Importantly, θ ∗ is
a function of γ , which is the weighted average of the group-specific γgi terms, a summary statistic for the
average relative preference for stablecoins in the population of coin holders. Proposition 2 describes the
equilibrium of the conversion game at date t = 1 for a given adoption rate.

Proposition 2. (Continuation equilibrium under incomplete information) Given Assumption 1, σ ↘ 0 and a
positive level of adoption N > 0 with s ∈ {1, ...,G}, there exists a unique monotone equilibrium of the conversion game
characterized by threshold strategies where active stablecoin holders in groups g ∈ {s, ..,G} demand conversion if and
only if they receive a private signal that is below their group-specific signal threshold, i.e. for xi ≤ x∗gi

, and where the
stablecoin issuer faces a run at t = 1 for all θ < θ ∗, with θ ∗ ∈ (1,θh) given by:

I(θ ∗;γ) ≡ [β (1−N)−α(N)−2γ ]τ2− τ1 +
∫ 1

(θ∗−1)r
κ(θ∗−r)

(
1−

r−κA
r θ ∗−ψ

1−κA

)
dA = 0, (14)
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with γ ≡ (µsmsγs +ΣG
g=s+1mgγg)/(µsms +ΣG

g=s+1mg).

Proof. See Appendix Section A.4.1.

Critically, the application of the Belief Constraint requires that the group-specific terms in the indifference
condition are not a function of the aggregate action. This is because the Laplacian property does not hold
for the threshold type of a given group, but it only holds when averaging over groups.23

Comparative statics. Next, I use the implicit function theorem to characterize the equilibrium described
in Equation (14). The results are summarized in Proposition 3.

Proposition 3. (Comparative statics) Given Assumption 1, ε↘ 0 and a positive level of adoption N > 0 with
s ∈ {1, ...,G}, the probability of stablecoin runs, Prob{θ < θ ∗}, depends on the model parameters as shown in Table 3.

Increase in Probability of a run
Bankruptcy cost, ψ ↑
Fraction of active coin holders, κ ↑
Liquidation value, r ↓
Conversion cost, τ1 ↓
Average relative preference
for stablecoin payments, γ

↓

Table 3: Comparative statics

Proof. See Appendix Section A.4.2.

The first three comparative static results in Proposition 3 are consistent with findings in the banking
literature andgive confidence that themodel for stablecoins is sensible. Intuitively, an increase in bankruptcy
costs and a decrease in the liquidation value r make the issuer less resilient. Consequently, the issuers faces
a higher probability of runs. Similarly, a higher share of active coin holders is destabilizing.

The fourth result states that higher conversion costs have a stabilizing effect. This is because they reduce
the incentives to demand conversion. Due to the importance of congestion effects in crypto markets, the
stabilizing role of transaction costs appears to be a relevant feature, as a large volume of transactions in
a short time window can trigger significant increases in transaction fees. To speak to this phenomenon, I
endogenize the conversion cost τ1 in Section 6.2 and show that its stabilizing effect is strengthened.

Destabilizing composition effect. The last comparative static result in Proposition 3 highlights an impor-
tant composition effect. I find that the probability of stablecoin runs decreases with γ , a measure that captures
the average payment type and is positively associated with the probability of a consumption preference for
seller A, who only accepts payment in stablecoins. Intuitively, coin holders will be less flighty at t = 1, if a
higher proportion of them are enthusiastic about adoption at t = 0. This finding has important implications
for the adoption decision, which I discuss next. Corollary 1 summarizes the result formally.

23I discuss in the Online Appendix how the key insights can be generalized in a less tractable model where the simplifying
assumption about the upper bound on κ is relaxed, which leads to a dependency of αg and βg on A. The results also extend a model
where transaction costs are proportional to the amounts converted.
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Corollary 1. (Adoption & fragility) Given Assumption 1, σ ↘ 0 and a positive level of adoption N > 0, the
probability of stablecoin runs increases in the adoption rate, as long as the destabilizing effect from new stablecoin
adopters belonging to groups with a lower γg is not outweighed by positive network effects:

dθ ∗

dN
> 0 iff d[β (1−N)−α(N)−2γ ]

dN
> 0 (15)

where:

−d[β (1−N)−α(N)−2γ ]

dN
=

<0; negative composition effect︷ ︸︸ ︷
ΣG

g= jmg(γ j−1− γg)2(
µ j−1m j−1 +ΣG

g= jmg

)2 +

>0; positive network effect︷ ︸︸ ︷
α
′(N)−β

′(1−N) ,

with j = s+ 1 if µs ∈ [0,1) and j = s if µs = 1.

Corollary 1 highlights an interesting relationship between adoption and stability. Absent positive net-
work effects, a higher adoption changes the composition of coin holders by attracting consumers from
groups with a lower level of γg. Positive network effects counteract the destabilizing decomposition effect.
If strong enough, higher stablecoin adoption becomes stabilizing.

Intuitively, the penetration of wider market segments beyond the crypto enthusiast has implications
for the flightiness of the marginal stablecoin holder, thereby affecting the probability of stablecoin runs.
Empirically, the destabilizing composition effect suggest to be most relevant when stablecoins are adopted
for new use cases, which may imply a substantial change in the type of the marginal coin holder. Through
the lens of the model, such an effect can be captured as a significant drop in γ when additional groups of
consumers start adopting stablecoins. I will revisit this result in Section 6, where I discuss how adoption and
fragility are affected by changes in the environment, and in Section 7, where I discuss testable implications.

5 Stablecoin Adoption Game at t = 0

After analyzing the continuation equilibrium at t = 1 for a given adoption rate, N, I turn to the adoption
game at t = 0. Section 5.1 analyzes the dependency of stablecoin adoption on the beliefs about the fragility
of the issuer and the equilibrium of the adoption game. Thereafter, Section 5.2 discusses efficiency.

5.1 Beliefs about Fragility and Equilibrium in the Adoption Game

Recall that the risk of insolvency only affects stablecoins, as bank deposits are insured. Therefore, the
differential expected payoff from adopting stablecoins at t = 0 instead of holding deposits can be written as:

∆0,i ≡
∫

θ∗

θ

(
κ(1− τ1−αiτ2)+ (1−κ)

( r−κ

r θ −ψ

1−κ
−βiτ2

))
dθ

θ −θ
+
∫

θ

θ∗
(1−βiτ2)

dθ

θ −θ
− (1+ rd−αiτ2), (16)

where I use the utility payoffs from Table 2 and the results from Proposition 2. Observe that with vanishing
private signal noise, there is approximately zero probability mass on fundamental realizations that corre-
spond to a partial run, meaning that A = 1 for θ < θ ∗ and A = 0 for θ > θ ∗. The differential payoff is strictly
decreasing in θ ∗ and strictly increasing γgi . Hence, under the conditions of Proposition 3, there exists at most
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one value γ̃ ∈ [γ1,γG] such that all consumers with γg ≥ γ̃ adopt stablecoins, while all consumers belonging
to groups with γg < γ̃ favor insured bank deposits. Lemma 1 summarizes the key insights.

Lemma 1. (Fragility & adoption) Given Assumption 1, σ ↘ 0 and a belief about the probability of stablecoin runs,
i.e. about θ ∗, the adoption rate N solving the stablecoin adoption game is weakly decreasing in θ ∗ and the weighted
average of the group-specific γ is weakly increasing in θ ∗.

In conjunction with Corollary 1, Lemma 1 establishes the interplay between stablecoin adoption and
fragility. Lemma 1 states that a less favorable believe about the probability of runs, i.e. a higher level of θ ∗,
is associated with a lower adoption rate, i.e. a lower N. Conversely, Corollary 1 states that a lower adoption
rate is associated with a lower probability of runs provided d[β (1−N)−α(N)−2γ ]/dN > 0. In a rational
expectations equilibrium the belief about θ ∗ in the adoption game at t = 0 and the solution N∗ have to be
consistent with the θ ∗ solving the conversion game at t = 1 and the implied γ . It remains to analyze the
existence of an equilibrium with stablecoin adoption.

To ease the analysis, I assume that there exists a (virtual) group v of consumers with γv = γ̃ and mv ≥ 0
that is just indifferent between adopting stablecoins or bank deposits, meaning that ∆i,0(θ ∗) = 0 for gi = v.
Consequently, γ̃ denotes the smallest possible level of the parameter governing the payment type among
the group of coin holders and γv ≤ γs. Next, I analyze necessary and sufficient conditions for the existence
of an interior equilibrium where all consumers belonging to groups g ∈ {s,G}with s≥ 1 adopt stablecoins,
while all others keep their funds in bank deposits, i.e. γG ≥ γ̃ > γ1.

Suppose that s = G and N = mG. From the differential payoff in Equation (16) the corresponding choices,
a0,i = 1 if gi = G and a0,i = 0 if gi < G, are optimal for consumers if ∆0,i(θ ∗(γ = γG),γG) ≥ 0 where θ ∗

solves Equation (14) for s = G (which implies that γ = γG), while ∆0,i(θ ∗(γ = γG),γG−1) < 0. Instead, if
∆0,i(θ ∗(γ);γG−1)≥ 0 where θ ∗ solves Equation (14) for s = G−1 and some γ ∈ [(mG−1γG−1 +mGγG)/(mG−1 +

mG),γG]), then I follow an iterative process to determine s≤ G−1.
Given that the equilibrium fundamental threshold θ ∗ solving the stablecoins conversion game is con-

tinuous in γ and monotonically decreasing when groups of stablecoin adopters with a lower γg are added
(Proposition 3), an interior solution to the adoption gamewith s∈ {1,G} andN∗ ∈ (0,1) exists absent positive
network effects if two conditions are met jointly: (1) ∆0,i(θ ∗(γ = γG),γG) > 0 where θ ∗ solves Equation (14)
for s = G and γ = γG and (2) ∆0,i(θ ∗(γ(1)),γ1)< 0 where θ ∗ solves Equation (14) for s = 1 and γ evaluated at
N = 1. This is because no consumer adopts stablecoins if the first condition is violated and all consumers
adopt stablecoins if the second condition is violated. For θ > θh the lower bound for the weak preference
from adopting stablecoins is given by γ ≡ (rD +(β (1−N)−α(N))τ2)/(2τ2). This verifies that for all coin
holders there is indeed no benefit from demanding conversion at t = 1 if the stablecoin issuer is known to
be solvent, i.e. γs ≥ γ , which is a result used in the analysis of Section 4.2.

Absent sufficiently strong positive network effects, i.e. if dθ ∗/dN > 0 as in Corollary 1, the described
solution to the adoption game is unique. Otherwise, multiple solutions may co-exist, as in the benchmark
with safe stablecoins (see Proposition 1 and Figure 2). To see this, consider the special case with one type of
stablecoin holder, i.e. s = G. Here co-existence emerges whenever there exists an adoption rate N̂ ∈ (0,mG)

such that ∆0,i(θ ∗(γ(N̂)),γG) = 0 holds with equality, where θ ∗ solves Equation (14) for s = G and γ(N̂). There
is one solution where all consumer in group G adopt stablecoins (N∗ = mG), one solution with no stablecoin
adoption (N∗ = 0) and one solution where some consumer in group G adopt stablecoins (N∗ = N̂). Similarly,
with heterogeneous stablecoin holders there can be multiple values of s such that ∆0,i(θ ∗;γgi) = 0 holds
when evaluated at γs, while it is violated when evaluated at γs−1. Proposition 4 summarizes.
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Proposition 4. (Equilibrium of the adoption game) Suppose active stablecoin holders follow threshold strategies
in the t = 1 conversion game. Given Assumption 1 and σ ↘ 0:
(a) There exists a unique equilibrium of the adoption game at t = 0 if Inequality (15) holds. The equilibrium is

characterized by N∗ = 0 if ∆0,i(θ ∗(γ = bG),γG) < 0 and by N∗ = 1 if ∆0,i(θ ∗(γ(1)),γ1) > 0. Moreover, if
both conditions are violated, there exists a unique equilibrium with N∗ ∈ (ΣG

g=s+1mg,ΣG
g=s+1mg +ms], where all

consumers belonging to groups g ≥ s with γg > γ̃ optimally adopt stablecoins and all consumers belonging to
groups g< s with γg < γ̃ do not adopt stablecoins, while consumers belonging to group s are indifferent if γs = γ̃ .

(b) Multiple equilibria of the adoption game at t = 0 can co-exist if Inequality (15) is violated.

At the presence of positive network effects associated with stablecoin adoption, multiple equilibria with
different adoption levels can emerge. Nevertheless, the continuation equilibrium is unique for a given level
of adoption. Coordination games with strategic complementarities and information acquisition share this
feature (Hellwig and Veldkamp, 2009; Ahnert and Bertsch, 2022). The intuition for the multiplicity result is
that different beliefs about the stability can lead to different adoption levels. Everything else equal, more
favorable beliefs about stability of the issuer foster adoption. Since a higher adoption rate is associated with
a lower probability of runs if d[β (1−N)−α(N)−2γ ]/dN < 0, more favorable beliefs about stability can be
self-fulfilling – they induce a higher adoption rate that turns out to be consistent with higher stability.

Taken together, a less favorable belief about stability is associated with lower adoption (Lemma 1). At
the same time, higher adoption is destabilizing absent network effects, because of the composition effect
(Corollary 1). Positive network effects can counteract the destabilizing composition effect and promote
adoption. However, positive network effects may introduce a belief-driven feed-back effect between stable-
coin adoption and stability that can cause sudden shifts in the adoption rate (Proposition 4b). Given the
role of stablecoins as a link between the crypto universe and traditional financial markets (Barthelemy et al.
2021; Kim 2022), such sudden shifts in adoption can be an additional concern for policymakers.

5.2 Efficiency Analysis: Excessive Adoption

Widespread, rapid, and from a social welfare perspective "excessive" adoption of stablecoins is a key concern
for financial regulators. I identify twomechanism that can lead to excessive stablecoin adoption through the
lens of the model. Section 5.2.1 discusses the implications of an uninternalized destabilizing composition
effect and Section 5.2.2 discusses the implications of an uninternalized erosion of the value of bank deposits.

5.2.1 Uninternalized Destabilizing Composition Effect

The uninternalized destabilizing composition effect builds on the link between adoption and fragility
established inCorollary 1. To isolate the destabilizingdecomposition effect and its implications for efficiency,
I first consider the model without positive network effects.

Formally, let N∗ denote the market equilibrium and NSP the solution of a constrained planner, who takes
the one-to-one conversion promise as given and can only choose the adoption rate. Stablecoin adoption is
defined as "excessive" if N∗ > NSP. Proposition 5 summarizes the first efficiency result.

Proposition 5. (Excessive adoption: uninternalized destabilizing composition effect) Given Assumption 1
and σ ↘ 0, and absent positive network effects, i.e. if α ′ = β ′ = 0,∀N ∈ [0,1], the equilibrium level of adoption is
excessive relative to the constrained efficient level of adoption, i.e. N∗ > NSP, whenever the destabilizing composition
effect is present. Otherwise, N∗ = NSP.
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Proof. See Appendix Section A.4.3.

Intuitively, an inefficiently high level of stablecoin adoption can arise, because the marginal adopter
of stablecoins at t = 0 does not take into account that she poses a negative externality on other coin
holders by increasing the probability of a stablecoin run due to the destabilizing composition effect, i.e.
dProb{θ < θ ∗}/dN > 0. Since the distribution of groups is discrete, it takes more than one group of
stablecoin adopters for the destabilizing composition effect of Corollary 1 to arise.

From a regulatory perspective, the "Tether scenario" is best captured by excessive adoption resulting from
the destabilizing composition effect. If Tether is widely adopted for new use cases, and this significantly
changes the incentives of the marginal coin holder, then there is a concern that this will lead to a noticeable
shift in the average flightiness of coin holders, fueled by excessive adoption. An example could be the wider
adoption of Tether for remittances, which leads to large volumes of parked funds thatmay be convertedmore
quickly after negative information about the issuer, compared to the funds held by retail crypto enthusiasts
(or early adopters) who use stablecoins as a vehicle to reduce the cost of trading in the crypto universe.

5.2.2 Uninternalized Erosion of Bank Deposits

Facebook’s announcement in June 2019 to launch its own digital currency was a wake-up call for central
banks and financial regulators. As discussed in the introduction, a key concern for policy makers in the
"Facebook Libra scenario" is that stablecoins are adopted very rapidly, with important implications for the
payments landscape and for banks, which could suffer a significant loss of stable retail deposit funding and
a reduction in the attractiveness and service value of bank deposits.

Building on Section 5.2.1 I study the effect of an uninternalized erosion of the value of deposits in a version
of the model with positive network effects that originate from a reduction in the probability that deposits
are the acceptedmeans of payment when stablecoins find awider adoption, i.e. α ′ > 0 and β ′ = 0,∀N ∈ [0,1].
This specification allows to determine how the emergence of a second externality increases the magnitude
of the inefficiency identified in Proposition 5. The second efficiency result is summarized in Proposition 6.

Proposition 6. (Excessive adoption: uninternalized erosion of deposits) Given Assumption 1 and σ ↘ 0, let
β ′ = 0,∀N ∈ [0,1] and α(N) ≡ χN with χ > 0 and χ ↘ 0, then the equilibrium level of adoption, Ň∗, is excessive
relative to the constrained efficient level of adoption, i.e. Ň∗ > ŇSP, whenever there is an interior solution to the adoption
game, i.e. Ň∗ ∈ (ΣG

g= jmg,ΣG
g= j−1mg). Moreover, the magnitude of the inefficiency increases if the second externality

is introduced.

Proof. See Appendix Section A.4.4.

The introduction of an uninternalized erosion of the value of deposits introduces a second externality
that increases the wedge between the market equilibrium and the constrained efficient allocation. The
proposition restricts attention to the case where the network effect is purely driven by changes in α(N) and
where its magnitude is small. Formally, the limiting case χ ↘ 0 assures that Inequality (15) holds and the
solution to the adoption game is unique (Proposition 4), which allows for a clear comparison between the
market allocation and the solution to the constrained planner problem. However, the result in Proposition
6 suggests to hold more generally when considering a richer model of network effects, as long as β (1−N)

is not too sensitive to changes in the adoption rate.
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It is worth reiterating that the results in Sections 5.2.1 and 5.2.2 are intended to rationalize the regulatory
concern about an excessive adoption of stablecoins by identifying two mechanisms that can give rise to it.
Nevertheless, depending on the forces at play, adoptionmust not be excessive. For instance, consumers may
coordinate on the efficient level of adoption if network effects are strong and operate through β .

6 Extensions and Robustness

In this section I discuss several extensions to themodel and the robustness of themain findings. First, Section
6.1 considers the resilience of the issuer, introducing fixed costs and revenue from transaction fees. Second,
Section 6.2 discusses the stabilizing effect of congestion leading to an endogenous response of conversion
costs. Third, Section 6.3 develops an extension of the model with a stablecoin lending market. Fourth,
Section 6.4 analyzes the role of transparency and an extension with a moral hazard problem. Thereafter,
Section 6.6 discusses e-money providers, narrow banks and a hybrid CBDC through the lens of the model.
Finally, Section 6.7 covers monetary policy, alternative model specifications and robustness.

6.1 Resilience of the Issuer

The probability of stablecoin runs, Prob{θ ≤ θ ∗}, stands in a close relationship to the profitability and
resilience of the issuer via the critical threshold Â(θ ) from Equation (6), which describes the strength of the
issuer to stem against conversion demands at t = 1. Given σ ↘ 0, the issuer’s profits are:

π(θ ∗,N∗) =
∫

θ

θ∗

N∗(θ −1)
θ −θ

dθ +
∫

θ∗

θ

0
θ −θ

dθ . (17)

Note that π(θ ∗,N∗) > 0, ∀N∗ > 0 since θ ∗ ≤ θh < θ by definition.
Below I consider twomodifications of the baseline model that are are relevant for the stablecoins market.

First, Section 6.1.1 analyzes a variant of the model with fixed costs of operation. Thereafter, Section 6.1.2
examines a variant where the issuer can generate income from transaction fees.

6.1.1 Fixed Cost of Operation

So far, I assumed that the issuer does not face costs of operation. In this section I consider a fixed operating
cost ξ > 0 that accrues at t = 0 and that is deducted from the funds collected.24 The modified profits are:

π(θ ∗,N∗;ξ ) =
∫

θ

θ∗(N∗;ξ )

(N∗(ξ )−ξ )θ −N∗(ξ )
θ −θ

dθ . (18)

Observe that ξ lowers the issuer’s profits for a given θ ∗ and N∗. Furthermore, profits decrease in θ ∗ and
increase in N∗. I show in the Proof of Proposition 7(a) that dθ ∗/dξ > 0 and dN∗/dξ < 0, meaning that the
reduction in profits gives rise to a destabilizing effect and to a lower adoption. This is because of a lower
resilience of the issuer who is insolvent already for a lower level of aggregate conversion demand. The fixed

24A variable cost has effects that are identical to a reduction in income from transaction fees, which is discussed in Section 6.1.2.
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cost lowers the available resources, thereby making it harder to meet the payment obligations:

Â(N∗;θ ,ξ ) ≡
N∗−ξ

N∗ θ −1
κ(θ − r)

r < Â(θ ),∀ξ > 0. (19)

Notably, for a given average level of γ , the described effect is weakened as adoption increases, since the fixed
cost is shared by a larger user base (formally, ξ is divided by N∗).

6.1.2 Transaction Fee Income

In the baseline model the stablecoin issuer does not earn income from transaction fees. In practice, part
or all of the transaction cost may stem from fees earned by other parties, such as by crypto miners for
on-chain transactions or by cryptocurrency exchanges and other intermediaries for off-chain transactions.
However, some stablecoins are affiliated with exchanges (e.g. USD Coin with Coinbase and Binance Coin
with Binance), meaning that issuers may accrue part of the fees. To account for this institutional feature, I
consider a profit sharing arrangement between the issuer and other parties. Let f ∈ [0,1] denotes the fraction
of transaction costs that are accounted for as fee income by the issuer. The modified issuer profits are:

π(θ ∗,N∗; f ) =
∫

θ

θ∗(N∗; f )
N∗

θ −1+(β − γ) f τ2

θ −θ
dθ , (20)

where β −γ is the weighted average over the group-specific probabilities to meet a consumption good seller
who only accepts bank deposit, meaning that coin holders need to convert to bank deposits at t = 2 and
incur the transaction cost τ2. Now, the issuer is only insolvent for a higher aggregate conversion demand:

Â(θ , f ) ≡ θ −1
(1− f τ1)θ − r

r
κ
> Â(θ ),∀ f > 0. (21)

The increased resources available due to f > 0 translate into a higher critical threshold for the population
fraction of coin holders demanding conversion, i.e. dÂ(θ , f )/d f > 0 provided f τ2 is not too large. The
extra revenue promotes the issuer’s ability to meet its payment obligations. Proposition 7(b) shows that this
results in a lower probability of stablecoin runs and the intuition is similar to Section 6.1.1.

Proposition 7. (Fixed costs of operation and transaction fee income)Given Assumption 1, σ↘ 0 and a positive
level of adoption N > 0, the probability of stablecoin runs:
(a) increases in the level of the fixed cost: dθ ∗/dξ > 0
(b) decreases in the fraction of transaction fee income: dθ ∗/d f < 0 provided f τ2 is not too large.

Proof. See Appendix Section A.4.5.

6.2 Congestion: Endogenous Conversion Cost

Due to the importance of congestion effects in cryptomarket, the stabilizing role of transaction costs appears
to be a relevant feature of crypto asset markets, where a large volume of transactions in a short time window
can trigger substantial increases in transaction fees. I document such an event in Figure A1 in the Appendix
for the period around the devaluation of USD Terra in May 2022, when the transaction fees for on-chain
transactions on the Ethereum network (which was the dominant network used by USD Terra) shot up more
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than four-fold, which may have helped to reduce outflows from Tether, counteracting contagion effects
across stablecoins. To study the role of an endogenous response of conversion costs to congestion, I assume
in this extension that the conversion cost at t = 1 given by τe

1(A) = τ +ωA with ω > 0. Similar to Diamond-
Dybvig models with increasing nominal t = 1 good prices (Skeie 2021; Schilling et al. 2021), an increase of
the conversion cost due to a higher aggregate conversion demand rations the conversion run threat.

Corollary 2 shows formally that a stronger endogenous response to congestion has a stabilizing effect.
Perhaps surprisingly, the probability of runs is lower than in the benchmark model even if the endogenous
conversion cost is lower than the exogenous conversion cost used in the benchmark model for a wide range
of aggregate conversion demands, which can reach up to A = 1/2.

Corollary 2. (Endogenous congestion cost) Given Assumption 1, σ ↘ 0 and a positive level of adoption N > 0
with s ∈ {1, ...,G}, the revised equilibrium condition for the stablecoin runs game is:

Ie(θ ∗;γ) ≡ [β −α−2γ ]τ2−
(

τ +
ω

2

)
+
∫ 1

(θ∗−1)r
κ(θ∗−r)

(
1−

r−κA
r θ ∗−ψ

1−κA

)
dA = 0. (22)

The probability of runs decreases when the conversion cost is more sensitive to increases in the conversion demand, i.e.
dθ ∗/dω < 0. Moreover, the probability of runs is lower than in the benchmark model with an exogenous conversion
cost if τ1 < τ +ω/2. This result holds even if τe

1(A) < τ1,∀A ∈ [0,1/2).

6.3 Stablecoin Lending and the Role of a Large Speculator

Stablecoin lending is a recent phenomenon that has become a booming corner of the crypto market in 2022.
It is dominated by a handful of new intermediaries such as Crypto.com, BlockFi.com andNexo.io, who offer
crypto savings accounts and crypto loans. Crypto savings accounts are offered to retail customers, who can
typically choose between overnight and term deposits of up to 3 months duration. There is a also a futures
market. Crypto borrowers may have different motives, ranging from the need for liquidity to conduct trades
in the crypto universe or to process crypto payments, to the desire to short crypto. Importantly, stablecoin
lending can be used by large institutional traders to bet on the devaluation of a stablecoin,much like currency
speculation in the foreign exchange market. Not surprisingly, a wave of redemptions by speculators who
borrowed stablecoins suggests to have contributed to the collapse of USD Terra in May 2022.25

In this section I consider an extension with stablecoin lending, where consumers can earn interest by
lending out their stablecoins during the game, but they also face the risk that their coins are devalued by
the time they are return by the borrower. Specifically, I introduce a large borrower of stablecoins who may
have a speculative motive. The borrower is unconstrained and risk-neutral. She wants to borrow δ ∈ (0,κN)

units of the stablecoin at the end of t = 0 from coin holders with the promise to return (1+ r`)δ coins at t = 2,
where r` > 0 denotes the interest rate offered to lenders. There are two states of the world: z = 1 and z = 2.
In state z = 1 the borrower turns out to be a speculator and in state z = 2 she does not to have a speculative
motive. I assume that the probability of state z = 1 is 0≤ q< 1 and the probability of state z = 2 is 1−q. At
t = 0 the borrower’s motive is unknown, but the probabilities of the two states are common knowledge.

In case the borrower has a speculative motive, she demands conversion at the beginning of t = 1 before
the fundamental is realized and before the remaining coin holders play the stablecoin conversion game.

25In the case of USD Terra the issuer of the stablecoin and it’s underlying crypto asset Luna, as well as the USD Terra lending
platform Anchor were intertwined. Our model of stablecoin lending maps better to the leading stablecoins, which are mostly backed
by traditional financial assets and where the issuers do not run the stablecoin lending market.
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This allows her to gain from a subsequent devaluation. She does, however, incur a loss in case the issuer
remains solvent and there is no devaluation. The associated payoffs are typical for a currency speculator.

In case the borrower does not have a speculative motive, she keeps the coins till t = 2 independent of the
fundamental realization. This behavioral assumption could be rationalized by the inability of the borrower
to learn about θ in conjunction with an unmodeled benefit (or service value) from holding stablecoins
in-between t = 0 and t = 2, which is generating her demand for borrowing stablecoins at t = 0 and could,
for instance, be rationalized by a need for liquidity to conduct trades or for collateral to process payments.

For simplicity, I assume that the borrower’s action is observed by all coin holders before they play the
conversion at t = 1. All this is taken into account by consumers when they play the stablecoin conversion
game at t = 1, the lending game at the end of t = 0 and the adoption game at the beginning of t = 0. A
destabilizing role of stablecoin lending arises when the borrower is a speculator and demands conversion
of the δ coins in her possession, which forces the issuer to divest assets. Consequently, the issuer has fewer
resources available in the subsequent conversion game. Instead, a stabilizing role arises when the borrower
is not a speculator and does not demand conversion (while the coin holders who lent to her at t = 0 may have
demanded conversion at t = 1). In this case the borrower provides partial insurance against runs, which
makes the remaining coin holders less flighty. The differential effect of stablecoin lending on fragility across
the two states increases in the borrower’s size, i.e. in δ , meaning that only a large speculator matters.

The game shares similarities with the currency attack model of Corsetti et al. (2004). Unlike Corsetti
et al., I abstract from signaling by a better informed speculator who can matter even if small in size. In a
recent paper, Gorton et al. (2022b) offer a rationale based on stablecoin lending that explains why there can
be a demand for stablecoins even though there is a risk of runs and no interest paid by the issuer. Different
to their paper, lenders in my model have to worry that their coins may be devalued by the time they are
returned. Thus, the borrower must compensate for a higher probability of runs with a higher interest rate.

The three stages of the modified game with stablecoin lending are discussed in more detail in Appendix
Section A.5 and summarized in Table A2. The derivations are relegated to Appendix Section A.6, where I
also present the modified parameter assumptions. Proposition 8 summarizes the key insights formally. To
simplify the exposition, I abstract from positive network effects.

Proposition 8. (Stablecoin lending and speculation) Given Assumption 2, σ ↘ 0 and absent positive network
effects, i.e. if α ′ = β ′ = 0,∀N ∈ [0,1], the size of the borrower is positively (negatively) associated with the flightiness of
coin holders in state z = 1 (z = 2), limq→0 dθ ∗1 /dδ > 0 and limq→0 dθ ∗2 /dδ < 0, provided the sensitivity of the induced
payment preference, i.e. dγ/dN, is not too strong. Additionally, the size of the borrower is either negatively associated
with the lending rate, limq→0 dr∗`/dδ < 0, or positively associated with the adoption rate, limq→0 dN∗/dδ > 0, or
both. Conversely, the probability that the borrower is a speculator is either positively associated with the lending rate,
dr∗`/q> 0, or negatively associated with the adoption rate, dN∗/dq< 0, or both.

Proof. See Appendix Section A.4.6.

Taken together, the results in Proposition 8 indicate that the introduction of stablecoin lending tends
to promote stability and adoption if the benefits are not eroded by speculation. This is because stablecoin
lending can allow stablecoin holders to earn a better expected return on their coins, thereby facilitating
adoption. The effect of a larger borrower has a differential effect on the flightiness of coin holders in states
z = 1 and z = 2. Intuitively, the relevance of the stabilizing effect in state z = 2 prevails from an ex-ante
perspective as long as the probability q of state z = 2 when the borrower is a speculator is small. This effect
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is, however, erodedwhen the threat of facing a speculator increases, which is reflected not only in a potential
reduction in the adoption rate, but also in the need to offer a higher interest rate r` to compensate lenders.

The analysis of the stablecoin lending game rests on two important assumptions. First, I assume through-
out that the borrower is willing to offer costly incentives that allow her to collect δ stablecoins, regardless of
whether she is a speculator or not. Second, the borrowing volume δ is assumed to be fixed. If δ is allowed
to vary, then the borrower without a speculative motive may be able to signal her type by borrowing less.
However, the existence of a separating equilibrium is not guaranteed. Another important assumption re-
lates to information and timing. Unlike Corsetti et al. (2004), I do not consider a speculator who has private
information about θ , but an uninformed speculator who always demands conversion. Since stablecoin
lenders have to worry about the possibility that their coins will be devalued by the time they are returned,
stablecoin lending has both benefits, as in Gorton et al. (2022b), and costs.

6.4 Transparency and Moral Hazard

The regulatory discussion on both sides of the Atlantic (US 2021; EU 2022) emphasizes measures to increase
transparency about the asset holdings of stablecoin issuers (recall Table 1) and to reduce the riskiness of the
assets that back the stablecoins. To speak to this debate, I analyze a model extension with a moral hazard
problem to study the issuer’s incentives for risk-shifting and the role of transparency.

My starting point is the baselinemodel without stablecoin lending from Sections 4 and 5, towhich I add a
classic risk-shifting problem at t = 0 by allowing the issuer to select a parameter, which governs the riskiness
of the portfolio after collecting the funds of stablecoin adopters. Formally, I consider the choice x ∈ {xH ,xL},
where xH = 0 and xL ∈ (0,1) are the high risk and low risk portfolio choices, respectively. The modified
fundamental distribution follows θ ∈ U [θ (x),θ (x)], with θ (x) ≡ xR + (1− x)θ , θ (x) ≡ xR + (1− x)θ and
θ (x) ≡ xR+(1− x)θ . An interesting case to consider is R = (θ +θ )/2, where the fundamental distribution
under x = xH is a mean-preserving spread of the fundamental distribution under x = xL. Moreover, I assume
that the issuer receives a payoff of ř(x) ≡ xrL +(1− x)r if she divests prematurely at t = 1, with rL ∈ [r,1].
This means that the low risk choice is weakly favorable when it comes to divestments, i.e. ř(xL)≥ ř(xH) = r.

Remark. (Socially Optimal Portfolio Choice) The low risk portfolio choice x = xL is associated with a strictly
higher social welfare than the high risk portfolio choice x = xH under the sufficient condition that the probability of
stablecoin runs is weakly smaller under the consumers’ belief that x = xL, i.e. if θ ∗(xL) = θ ∗ ≤ θ ∗(xH).

A lower probability of runs is associated with a higher welfare because of the reduction in costly
divestments at t = 1. I will argue below that θ ∗(xL) ≤ θ ∗(xH) always holds. While the low risk portfolio
choice is socially desirable, the preference of the issuer may differ. Moreover, her risk choice may not be
observable andverifiable. In Section 6.4.1 I analyze the casewhere the issuer can commit to a risk choice. This
allows to highlight a potential misalignment stemming from the trade-off between the benefit of enjoying a
higher upside from selecting xH in case of solvency and the benefit of a potentially lower probability of runs
from selecting xL. Thereafter, Section 6.4.2 analyzes the case without commitment, where a moral hazard
problem emerges. Finally, Section 6.4.3 discusses implications for regulation and the role of transparency.
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6.4.1 The Case With Commitment

Suppose that the issuer announces her choice x ∈ {xL,xH} before the stablecoin adoption game and that
the announcement is credible, meaning that the funds from stablecoin adopters at t = 0 are invested in a
portfolio with a riskiness governed by the previously announced x.

For the choice x = xH the analysis in Sections 4 and 5 applies. For the choice x = xL the conversion game
is altered as follows. First, the parameter conditions in Assumption 1 need to be modified to account for the
change in the upper and lower bounds of the fundamental, as well as for the lower return when divesting
prematurely at t = 1. Second, the modified equilibrium condition in Equation (14) of Proposition 2 reads:

[β (1−N)−α(N)−2γ(x,N)]τ2− τ1 +
∫ 1

(θ∗−1)ř(x)
κ(θ∗−ř(x))

1−
ř(x)−κA

ř(x) θ ∗−ψ

1−κA

dA = 0, (23)

where γ depends on the announced x, as well as the N determined in the adoption game at t = 0. From
Proposition 3 dθ ∗/dr < 0. Provided ř(xL) > r, this direct effect is associated with a lower fundamental
threshold θ ∗ solving Equation (23) under xL instead of xH . As a result, the choice of xL is stabilizing for a
given N and γ if ř(xL) > r, which increases the resources available if the issuer is insolvent at t = 2.

Next, I move to the stablecoin adoption game at t = 0. In addition to the stabilizing effect established
previously, there is a second effect that originates from the less dispersed fundamental distribution under
xL, i.e. θ < θ (xL) and θ (xL) < θ . Under which condition is this second effect also stabilizing? First, note
that the θ ∗(x) solving Equation (23) does not depend on the bounds of the fundamental distribution. By
taking the derivative with respect to x, it can be shown that the ex-ante probability of the stablecoin issuer
to be insolvent is strictly decreasing in x under the sufficient condition that θ ∗(xL) < R, which holds if the
probability of runs against the issuer is sufficiently low – formally if Prob{θ < θ ∗}< 1/2.

It remains to discuss the response of N, as well as the associated change in γ . Given Lemma 1, a more
favorable belief about stability, i.e. a lower θ ∗, is associated with a weakly higher adoption rate. The same is
true if the payoff fromdivesting at t = 1 is increased. Ahigher adoption rate, in turn, has a destabilizing effect
if Inequality (15) holds. In equilibrium, such an indirect destabilizing effect must, however, be dominated
by the direct stabilizing effects. Taken together, the overall effect of selecting xL instead of xH is associated
with a weakly lower probability of stablecoin runs under the sufficient condition that Prob{θ < θ ∗}< 1/2,
which can be regarded as the relevant case, because a too high probability of runs would preclude adoption.

Next, I contrast the benefit of a potentially lower probability of stablecoin runs when selecting x = xL

with the potential benefit of enjoying a higher upside when selecting xH . Let Ň(x,θ ∗) denote the adoption
rate given x, then the differential expected payoff from selecting x = xL is:

π(xL)−π(xH) =
∫

θ (xL)

θ∗(xL)
(θ −1)Ň∗(xL,θ ∗(xL))

dθ

θ (x)−θ (x)
−
∫

θ

θ∗
(θ −1)N∗

dθ

θ −θ
(24)

=
∫

θ∗

θ∗(xL)
(θ −1)

Ň∗(xL,θ ∗(xL))

θ (xL)−θ (xL)
dθ︸ ︷︷ ︸

benefit of weakly
fewer runs if x = xL

+
∫

θ (xL)

θ∗(xL)
(θ −1)

(
Ň∗(xL,θ ∗(xL))

θ (xL)−θ (xL)
− N∗

θ −θ

)
dθ︸ ︷︷ ︸

benefit of a less dispersed fundamental
and weakly higher adoption if x = xL

−
∫

θ

θ (xL)
(θ −1)

N∗

θ −θ
dθ︸ ︷︷ ︸

cost of a lower
upside if x = xL

.

Whether or not it is optimal for the issuer to select xL instead of xH depends on the relative strength of the
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three effects in Equation (24). Intuitively, a lower sensitivity of the probability of runs and of adoption to a
change in the riskiness of the investment portfolio are more likely to incentivize the issuer to select xH . To
make this point, I show that π(xL)−π(xH) < 0 for xL ↘ 0 in case adoption is locally insensitive to change
in the riskiness. Notably, the result for the limiting case xL↘ 0 is only overturned for a sufficiently strong
response of Ň∗ and θ ∗ to changes in the riskiness of the issuer’s portfolio. Proposition 9 summarizes.

Proposition 9. (Privately and socially optimal portfolio choices under commitment) The privately optimal
portfolio choice can differ from the socially optimal portfolio choice xSP = xL even if the stablecoin issuer can commit.
An example for x∗ = xH < xSP arises for xL↘ 0 if the adoption rate is locally unaffected by changes in x, i.e. if γs > γ̃ .

Proof. See Appendix Section A.4.7.

Intuitively, the example for x∗= xH < xSP described inProposition 9 emerges because the low risk portfolio
choice xL involves forgoing a part of the upside in Equation (24), without generating benefits in terms of a
higher adoption or a lower probability of runs. This is because Ň∗ = N∗ if γs > γ̃ , which implies that θ ∗ = θ ∗.

Notably, the result is not robust to fierce competition among multiple issuers. Assuming a contestable
market, new entrants can credibly announce their risk and compete by setting x. This results in a market
outcome thatmaximizes consumerwelfare. Thus, barriers to entry, such as switching costs, play a significant
role in creating a discrepancy between the privately and socially optimal portfolio choice.

The misalignment between the privately and socially optimal portfolio choice is also less likely to occur
if the monopolistic issuer has additional skin in the game, which could, for instance, stem from future
transaction fee income (Section 6.1.2), or from the affiliation of a stablecoin issuer with a cryptocurrency
exchange. In practice, USD Coin and the exchange Coinbase or Binance Coin and the exchange Binance are
two such cases. A crypto exchange experiences a significant disruption and possibly risks bankruptcy if its
affiliated stablecoin is devalued. Consequently, the stablecoin issuance policy is likely to be more prudent.
The self-reported asset breakdowns published by issuers suggest that this conjecture can be verified; in
October 2022 USD Coin and Binance Coin claim to be exclusively backed by U.S. government guaranteed
debt instruments, which stands in stark contrasts to the more risky investments by Tether USD (see Table
1), a stablecoin that is not owned by a crypto exchange. Corollary 3 develops the insight formally.

Corollary 3. (Skin in the game) Suppose the stablecoin issuer incurs an extra disutility, d > 0, from bankruptcy.
Then ∃d > 0, such that x∗ = xL for xL↘ 0 if d > d > 0.

Intuitively, the privately and socially optimal portfolio choice are less likely to differ if the issuer has
additional skin in the game, which is introduced with an additive disutility term d in Equation (24).

6.4.2 The Case Without Commitment

Next, I consider the case where the issuer cannot commit to her choice of the level of portfolio risk.
Specifically, I assume that the issuer’s announcement of x before the stablecoin adoption game is not credible
and the chosen riskiness of the portfolio cannot be observed or verified by consumers. It can be shown by
contradiction that the issuer optimally selects x∗ = xH , as the choice of x does not affect the adoption rate and
the beliefs of coin holders at t = 1, who correctly belief that the issuer selects xH . Proposition 10 summarizes.

Proposition 10. (No commitment) The privately optimal portfolio choice under no commitment is x∗ = xH .
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6.4.3 Implications for Regulation

From a policy viewpoint, the previous results bear relevance for the ongoing discussion about the adequate
regulation of the stablecoins market. The lack of transparency by issuers about the quality of the assets
backing the stablecoins and weak disclosure standards (that largely rely on self-reported information that
cannot be verified) are high on the list of policy concerns (US 2021; Bains et al. 2022). If the issuer is unable
to commit to a portfolio risk choice, then a classical moral hazard problem emerges with potentially large
incentives to select a high risk portfolio (Proposition 10). The announcement of a portfolio risk choice by the
issuer or self-reported information about the riskiness of the portfolio are not credible. Financial regulators
may help to address the moral hazard problem by introducing an adequate regulatory disclosure regime
that allows stablecoin issuers to receive credible public verification of statements about their assets.

However, a regulatory disclosure regime is unlikely to be enough. Given the potential misalignment
of the privately and socially optimal portfolio risk choice (Proposition 9), the introduction of a disclosure
regime can be insufficient in achieving the socially optimal level of risk even if it allows issuers to credibly
communicate. In light of the highmarket concentration (see Figure 1), also inadequate competitive pressures
and entry barriers may hinder the implementation of the socially optimal portfolio level of risk.

Toholdundesirable risk-taking in check, effective regulatorymeasuresmust directly influence the issuer’s
portfolio decisions. This involves imposing specific requirements on reserve assets’ quality, liquidity, and
diversification, as well as the management of custodial risks. In addition, the issuer’s capitalization plays a
critical role. Capital requirements not only provide a buffer against losses but also increase the issuer’s skin
in the game (Corollary 3), which is conducive to the implementation of the efficient level of risk.

6.5 The Effect of Monetary Policy on Stablecoin Adoption and Fragility

Conventional monetary policy influences the deposit rate offered by banks via the short-term policy rate.
Moreover, monetary policy can also affect asset valuations, which depend on both, the contemporaneous
short-term policy rate and guidance about future policy rates. Additionally, unconventional monetary
polices, such as quantitative easing, can affect valuations more directly through outright asset purchases.

Achange in thedeposit rate. First, consider a reduction in thedeposit rate rD offeredbybanks,which could
be the consequence of a reduction in the monetary policy rate. Alternatively, it could be the consequence of
a reduction in the competitiveness of the banking industry or related to other factors such as regulation and
banking sector profitability. From Equation (16) it can be seen that a reduction in rD impacts the adoption
decision in two ways. First, there is a direct effect from a lower attractiveness of bank deposits relative to
stablecoins, which boosts the stablecoin adoption rateN. Second, there is an indirect effect via the probability
of stablecoin runs. Specifically, the probability of runs is affected by changes in the flightiness of active coin
holders, due to a change in their composition. Formally, the average γ governing the payment type (weakly)
decreases in the adoption rate N. Moreover, fragility (weakly) increases, as long as the destabilizing effect
from new adopters is not outweighed by positive network effects (Corollary 1).

A change in asset valuations. Next, consider an increase in asset valuations, which may be the result of
a monetary easing. For tractability I preserve the assumption that θ is uniformly distributed and assume
that a change in the valuation moves the support of the distribution. Specifically, consider an increase in
the valuation by v> 0 such that θ

′(v) = θ + v, θ ′h = θh + v and θ
′
(v) = θ + v, which implies dE[θ ]/dv = 1. As

before, the effect on adoption can be analyzed in Equation (16). I find that a higher profitability due to an
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upward shift in the distribution of θ promotes adoption and stability.

Discussion of monetary policy effects. In a low interest rate environment, stablecoin adoption is likely
to be higher and stablecoins may attract a broader range of users, which may increase the fragility of the
marginal coin holder. While a monetary easing can reduce the issuer’s fragility by supporting asset prices, a
prolonged low rate environment may increase fragility if it depresses the remuneration of the issuer’s assets
without corresponding gains in profitability or stability. This situation resonates with the challenges faced
by money market funds caused by depressed asset returns that complicate the float management problem
with a net asset value close to breaking the buck. Moreover, if deposit rates fall below one, a further lowering
interest rates may not benefit stablecoin adoption because physical cash becomes more attractive.

6.6 Stablecoins vs. E-money, Narrow Banking, and Hybrid CBDC

The US appears to move towards a regulation that only allows federally insured banks and non-bank
financial institutions subject to a 100% reserve requirement to issue stablecoins. Indeed, tightly regulated
stablecoins issued by insured depository institutions and by narrow banks may be a substitute for a US
retail CBDC (Waller 2021; Andolfatto 2021b). If implemented and accompanied by adequate safeguards
for operational and technological risks, as well as a backstop by the Federal Reserve, such a policy would
make regulated stablecoins risk-less and suitable as a medium of exchange that fulfills the no-questions-asked
principle put forward by Gorton and Zhang (2021). This approach is also compatible with a hybrid CBDC
architecture that allows users to have a direct claim on the central bank (BIS 2021). The Chinese e-CNY has a
hybridCBDCarchitecture. Instead, China took amore traditional narrowbanking approach for the payment
platforms Alipay and WeChat Pay after the People’s Bank of China decided in 2019 that the platforms have
to invest all funds backing their e-monies exclusively in deposits with state-owned commercial banks.

Also in Europe and in other parts of the world policymarkers are determined to step up the regulation of
stablecoins, as to limit exposures to liquidity risk, return risk and operational risks. The European Markets
in Crypto-Assets (MiCA) regulation proposal classifies stablecoins that are pegged to a fiat currency as
"e-money tokens" (EC 2020). After the implementation of MiCA (scheduled for 2024), the provision of
crypto-asset services in the European Union (EU) requires companies to obtain a license and to adhere to
requirements regarding their capitalization, governance, asset separation, safekeeping of funds and more.

Through the lens of the model, tightly regulated stablecoin issuers can be captured by changing the
return profile of the fundamental θ and the cost from divesting assets. Requiring stablecoin issuers to invest
only in the safest assets (e.g., short-term Treasuries) and introducing capital requirements to withstand
potential losses from operational or cyber risk can ensure that θ ≥ 1. Thereby, regulators can rule out states
of the world where the value of stablecoins falls below $1 even if there are no redemption requests at t = 1.
What remains are liquidity concerns arising from high redemption volumes at t = 1 if there is a cost from
divesting assets, which can lead to panic based runs. In my model this can be captured by assuming that
there is incomplete information about r. More formally, let r′(θ )> 0 and 0< r(θ )≤ 1,∀θ ∈ [θ ,θ ]. Applying
the same global games methodology, it can be shown that main insights from Section 4 go through.

How can a policy maker rule out the fragility due to runs that are purely based on liquidity concerns?
One option is to allow stablecoin issuers access to the central bank balance sheet. Central bank liquidity
assistance can ensure that r ≥ 1 holds in all states of the world, even in case of large redemption volumes at
t = 1. Another option is to require issuers to hold central bank reserves and to operate like a narrow bank. A
remaining concern is the the low profitability in an low interest rate environment (Section 6.5), which may
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require an additional capital buffer or subsidies to ensure the solvency and viability of stablecoin issuers.

6.7 Alternative Model Specifications and Robustness

Throughout the paper, I assume that a devaluation of stablecoins does not affect their use as a means of
payment, i.e. αg and βg are not affected by a devaluation. This simplification is critical, as it allows to average
over the group-specific γgs by applying the Belief Constraint of Sákovics and Steiner (2012), because the γgs
are not contingent on the aggregate action. In the model section I argue that this assumption is plausible.
In the Online Appendix I demonstrate the robustness of the key insights when considering an alternative
specification where the seller’s preference for payment in stablecoins is lower in case of a devaluation at
t = 1, which requires to restrict attention to the analytically tractable case with two coin holder types.

Another important assumption is that the stablecoin issuer is a monopolist. A relaxation of this assump-
tion requires to rethink the network effects, which could in parts be issuer specific and in parts be aggregate
in nature. Moreover, the existence of multiple issuers highlights the relevance of the previous discussion
on fixed costs of operation in Section 6.1.1, which are with multiple issuers duplicated and spread across
smaller user bases. This effect suggests that the smallest stablecoin issuers may be the most vulnerable.
Instead, the destabilizing composition effect described in Section 4 gains in importance if the issuer with the
highest adoption disproportionately attracts flighty coin holders. This can make the dominant issuer more
vulnerable if the destabilizing effect outweighs the potential benefits arising from scale.

From a regulatory perspective, it is of particular importance to focus on the weakest link if the risk of
contagion is high. The emerging empirical literature on crypto assets documents a high degree of intercon-
nectedness in the crypto universe. Market spillovers dwarf the variation caused by idiosyncratic charac-
teristics (Ferroni 2022). This is also true for the stablecoins universe, which displays a high co-movement
between different stablecoins and with other crypto assets (Gorton, Ross and Ross 2022a). Therefore, it is
insufficient to focus on the fragility of one (potentially dominant) stablecoin in isolation. Moreover, insti-
tutional similarities across different stablecoins and the interconnectedness are likely to imply that a run
against the most fragile stablecoin constitutes a wake-up call for coin holders, which makes them more
likely to demand conversion also for other coins (Ahnert and Bertsch 2022).

Finally, the model assumes risk-neutrality for tractability. In practise, the crypto and stablecoins market
is affected by risk-on and risk-off trades that may, for instance, be induced by time-varying risk aversion or
changes in monetary policy (Section 6.5). Such effects can play an important role for fragility in addition to
the determinants of fragility studied in this paper.

7 Testable Implications

The nascent empirical literature on the stablecoins market has documented that stablecoins play a key role
in the 1-2tn market for crypto assets denominated in US dollars (Hoang and Baur 2021). Moreover, there
is an increasingly closer link with traditional financial markets, as well as a high co-movement within the
stablecoins universe, which raises the risk of contagious runs (Gorton et al. 2022a).26 Due to the large

26Gorton et al. (2022a) measure the frictions faced by stablecoin holders when transacting and converting their coins to fiat currency,
documenting a negative association with the convenience yield and a high co-movement. Grobys, Junttila, Kolari and Sapkota (2021)
show that Bitcoin volatility is an important factor driving the volatility of stablecoins. In related work, Lyons and Viswanath-Natraj
(2020) show that Tether’s peg to the US dollar is primarily stabilized by arbitrage traders, rather than by the issuer.
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holdings of stablecoin issuers, changes in the stablecoin market capitalization affect the US commercial
paper and treasury markets (Barthelemy, Gardin and Nguyen 2021; Kim 2022). As the stablecoin market
continues to evolve, further research in this area will be critical to ensuring stability and resilience through
the design of effective regulatory frameworks.

This section discusses implications offered by the theory developed in this paper and how they could be
tested. First, the model offers predictions for stablecoin adoption and fragility in relation to network effects
and the role of stablecoins as a means of payment (Section 4).

Prediction 1a: There is a positive association between (a) the intensity of network effects and (b) the value of
stablecoins as a means of payment, and the stability of stablecoins.

Prediction 1b: For a given level of adoption, an increase in (a) the intensity of network effects and/or in (b) the value
of stablecoins as a means of payment reduces the flightiness of the marginal coin holder.

Predictions 1a and 1b are based on Proposition 3 and could be tested with the help of empirical mea-
sures to gauge the strength of network effects in the stablecoins market, including measures for platform
user retention (possibly by user cohort, e.g. early adopters vs. late adopters), for market depth, for the
concentration of supply and demand, and for the cost of switching between different coins. The value of
stablecoins as a means of payment, which is a proxy for the medium of exchange function of stablecoins,
can be assessed by measuring the scope to use them to purchase goods and services, and by measuring
the transaction fees for purchasing crypto assets. Regarding the fragility of the stablecoin issuer, a stability
measure can be constructed based on the narrowness of the bands around the peg to the U.S. dollar and the
frequency of violations of the peg, potentially taking advantage of cross-sectional variation.

Prediction 1b hinges on a key model assumption that first needs to be verified in its own right. Does the
marginal agent becomemore flighty when adoption reaches broader market segments? By howmuch? One
way to test the validity of the assumption is to group addresses according to whether they belong to early
stablecoin adopters or to more recent adopters. Thereafter, the groups can be associated with a flightiness
measure based on the sensitivity to deviations from the peg. Provided the most recent adopters are the
most flight and, therefore, can be classified as the marginal coin holders, Prediction 1b follows.

Next, I turn to conditions under which stablecoins may be prone to runs that have to do with the
characteristics of traders and the market infrastructure.

Prediction 2: Stability of stablecoins increases if the proportion of active traders is lower.

Prediction 3: Stability of stablecoins increases if transaction costs are more sensitive to spikes in conversion demand.

Prediction 2 is based on the negative effect of the proportion of active traders, κ , on the stability of
the stablecoin issuer (Proposition 3). Testing this prediction requires to identify the traders who are most
sensitive to deviations from the peg, for instance by examining how many addresses can be detected as
"active" during periods when there are significant deviations from the peg. Prediction 3 follows from
Corollary 2 on the role of congestion effects. It can be tested using data on transaction fees and volumes on
the Ethereum network. Regular network updates and changes in the market infrastructure may offer quasi-
exogenous shocks to the sensitivity of conversion costs to congestion effects in the market for stablecoins.

Prediction 4: For a given level of adoption, the stablecoin lending rate decreases in the share of non-speculative use.

Prediction 4 is based on the finding that dr∗`/d(1− q) < 0 for a given level of adoption. Moreover,
Proposition 8 also suggests a negative association between the size of the stablecoin lending market and
the stablecoin lending rate, which is driven by an increase in stability. To test the prediction, the share of

32



speculative activity in the stablecoins lending market could be gauged with the help of speculative DeFi
positions, especially by DeFi liquidators. Notably, Prediction 4 relies on the risk of a devaluation by the
time the coins are returned to lenders, and is shared with d’Avernas et al. (2022), who also have a positive
relationship between the lending rate and fragility.

8 Discussion

Stablecoins have received considerable attention frompolicymakers following the Facebook Libra stablecoin
announcement in June 2019, and in light of the rapid expansion of the crypto universe. Importantly,
stablecoins serve as a critical link to traditional financial markets, as documented in recent empirical work.
Because the stablecoin market is prone to instability, it may pose broader financial stability risks going
forward. Therefore, it is important to understand the determinants of stablecoin adoption and fragility,
and to think about the appropriate regulation. The theoretical framework developed in this paper aims to
inform the risk assessment and the ongoing policy debate on how to regulate stablecoins.

The approach taken in this paper is to modify existing theories to study bank runs and currency attacks
by incorporating important features of the stablecoin market. Crucially, I introduce payment preferences
that generate a demand for stablecoins and analyze how stablecoin adoption interacts with the fragility of
the stablecoin issuer. Different from a typical Diamond and Dybvig-type model, where the bank chooses
assets to trade off returns, liquidity provision, and run risk, the stablecoin adoption game endogenizes
the liability side. When deciding whether or not to adopt stablecoins, consumers trade off the benefits of
stablecoins with the return differential relative to insured bank deposits and the risk of devaluation.

I find that stablecoin adoption is likely to be excessive, because the marginal adopter does not internalize
that a wider adoption of stablecoins is associated with a destabilizing composition effect ("Tether scenario").
Moreover, she also does not internalize network effects, which can undermine the role of bank deposits
as a means of payment ("Facebook Libra scenario"). This results speak to regulatory concerns about a
rapid and widespread adoption of stablecoins that is socially undesirable. Regarding the determinants of
fragility, I find that factors that increase the issuer’s revenue from fees and seigniorage promote stability,
as do congestion effects that are associated with an increase in transaction costs during times of stress. In
addition, I find that a regulatory disclosure framework that promotes transparency can reduce risk-taking
by stablecoin issuers. However, only a heavy-handed regulation with capital requirements can guarantee
the socially efficient level of risk-taking. Finally, I find that the recent phenomenon of stablecoin lending can
promote both stability and adoption if it does not invite speculation.

Forthcoming regulation on both sides of the Atlantic, flanked by an effort to coordinate policies inter-
nationally,27 holds the promise to mitigate certain risks. Extrapolating from the findings of this paper,
regulation should not only focus on the fragility of individual stablecoins in isolation, but also take into
account contagion risks. Moreover, in addition tomitigating potential maturitymismatches and operational
risks, stabilization mechanisms should be strengthened so that regulated stablecoin issuers can seamlessly
meet large conversion demands in the event of runs on other stablecoins. To this end, access by regulated
stablecoin issuers to (potentially dedicated) central bank lending facilities can be an important backstop,
which could also be used to facilitate large flows between regulated stablecoins and a retail CBDC.

27This effort is lead by the Basel Committee on Banking Supervision and the Committee on Payments and Market Infrastructures.
See, e.g., BIS (2022) and CPMI-IOSCO (2020).
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While multiple G7 statements noted that "no global stablecoin project should begin operation until it
adequately addresses relevant legal, regulatory, and oversight requirements through appropriate design
and by adhering to applicable standards",28 the actual regulation remains challenging in light of the global
nature of crypto asset markets29 and the speed of innovation, especially in decentralized finance.30 Thus, it is
plausible to envision a future with a bifurcated market consisting of regulated and unregulated stablecoins.
In fact, the introduction of a CBDC can be seen as an insurance policy and its development was motivated
by the rapid growth of stablecoins (Arner, Auer and Frost 2020; Landau and Brunnermeier 2022; FSR 2022).
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A Appendix

A.1 Additional Figures and Tables
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Figure A1: End of day (CEST) price in US dollars (left axis) and average daily gas price on the Ethereum
network measured in 10−9 units of the cryptocurrency ETH (right axis) over the period fromMay 6, 2022 to
May 16, 2022. Source: coingecko.com and ycharts.com.
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FigureA2: Solvency of the stablecoin issuer as a function of the fundamental realization θ and thepopulation
fraction A of coin holders demanding conversion. Only in the intermediate region, θ ∈ (θ`,θh), the solvency
of the issuer depends on the level of the aggregate conversion demand A.
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Date 0 Date 1 Date 2

1. Adoption game: 3. The fundamental θ is realized 6. The outcome of the t = 1
Consumers simultaneously but unobserved and a fraction stablecoin conversion game and
decide whether to convert κ of coin holders become active the fundamental realization θ

their bank deposits to 4. Stablecoin conversion game: are observed; the preference
stablecoins, a0,i = 1, Active stablecoin holders receive of each consumer is realized
or not, a0,i = 0 the private signal xi and decide 7. If the issuer’s reserves fall
2. The stablecoin issuer simultaneously whether to short of the face value of claims
invests all funds received demand conversion to deposits, held by the remaining active
from consumers who a1,i = 1, or not, a1,i = 0, while and passive coin holders, the
adopt stablecoins passive coin holders are dormant issuer is insolvent and the

5. The stablecoin issuer meets stablecoins are devalued
coin holders’ conversion requests 8. Consumers buy goods from
by divesting assets their preferred seller and convert

their money (if necessary)
9. Sellers A and C convert the
stablecoins earned; all sellers pay
production costs with govern-
ment-backed deposits (or dollars)

Table A1: Timeline of events with stablecoin lending.

A.2 Complete Information Benchmark: σ = 0

ThisAppendix section considers the benchmarkwith complete informationwhere active coin holders obtain
a precise signal at t = 1, i.e. σ = 0, about the resources available to the stablecoin issuer at t = 2.

Suppose that an individual active coin holder i believes that others keep their coins, i.e. a1,−i = 0. Then
her optimal strategy is to demand conversion if and only if the differential payoff from conversion relative to
keeping the coins is weakly positive. Weak preference for demanding conversion holds if θ ≤ θ` = 1, which
gives us a lower bound for θ such that it is the (weakly) dominant action to demand conversion for all θ ≤ 1.

Following the same logic, I can derive the upper bound from the weak preference for not demanding
conversion if the active coin holder i believes that all others demand conversion, i.e. if a1,−i = 1. Given:

γs ≥ γ̂ ≡ (β −α(N))τ2− τ1

2τ2
, (25)

it is the (weakly) dominant action for all coin holders to keep their stablecoins if θ ≥ θh, where s ∈ {1, ...,G}
denotes the group of coin holders with the lowest probability of being matched with a seller who has a
preference for stablecoin payments.

As the analysis of the conversion game at t = 1 requires that stablecoins are adopted at least by some
consumers, I now assume (and later show) that Inequality (25) holds, which intuitively requires that the
preference for bank deposits as a means of payment β cannot be too high. Observe, that in an economy
where sellers only accept cash, i.e. β = 1 and α(0) = 0, Inequality (25) simplifies to γs ≥ (1/2)− (τ1/τ2).

Next, I analyze what happens in the intermediate region θ ∈ [1,θh]. Recall that the intermediate region
is non-empty and observe that for any θ ∈ [1,θh], multiple belief-driven equilibria exist. Specifically, there
always exists a pure strategy Nash equilibrium where all coin holders demand conversion and a pure
strategy Nash equilibrium where all coin holders keep their stablecoins. Proposition 11 summarizes.
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Proposition 11. (Continuation equilibrium under complete information) Let σ = 0. Given Assumption 1 and
a positive level of adoption N > 0, there exists a unique equilibrium of the conversion game where all active stablecoin
holders demand conversion if θ ∈ [θ ,1) and a unique equilibrium where no stablecoin holder demands conversion if
θ ∈ (θh,θ ]. In the intermediate range, θ ∈ [1,θh], there exist multiple pure strategy Nash equilibria.

A.3 Derivation of Dominance Regions

Let γs ≥ γ̂ . I characterize the upper and lower dominance regions.

Upper dominance region. A coin holder belonging to group g ∈ {s, ...,G} who receives the private signal
xi > xg strictly prefers to keep her stablecoins even when all other active coin holders demand conversion,
i.e. A = 1, where xg:

Prob{θ ≥ θh|xi = xg}−1+(αg−βg)τ2 + τ1 +
∫

θh

θ

r−κ

r θ −ψ

1−κ
h(θ |xi = xg)dθ = 0. (26)

Observe that the left-hand side of Equation (26) takes on a negative value if xi < θh−σε and a positive value
if xi > θh +σε and τ1 +(αg−βg)τ2 > 0, which holds provided there is adoption of stablecoins. Moreover,
the left-hand side strictly increases in xi = xg. As a result, a sufficient condition for no conversion demand
by all coin holders can be obtained by solving Equation (26) for group s. There exists a unique x ≡ xs such
that it is the dominant action for all coin holders with a private signal xi > x to keep their coins.

Lower dominance region. Analogously, a coin holder belonging to group g ∈ {s, ...,G} who receives the
private signal xi < xg strictly prefers to demand conversion even when all other coin holders keep their
stablecoins, i.e. A = 0, where xg solves:

Prob{θ ≤ θ`|xi = xg}(1− τ1−αgτ2)−
∫ 1

θ

( r−κ

r θ −ψ

1−κ
−βgτ2

)
h(θ |xi = xg)dθ

− Prob{θ > θ`|xi = xg}(τ1 +(αg−βg)τ2) = 0. (27)

Observe that the left-hand side of Equation (27) takes on a positive value if xi < θ`−σε due to ψ > ψ in
Assumption 1. Conversely, it takes on a negative value if xi > θ`+σε since−τ1− (αg−βg)τ2 < 0. Moreover,
the left-hand side is strictly decreasing in xi = xg. As a result, a sufficient condition for no conversion demand
by all coin holders can be obtained by solving Equation (27) for group G. There exists a unique x≡ xG such
that it is the dominant action for all coin holders with a private signal xi < x to demand conversion.

A.4 Proofs

A.4.1 Proof of Proposition 2

I start with preliminary results. Following Sákovics and Steiner (2012) I rescale the aggregate action as:

Ã(ξ ,Γ) ≡ ΣG
g=s+1mgF(Γg−ξ )+msµsF(Γs−ξ ),
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where ξ is a scalar and Γ is a vector of Γgs that relates the group-specific threshold signals to the signal
threshold of a group k as follows: Γg ≡ (x∗g− x∗k)/σ and θ = x∗k +σξ . Then I write the strategic beliefs as:

Ag(A,Γ) = Pr{Ã(Γg− ε ,Γ) < A}= Pr{ΣG
h=s+1mhF(Γh−Γg + ε)+msµsF(Γs−Γg + ε) < A}.

Defineϑ (A,Γ) as the inverse function of Ã(ξ ,Γ)with respect to ξ , where dϑ /dA< 0, because dÃ(ξ ,Γ)/dξ < 0
for Ã(ξ ,Γ) ∈ (0,1). Next, following Lemma 4 in Sákovics and Steiner (2012) I establish that the densities
associated with the strategic belief are bounded:

0≤
∂Ag(A,Γ)

∂A
=

f (Γg−ϑ (A,Γ))
ΣG

g=s+1mg f (Γg−ξ )+msµs f (Γs−ξ )
≤ 1

mg
.

Finally, I define the expected utility payoff of the threshold type as:

Hσ
g (x1,Γ) ≡ E[∆(A;θ ,N)|(x∗g,gi = g)] =

∫ 1

0
∆(x1 +σϑ (A,Γ),A)dAg(A,Γ),

where I drop the adoption rate in the last line for simplicity.
Note that the beliefs are independent of σ so that the Hσ

g (xk,Γ)’s are well-defined for all σ ≥ 0.
The proof proceeds in three steps. In Step 1 I follow the translation argument in Frankel et al. (2003) and

establish by contradiction that if there is a solution to the system of indifference conditions given by:

Hσ
g (x1,Γ) = 0,∀g ∈ {s, ...,G},

then it must be unique. Thereafter, I establish equilibrium convergence in Step 2 and apply in Step 3 the
Belief Constraint of Sákovics and Steiner (2012) to derive Equation (14) in Proposition 2. Finally, existence
can be established by iterated elimination of dominated strategies.

Step 1: Suppose there exist two distinct solutions, (x1,Γ) and (x′1,Γ′).
First, consider the case where Γ = Γ′ and x1 6= x′1. Recall that ∆i is weakly decreasing in θ for all groups

so that ∆i(x′1 +σϑ (A,Γ′),a) ≤ ∆i(x1 +σϑ (A,Γ),a) if x′1 > x1. Moreover, A∗ > (A∗)′ if x′1 > x1 since Â(θ ) is
strictly increasing in θ . As a result, Ag(A∗,Γ) > Ag((A∗)′,Γ). There is a contradiction: Hσ

g (x
′
1,Γ) < Hσ

g (x1,Γ),
because∆i(x′1+σϑ (A,Γ′))≤∆i(x1+σϑ (A,Γ)) forA∈ ((A∗)′,A∗)due to the discontinuity of∆i at the solvency
threshold Â(θ ) so that:

∫ 1

0
∆i(A,x′1 +σϑ (A,Γ))dAg((A∗)′,Γ) <

∫ 1

0
∆i(A,x1 +σϑ (A,Γ))dAg(A∗,Γ).

Second, consider the case where Γ 6= Γ′ and, without loss of generality, x1 ≤ x′1. Choose h ∈ argmaxg(Γ′g−
Γg) and let D = maxg(Γ′g−Γg)≥ 0. Notice that Γ′h−Γ′g ≥ Γh−Γg,∀g ∈ {s, ...,G} holds with strict inequality at
least for one group g due to the assumption that Γ 6= Γ′. Let x̃1 = x′1 +σD, then:

Hσ
h (x̃1,Γ) ≤ Hσ

h (x1,Γ),

which, as Iwill showbelow, leads to a contradiction. Next, use the substitution a= ã(Γh−εh,Γ), x̃h = x̃1+σΓh,
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and x′h = x′1 +σΓ′h to re-write the expected utility payoff as:

Hσ
h (x̃1,Γ) =

∫ +ε

−ε

∆h(x̃h−σεh, ã(Γh− εh,Γ))d f (εh)dεh

Hσ
h (x

′
1,Γ′) =

∫ +ε

−ε

∆h(x′h−σεh, ã(Γ′h− εh,Γ′))d f (εh)dεh,

where I used that ϑ (A,Γ) is the inverse function of Ã(ξ ,Γ) with respect to ξ . Observe that x̃h = x′1 +σD+

σΓh = x′h. Moreover, because of Γ′h−Γ′g ≥ Γh−Γg,∀g ∈ {s, ...,G}:

Σgmg(1−F(Γ′g−Γ′h + εh))+msµs(1−F(Γs−Γ′h + ε
′
h))≥ Σgmg(1−F(Γg−Γh + εh))+msµs(1−F(Γs−Γh + εh)),

which implies: ã(Γ′h− εh,Γ′) ≥ ã(Γh− εh,Γ),∀εh. Next, I establish strict inequality by noting that the ε∗h
solving ã(Γh− ε∗h ,Γ) = Â(x̃h−σ(ε∗h )) and the (ε∗h )

′ solving ã(Γ′h− (ε∗h )
′,Γ′) = Â(x′h−σ(ε∗h )

′) are related to
each other as (ε∗h )′ ≥ ε∗h for x̃h = x′h. Moreover, I can show that (ε∗h )′ > ε∗h by contradiction. Suppose that
(ε∗h )

′ = ε∗h and recall that there exists a g such that Γ′h−Γ′g > Γh−Γg,∀g ∈ {s, ...,G}, for which:

(1−F(Γ′g−Γ′h + ε
∗
h ))> (1−F(Γg−Γh + ε

∗
h )).

As a result, ã(Γ′h− ε∗h ,Γ′) > ã(Γh− ε∗h ,Γ), which contradicts (ε∗h )
′ = ε∗h . Hence, Hσ

h (x̃1,Γ)−Hσ
h (x

′
1,Γ′) < 0,

meaning there exists at most one equilibrium characterized by threshold strategies, which concludes Step 1.
Step 2: Next, I show that the system of indifference conditions given by:

Hσ
g (x1,Γ) = 0,∀g ∈ {s, ...,G}

is well approximated by H0
g (x1,Γ) = 0, as σ ↘ 0. Note that limσ↘0 ξ = limσ↘0 ϑ (A,Γ) = 0. Moreover, all

group-specific signal thresholds x∗g must lie in the σ/2-neighborhood of the fundamental threshold θ ∗(σ)

for the indifference conditions to hold. Following Sákovics and Steiner (2012) I can show that Hσ
g (x1,Γ) = 0

converges uniformly to H0
g (x1,Γ) when σ is small. To do so, I use the fact that the differential payoff from

demanding conversion, ∆, is Lipschitz continuous to the left and right of Â(θ ).
Step 3: Next, I apply the Belief Constraint. Using the previous results, the signal thresholds x∗g converge

to the fundamental threshold θ ∗ solving:

∫ (θ∗−1)r
κ(θ∗−r)

0
((β −α−2γg)τ2− τ1)dAg(A,Γ∗)

+
∫ 1

(θ∗−1)r
κ(θ∗−r)

(
1+(β −α−2γg)τ2− τ1−

r−κA
r θ −ψ

1−κA

)
dAg(A,Γ∗) = 0,∀g ∈ {s, ...,G}. (28)

Summing over the coin holder groups on both sides, I arrive at Equation (14) using the Belief Constraint,
which crucially depends on the assumption that the γgs are not contingent on the aggregate action of coin
holders, to obtain:

∫ 1

(θ∗−1)r
κ(θ∗−r)

(
1−

r−κA
r θ ∗−ψ

1−κA

)
dA+(β −α)τ2− τ1−2τ2

µsmsγs +ΣG
g=s+1mgγg

µsms +ΣG
g=s+1mg

= 0,

where ΣG
g=s+1mgAg(A,Γ∗)+msµsAs(A,Γ∗) = A.
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It remains to establish the existence of a threshold equilibrium following iterated elimination of domi-
nated strategies as in Sákovics and Steiner (2012). This concludes the Proof of Proposition 2.

A.4.2 Proof of Proposition 3

We establish the comparative static results summarized in Proposition 3 by analyzing Equation (14):

dI
dγ

= −2τ2 < 0

dI
dβ

= − dI
dα(N)

= τ2 > 0

dI
dτ1

= −1< 0

dI
dψ

=
∫ 1

(θ∗−1)r
κ(θ∗−r)

ψ

1−κA
dA> 0

dI
dr

= −
∫ 1

(θ∗−1)r
κ(θ∗−r)

κA
r2(1−κA)

θ
∗dA− θ ∗−1

κ

θ ∗

(θ ∗− r)2

1−1+
ψ

(θ∗−1)r
κ(θ∗−r)

< 0

dI
dκ

=
∫ 1

(θ∗−1)r
κ(θ∗−r)

(
A

(1−κA)2

(
θ ∗

r
−ψ

))
dA+

(θ ∗−1)r
κ2(θ ∗− r)

1−1+
ψ

(θ∗−1)r
κ(θ∗−r)

> 0

dI
dτ2

= β −α(N)

dI
dθ ∗

= −
∫ 1

(θ∗−1)r
κ(θ∗−r)

r−κA
r θ ∗−ψ

1−κA
dA− r

κ

1− r
(θ ∗− r)2

1−1+
ψ

1− (θ∗−1)r
κ(θ∗−r)

< 0.

By application of the implicit function theorem the results in Proposition 3 follow. This completes the proof.

A.4.3 Proof of Proposition 5

For σ ↘ 0 social welfare is given by:

W (θ ∗;N) ≡ (1−N)(1+ rd)−
(

Σs−1
g=1mgαg +(1−µs)msαs

)
τ2 (29)

+ΣG
g=s+1mg

(∫
θ∗

θ

(
κ(1− τ1−αgτ2)+ (1−κ)

( r−κ

r θ −ψ

1−κ
−βgτ2

))
dθ +

∫
θ

θ∗
(1−βgτ2)dθ

)
1

θ −θ

+µsms

(∫
θ∗

θ

(
κ(1− τ1−αsτ2)+ (1−κ)

( r−κ

r θ −ψ

1−κ
−βsτ2

))
dθ +

∫
θ

θ∗
(1−βsτ2)dθ

)
1

θ −θ
.
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Suppose the adoption rate is interior, i.e. N ∈ (ΣG
g= jmg,ΣG

g= j−1mg), then the first derivative is given by:

dW (θ ∗;N)

dN
= − (1+ rd− (α + γs)τ2)

+ΣG
g=s+1mg

dθ ∗

dN

(
κ(1− τ1−αgτ2)+ (1−κ)

(
1− ψ

1−κ
−βgτ2

)
− (1−βgτ2)

)
1

θ −θ

+

(∫
θ∗

θ

(
κ(1− τ1−αsτ2)+ (1−κ)

( r−κ

r θ −ψ

1−κ
−βsτ2

))
dθ +

∫
θ

θ∗
(1−βsτ2)dθ

)
1

θ −θ

+µsms
dθ ∗

dN

(
κ(1− τ1−αsτ2)+ (1−κ)

(
1− ψ

1−κ
−βsτ2

)
− (1−βsτ2)

)
1

θ −θ
.

Using an envelop-type argument, I evaluate the derivative at N∗ by plugging the indifference condition from
the adoption game (Equation (16)):

dW (θ ∗;N)

dN

∣∣
N=N∗ = ΣG

g=s+1mg
dθ ∗

dN

(
κ(−τ1−αgτ2)+ (1−κ)

(
− ψ

1−κ
−βgτ2

)
+βgτ2)

)
1

θ −θ

∣∣
N=N∗

+µsms
dθ ∗

dN

(
κ(−τ1−αsτ2)+ (1−κ)

(
− ψ

1−κ
−βsτ2

)
+βsτ2)

)
1

θ −θ

∣∣
N=N∗ < 0 if dθ ∗

dN
> 0.

As a result, N∗ > NSP whenever the destabilizing composition effect from Corollary 1 is present, i.e. if
dθ ∗/dN > 0, and the adoption rate is interior. This requires that consumers from more than one group
adopt stablecoins.

It remains todiscuss the casewhenadoption rate takesona corner solution, i.e. N∗ ∈{ΣG
g=2mg, ...,ΣG

g=G−1mg}.
From Equation (29) it can be seen that the two last terms drop when taking the derivative with respect to N

for the corner solution. However, adoption is still excessive as long as the destabilizing composition effect
from Corollary 1 is present. This is the case if the marginal adopter is just indifferent. Otherwise, N∗ = NSP.
This concludes the proof of Proposition 5.

A.4.4 Proof of Proposition 6

Building on the Proof of Proposition 5, I analyze the first derivate of the the welfare function when α(N) =

χN. Again, suppose that the adoption rate is interior, i.e. N ∈ (ΣG
g= jmg,ΣG

g= j−1mg), then:

dW (θ ∗;N)

dN
= − (1+ rd− (α(N)+ γs)τ2)− (1−N)α ′(N)τ2−

(
ΣG

g=s+1mg + µsms
)∫ θ∗

θ

κα
′(N)τ2

1
θ −θ

dθ

+ΣG
g=s+1mg

dθ ∗

dN

(
κ(1− τ1−αgτ2)+ (1−κ)

(
1− ψ

1−κ
−βgτ2

)
− (1−βgτ2)

)
1

θ −θ

+

(∫
θ∗

θ

(
κ(1− τ1−αsτ2)+ (1−κ)

( r−κ

r θ −ψ

1−κ
−βsτ2

))
dθ +

∫
θ

θ∗
(1−βsτ2)dθ

)
1

θ −θ

+µsms
dθ ∗

dN

(
κ(1− τ1−αsτ2)+ (1−κ)

(
1− ψ

1−κ
−βsτ2

)
− (1−βsτ2)

)
1

θ −θ
.
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Plugging in from the indifference condition gives:

dW (θ ∗;N)

dN

∣∣
N=Ň∗ = −χ

(
(1−N)τ2 +

(
ΣG

g=s+1mg + µsms
)∫ θ∗

θ

κτ2
1

θ −θ
dθ

)∣∣
N=Ň∗

+ΣG
g=s+1mg

dθ ∗

dN

(
κ(1− τ1−αgτ2)+ (1−κ)

(
1− ψ

1−κ
−βgτ2

)
− (1−βgτ2)

)
1

θ −θ

∣∣
N=Ň∗

+µsms
dθ ∗

dN

(
κ(1− τ1−αsτ2)+ (1−κ)

(
1− ψ

1−κ
−βsτ2

)
− (1−βsτ2)

)
1

θ −θ

∣∣
N=Ň∗ ,

where Ň∗ is the equilibrium level of adoption at the presence of positive network effects. The first line
captures the additional terms, which are strictly negative for χ > 0 and related to the uninternalized erosion
of bank deposits as a means of payment. Observe that the derivative equals the one in the Proof of
Proposition 5 if χ ↘ 0.

Suppose that α(Ň∗) = α , then Ň∗ = N∗ and ŇSP < NSP < N∗, provided the solution is interior. It is in this
sense that the magnitude of the inefficiency increases when the second externality is introduced. Moreover,
it increases in the magnitude of the network effect, i.e. in χ . This concludes the proof of Proposition 6.

A.4.5 Proof of Proposition 7

This proof comprises two parts and builds on results from the Proof of Proposition 3. We discuss Part (a)
and Part (b) of the Proof of Proposition 7 in turn.

Part (a): The issuer cannotmeet its t = 2 payment obligations if N(κ(1−A)+1−κ)> (N−ξ )θ−NκAθ /r.
Rearranging gives Â(θ ;N,ξ ) in Equation (19). Using the modified critical threshold in Equation (19), we can
for a given N derive the modified equilibrium condition as follows:

I(θ ∗;N,ξ ) ≡ (β −α(N)−2γ)τ2− τ1 +
∫ 1

N−ξ

N θ∗−1
κ(θ∗−r) r

1−
N−ξ

N r−κA
r θ ∗−ψ

1−κA

dA = 0. (30)

As in the Proof of Proposition 3 we have that dI(θ ∗;N,ξ )/dθ ∗ < 0. Moreover:

dI(θ ∗;N,ξ )
dξ

= −
∫ 1

N−ξ

N θ∗−1
κ(θ∗−r) r

(
− 1

1−κA
θ ∗

N

)
dA+

θ ∗r
Nκ(θ ∗− r)

(
ψ

1−κÂ

)
> 0.

By application of the implicit function theorem we have that dθ ∗/dξ > 0.
Part (b): The issuer cannot meet its t = 2 payment obligations if N(κ(1−A) + 1− κ) > Nθ −NκA(1−

f τ1)θ /r.31 Rearranging gives Â(θ ;N, f ) in Equation (21), which is unique as long as f τ1 is not too large.
The equilibrium fundamental threshold θ ∗(N∗; f ) is governed by a modified equilibrium condition from

the t = 1 conversion game:

I(θ ∗; f ) ≡ (β −α)τ2− τ1 +
∫ 1

θ∗−1
θ∗(1− f τ1)−r

r
κ

(
1−

r−κA(1− f τ1)
r θ ∗+(1−κA)β f (A) f τ2−ψ

1−κA

)
dA = 0, (31)

where β f (A) takes into account that the transaction fee income at t = 2 is only generated from the coin

31Observe that we assume that the revenue from the t = 2 transaction fees does not count against the payment obligation, e.g because
it does not accrue in time. This assumption simplifies the analysis.
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holders not demanding conversion at t = 1, i.e. the coin holders belonging to groups with a sufficiently high
level of αg−βg (where β f (1) = β ). Note that the case with f = 0 nests our benchmark model.

As in the Proof of Proposition 3 we have that dI(θ ∗; f )/dθ ∗ < 0. Moreover:

dI(θ ∗; f )
d f

= −
∫ 1

θ∗−1
θ∗(1− f τ1)−r

r
κ

(
κAτ1

r θ ∗− (1−κA)β f (A)τ2

1−κA

)
dA− θ ∗−1

(θ ∗(1− f τ1)− r)2
rθ ∗τ1

κ

ψ− (1−κÂ)β f (Â) f τ2

1−κÂ
,

which is negative provided f and τ2 are not too large. By application of the implicit function theorem we
have that dθ ∗/d f < 0 provided f and τ2 are not too large. This concludes the proof.

A.4.6 Proof of Proposition 8

There are seven endogenous variables to keep track of, θ ∗1 , θ ∗2 , N∗, r∗` , s∗, µ∗s and γ̃∗. Notably, `∗, the additional
endogenous variables γ∗` and µ∗` are exclusively pinned down by δ from Equation (34).

I first consider the case where, due to the sparse distribution of groups, the adoption rate N∗ does not
respond to small changes in q, κ , δ or in othermodel parameters. Saiddifferently, I assume that@g s.t. γg = γ̃∗.
Thereafter, I consider the case where N∗ responds to changes in model parameters, i.e. ∃g s.t. γg = ˜̃γ∗.

Case 1: @g s.t. γg = γ̃∗. Since N∗ does not respond to small changes in model parameters, I can conduct the
comparative statics analysis for a given adoption rate N and marginal group s, using the implicit function
theorem. The derivatives of the first and second implicit function are:

dIθ1(·)
dθ ∗1

= − (1− r)r(
κ− δ

N

)
(θ ∗1 − r)2

ψ

θ∗1 (1−r)
θ∗1−r

−
∫ 1

θ∗1−1+ δ
N

(
1−

θ∗1
r

)
(κ− δ

N )(θ∗1−r)
r

 r− δ
N−(κ− δ

N )A
r

1− δ

N −
(

κ− δ

N

)
A

dA< 0

dIθ2(·)
dθ ∗2

< 0,
dIθ1

dθ ∗2
(·) =

dIθ2

dθ ∗1
(·) =

dIθ∗z

dr`
(·) =

dIθz

dq
(·) = 0,∀z = 1,2.

Moreover, given µs = 0:

dIθ1(·)
dκ

= −2

=0︷ ︸︸ ︷
dγ(`;N,δ )

dκ
τ2 +

θ ∗1 −1+ δ

N

(
1− θ∗1

r

)
(

κ− δ

N

)2
(θ ∗1 − r)

ψ

θ∗1 (1−r)
θ∗1−r

−
∫ 1

θ∗1−1+ δ
N

(
1−

θ∗1
r

)
(κ− δ

N )(θ∗1−r)
r

A
N

θ ∗1
(
1− 1

r

)
−ψ(

1− δ

N −
(

κ− δ

N

)
A
)2

dA> 0

dIθ1(·)
dδ

= −2

<0︷ ︸︸ ︷
dγ(`;N,δ )

dδ
τ2 +

κ

N (θ ∗1 −1)+ κ

N

(
1− θ∗1

r

)
(

κ− δ

N

)2
(θ ∗1 − r)

ψ

θ∗1 (1−r)
θ∗1−r

−
∫ 1

θ∗1−1+ δ
N

(
1−

θ∗1
r

)
(κ− δ

N )(θ∗1−r)
r

 1
N

θ ∗1
(
1− 1

r

)
−ψ(

1− δ

N −
(

κ− δ

N

)
A
)2

dA> 0

dIθ2(·)
dκ

= −2

=0︷ ︸︸ ︷
dγ(`;N,δ )

dκ
τ2 +

θ ∗2 −1(
κ− δ

N

)2
(θ ∗2 − r)

ψ

θ∗2 (1−r)
θ∗2−r

−
∫ 1

θ∗1−1

(κ− δ
N )(θ∗1−r)

r

 Aθ∗2
N

(
1− 1

r

)
−ψ

A
N(

1− δ

N −
(

κ− δ

N

)
A
)2

dA> 0
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dIθ2(·)
dδ

= −2

<0︷ ︸︸ ︷
dγ(`;N,δ )

dδ
τ2−

1
N

θ ∗2 −1(
κ− δ

N

)2
(θ ∗2 − r)

r
ψ

θ∗2 (1−r)
θ∗2−r

−
∫ 1

θ∗1−1

(κ− δ
N )(θ∗1−r)

r

A Aθ∗2
Nr (1− r)+ψ

A
N(

1−
(

κ− δ

N

)
A
)2

dA< 0 if dγ/dδ is small

The derivatives of the third implicit function are:

d∆`(·)
dθ ∗1

= q
(

(κ + r`)
r−κ

r θ∗1−ψ

1−κ
−κ(1− τ1−αgiτ2)− r`

)
< 0

d∆`(·)
dθ ∗2

= (1−q)
(

(κ + r`)
r−κ+ δ

N
r θ∗1−ψ

1−κ+ δ
N
−κ(1− τ1−αgiτ2)− r`

)
< 0

and:

d∆`(·)
dκ

= q
( ∫ θ∗1

θ

(
r−κ

r θ1−ψ

1−κ
+(κ + r`)

− θ1
r (1−κ)+ r−κ

r θ−ψ

(1−κ)2 − (1− τ1−αgiτ2)+κτ2
dγ

dκ

)
dθ

)
+(1−q)

( ∫ θ∗2
θ

(
r−κ+ δ

N
r θ2−ψ

1−κ+ δ
N

+(κ + r`)
− θ2

r (1−κ+ δ
N )+

r−κ+ δ
N

r θ2−ψ

(1−κ+ δ
N )2 − (1− τ1−αgiτ2)+κτ2

dγ

dκ

)
dθ

)
< 0

d∆`(·)
dδ

= q
( ∫ θ∗1

θ

(
κτ2

dγ

dδ

)
dθ

)
+(1−q)

( ∫ θ∗2
θ

(
(κ + r`)

(1−r) κθ
Nr +κψ

(1−(1−δ )κ)2 +κτ2
dγ

dδ

)
dθ

)
> 0 if q↘ 0

d∆`(·)
dr∗`

= q
( ∫ θ∗1

θ

( r−κ
r θ−ψ

1−κ

)
dθ +

∫
θ

θ∗1
dθ

)
+(1−q)

( ∫ θ∗2
θ

(
r−κ+ δ

N
r θ−ψ

1−κ+ δ
N

)
dθ +

∫
θ

θ∗2
dθ

)
> 0

d∆`(·)
dq

< 0,

where dγ/dκ = 0 and dγ/dδ = 0 by assumption.
Note that Iθ1 , Iθ2 and ∆` are continuously differentiable. Using the implicit function theorem for simul-

taneous equations, I can derive:

dθ ∗1
dvar

=

∣∣∣∣∣
− dIθ1

dvar
dIθ1
dθ∗2

dIθ1
dr∗`

− dIθ2
dvar

dIθ2
dθ∗2

dIθ2
dr∗`

− d∆`
dvar

d∆`
dθ∗2

d∆`
dr∗`

∣∣∣∣∣
|D|

, (32)

where var is the exogenous variable of interest. The determinant is non-zero and can be derived as:

|D| ≡

∣∣∣∣∣
dIθ1
dθ∗1

dIθ1
dθ∗2

dIθ1
dr∗`

dIθ2
dθ∗1

dIθ2
dθ∗2

dIθ2
dr∗`

d∆`
dθ∗1

d∆`
dθ∗2

d∆`
dr∗`

∣∣∣∣∣> 0. (33)

First, I find that dθ ∗z /dq= 0,∀z= 1,2, because theflightiness of coinholdersparticipating in the conversion
game is only affected by δ and not by q. However, the remuneration of stablecoin lenders is affected.
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Specifically, they need to be offered a higher compensation dr∗`/dq > 0 due to the reduced stability, which
reduces the attractiveness of stablecoin lending.

Second, I find that dθ ∗1 /dκ > 0 and dθ ∗2 /dκ > 0, which again results in the need for a higher com-
pensation in the lending game, limq→0 dr∗`/dκ > 0. Moreover, limq→0 dθ ∗1 /dδ > 0, limq→0 dθ ∗2 /dδ < 0 and
limq→0 dr∗`/dδ < 0 provided dγ/dδ is small.

Notably, γ̃∗, and consequently also s∗ and N∗, are derived from ∆0(θ ∗1 ,θ ∗2 ;γs∗) = 0 without effect on the
qualitative results derived above, provided @g s.t. γg = γ̃∗. Or put another way, γs > γ̃∗.

Case 2: ∃g s.t. γg = γ̃∗. Next, I conduct the comparative statics analysis allowing for a change in the
adoption rate. This means that s∗ is defined by γs = γ̃∗. Hence, both variables respond to small changes
in model parameters whenever these changes are not off-set by changes in µ∗s , which necessitates changes
in N∗. As a result, I can take s and γs as given when analyzing how N∗ and µ∗s change as prescribed
by ∆0(θ ∗1 ,θ ∗2 ;γs, µs) = 0 and N∗(s, µ∗s ) = ΣG

g=s+1mg + µ∗s ms. Thereby, I use the previous insight that ∆0
i is

independent of ` and of r` for ` > s.
I start by analyzing the following additional derivatives:

dIθ1(·)
dN∗

= −2τ2

<0︷ ︸︸ ︷
dγ(δ )

dN∗
− δ r
(N∗)2

θ ∗1
( 1

r −1
)(

κ− δ

N

)2
(θ ∗1 − r)

r

 ψ

1− δ

N −
θ∗1−1+ δ

N

(
1−

θ∗1
r

)
θ∗1−r r

dA

−
∫ 1

θ∗1−1+ δ
N

(
1−

θ∗1
r

)
(κ− δ

N )(θ∗1−r)
r


δ

N2 (1−A)
r θ ∗1 −

δ

N2 (1−A)(θ ∗1 −ψ)(
1− δ

N −
(

κ− δ

N

)
A
)2

dA< 0 if dγ(δ )/dN∗ is small

dIθ2(·)
dN∗

= −2τ2

<0︷ ︸︸ ︷
dγ(δ )

dN∗
+

δ r
(N∗)2

θ ∗2 −1(
κ− δ

N

)2
(θ ∗2 − r)

r

 ψ

1− θ∗2−1
θ∗2−r r

dA

−
∫ 1

θ∗2−1

(κ− δ
N )(θ∗2−r)

r

− δ

rN2 Aθ ∗2 +
δ

N2 A(θ ∗2 −ψ)(
1−
(

κ− δ

N

)
A
)2

dA> 0

Note that both derivatives are approximately zero in the limit δ → 0. Moreover:

d∆`(·)
dN∗

= q
∫ θ∗1

θ
κτ2

dγ(δ )
dN∗ dθ +(1−q)

∫ θ∗2
θ

(
κτ2

dγ(δ )
dN∗ +(1−κ)

δ

rN2 θ(1− 1
r )−ψ

(1−κ+ δ
N )

2

)
dθ < 0

d∆0(·)
dθ ∗1

= q
(

κ(1− τ1−αgiτ2)+ (1−κ)

( r−κ

r θ ∗1 −ψ

1−κ
−βgiτ2

)
− (1−βgiτ2)

)
< 0

d∆0(·)
dθ ∗2

= (1−q)

κ(1− τ1−αgiτ2)+ (1−κ)

 r−κ+ δ
N

r θ ∗2 −ψ

1−κ + δ

N

−βgiτ2

− (1−βgiτ2)

< 0
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and:

d∆0(·)
dq

=

(∫
θ∗1

θ

(
κ(1− τ1−αgiτ2)+ (1−κ)

( r−κ

r θ1−ψ

1−κ
−βgiτ2

))
dθ +

∫
θ

θ∗1

(1−βgiτ2)dθ

)

−

∫ θ∗2

θ

κ(1− τ1−αgiτ2)+ (1−κ)

 r−κ+ δ
N

r θ2−ψ

1−κ + δ

N

−βgiτ2

dθ +
∫

θ

θ∗2

(1−βgiτ2)dθ

< 0

d∆0(·)
dκ

= q

(∫
θ∗1

θ

(
1− τ1−αgiτ2−

r−κ

r θ1−ψ

1−κ
+βgiτ2 +(1−κ)

− 1
r θ2 (1−κ)+ r−κ

r θ1−ψ

(1−κ)2

)
dθ

)

+(1−q)

∫ θ∗2

θ

1− τ1−αgiτ2−
r−κ+ δ

N
r θ2−ψ

1−κ + δ

N

+βgiτ2 +(1−κ)
− θ2(1−κ+ δ

N )
r +

r−κ++ δ
N

r θ2−ψ

1−κ + δ

N

dθ

≷ 0

d∆0(·)
dδ

=
dγ

dδ
τ2 + q

(∫
θ∗1

θ

(
−κ

dγ

dδ
τ2 +(1−κ)

dγ

dδ
τ2

)
dθ +

∫
θ

θ∗1

dγ

dδ
τ2dθ

)

+(1−q)

(∫
θ∗2

θ

(
−κ

dγ

dδ
τ2 +(1−κ)

(
θ2
N

( 1
r −1

)
+ ψ

N

1−κ + δ

N

+
dγ

dδ
τ2

))
dθ +

∫
θ

θ∗2

dγ

dδ
τ2dθ

)
> 0 if dγ/dδ is small

d∆0(·)
dr∗`

= 0

d∆0(·)
dN∗

=
dγ

dN∗
τ2 + q

(∫
θ∗1

θ

(1−2κ)dθ +
∫

θ

θ∗1

dθ

)
dγ

dN∗
τ2 +(1−q)

(∫
θ∗2

θ

(1−2κ)dθ +
∫

θ

θ∗2

dθ

)
dγ

dN∗
τ2

+(1−q)
∫

θ∗2

θ

δθ2
rN2

(
1− 1

r

)
− δ

N2 ψ(
1−κ + δ

N

)2 dθ < 0,

where dγ/dN∗ < 0 and dγ/dN∗ < 0 for all s≤ G−1.
Next, I apply the implicit function theorem for simultaneous equations to analyze the system comprising

Iθ1(·) = 0, Iθ1(·) = 0 and ∆0(·) = 0. Note that also ∆0(·) is continuously differentiable. Different to before,
the determinant is now non-zero and negative.

First, I find that dθ ∗2 /dq< 0 and dN∗/dq< 0. Moreover, dθ ∗1 /dq> 0 if dγ(δ )/dN is small. Intuitively, the
flightiness of coin holders participating in the conversion game is affected by δ and by q through its effect
on the pro-rata residual value of the insolvent issuer that arises because the stablecoin borrower borrows a
fixed amount. Stability is reduced when the likelihood of the borrower being a speculator increases, which
decreases adoption by making stablecoins less attractive.

Second, I find that limδ→0 dθ ∗1 /dκ > 0 and limδ→0 dθ ∗2 /dκ > 0. Moreover, limq→0,δ→0 dθ ∗1 /dδ > 0, as well
as limq→0,δ→0 dθ ∗2 /dδ < 0 and limq→0 dN∗/dδ > 0 provided dγ/dδ is small. This concludes the proof. The
results are summarized in Proposition 8.

A.4.7 Proof of Proposition 9

The proof establishes an example for x∗ = xH < xSP that arises for xL ↘ 0 if the adoption rate is locally
unaffected by changes in x, which is assured if γs > γ̃ . To do so, I take the derivative of Equation (24) with
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respect to xL and then examine the limit when xL↘ 0. First, note that π(0)−π(xH) = 0 and:

dπ(xL)−π(xH)

dxL
=

dθ (xL)

dxL
(θ (xL)−1)Ň∗(xL,θ ∗(xL))

dθ

θ (x)−θ (x)
−
∫

θ (xL)

θ∗(xL)
(θ −1)Ň∗(xL,θ ∗(xL))

dθ (xL)
dxL
− dθ (xL)

dxL

θ (x)−θ (x)
dθ ,

where I used that Ň∗ is locally unaffected by changes in xL by assumption. Taking the limit gives:

lim
xL→0

dπ(xL)−π(xH)

dxL
= (R−θ )(θ −1)

N∗

θ −θ
+
∫

θ

θ∗
(θ −1)

N∗

θ −θ
dθ < 0.

As a result, the issuer optimally selects x∗ = xH if xL ↘ 0 and the adoption rate is locally unaffected by
changes in x. This concludes the proof.

A.5 Description of the Extension with Stablecoin Lending and Timeline

Modified stablecoin conversiongameat t = 1. Asbefore, themodel is solvedbackwards. In the conversion
game played by the remaining active coin holders, I now distinguish between the state z = 1, when it is
observed that the borrower is a speculator who has demanded conversion, and the state z = 2, when it is
observed that she has not demanded conversion (i.e., she keeps her coins until t = 2). Appendix Section
A.6.1 analyzes the equilibrium conditions for the both states, deriving the equations for θ ∗1 and θ ∗2 .

Stablecoin lendinggameat the endof t = 0. In thenewly introduced stablecoin lendinggame the borrower
makes a take-it-or-leave-it-offer to coin holders, who do not yet know whether they will be active or passive
at t = 1. The borrower promises each coin holder to return 1+ r` stablecoins at t = 2 for each coin lent out at
the end of t = 0. The offer does not depend on the borrower’s motive, which is revealed at t = 1. Since the
borrower is unconstrained, stablecoin lenders face no credit risk in the sense that they always receive the
promised amount of stablecoins at t = 2.32 I show in Appendix Section A.6.2 that the borrower optimally
makes an offer that allows her to borrow the desired amount δ at the lowest cost by calibrating r` such that
just enough coin holders are willing to participate. Importantly, coin holders belonging to a group with a
higher induced payment preference for stablecoins have a higher incentive to engage in stablecoin lending.
Intuitively, this is because they benefit less from having the option to demand conversion at t = 1.33

Modified stablecoin adoption game at the beginning of t = 0. Consumers recognize that there are
opportunities and risks associated with the introduction of stablecoin lending. The modified adoption
game is developed formally in Appendix Section A.6.3 and the modified timeline is shown in Table A2.

A.6 Derivations for the Extension with Stablecoin Lending

To simplify the analysis of the extended model I consider the case without positive network effects, i.e.
α ′(N) = 0. Sections A.6.1, A.6.2 and A.6.3 study the modified conversion game, the stablecoin lending game
and the modified adoption game. Section A.4.6 develops the Proof of Proposition 8.

32This assumption is plausible and can be rationalized with smart contracts.
33It is plausible that most of the deposit activity is, in practice, conducted by individuals who may be seen as crypto enthusiasts. In

the model these are the consumers belonging to groups with high levels of γg. I revisit this empirical question in Section 7.
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Date 0 Date 1 Date 2

1. Adoption game: 4. W.p. q the borrower is a 9. The outcome of the t = 1
Consumer simultaneously speculator who demands stablecoin conversion game
decide whether to convert conversion and w.p. 1−q and the fundamental
their bank deposits to she is no speculator and does realization θ are observed
stablecoins, a0,i = 1, not demand conversion 10. The borrower returns the
or not, , a0,i = 0 5. In case the borrower demands stablecoins plus interest to lenders
2. The stablecoin issuer conversion, the issuer liquidates and the stablecoin issuer meets
invests all funds received assets to meet redemption requests her payment obligations to the
from consumers who 6. The fundamental θ is realized remaining active and passive coin
adopt stablecoins but unobserved and a fraction κ holders, including by minting
3. Stablecoin lending game: of coin holders become active new coins against cash from the
The borrower makes a take- 7. Stablecoin conversion game: borrower; if insolvent, the
it-or-leave-it offer to coin The remaining active coin holders issuer disburses the available
holders, who simultaneously receive private information xi and resources pro rata
decide whether to lend simultaneously decide whether 10a. Consumers buy goods from
their coins, a′0,i = 1, or not, to demand conversion to deposits, their preferred seller and convert
a′0,i = 0, given the promise a1,i = 1, or not, a1,i = 0, while their money (if necessary)
of the borrower to return passive coin holders are dormant 10b. Sellers A and C convert the
1+ r` coins at t = 2 8. The stablecoin issuer meets stablecoins earned; all sellers pay

coin holders’ conversion requests production costs with govern-
by divesting assets ment-backed deposits (or dollars)

Table A2: Timeline of events.

A.6.1 The Modified Stablecoin Conversion Game at t = 1

The participation in the stablecoin game affects the composition of the population of active coin holders
playing the conversion game at t = 1. Intuitively, coin holders belonging to a group with a high level of γg

benefit less from the option to demand conversion at t = 1, as shown below. Let `∈ {s+1,G} be the group of
coin holders with the smallest probability of meeting a seller who has a preference for stablecoin payments
among the groups of coin holders who are willing to participate in stablecoin lending. Hence, ` and µ` are
for a given δ determined as:

δ = argmax
`

(
ΣG

g=`+1mg1γg>γ`
+ µ`m`

)
, (34)

where µ` ∈ [0,1] is smaller than one if the borrower does not need all (of the indifferent) coin holders in group
` to participate. Note that the initial assumption δ ∈ (0,κN) implies that `≥ s. Moreover, the expression in
brackets on the right-hand side of Equation (34) is monotonically decreasing in ` and increasing in µ`. It is
maximized by the lowest possible `, meaning that Equation (34) defines γ` and µ`.

As a result, the composition of the remaining active coin holder is modified as follows:

γ(δ ) ≡ (µsmsγs +Σ`−1
g=s+1mgγg +(1−µ`)m`γ`)/(µsms +Σ`−1

g=s+1mg +(1−µ`)m`).

Throughout the analysis I focus on the interesting case where Assumption 2 holds, which is an extension
of Assumption 1 for the model with stablecoin lending.

Assumption 2. Let θ < 1−σ ε, r/(r−κ)+σ ε< θ , δ < κ < r−ψr/θ and ψ ∈ (ψ ,θ −β1τ2κ).
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The new bounds on κ and δ in Assumption 2 assure that the issuer can always fully meet the redemption
requests of the speculator, meaning that the speculator is not too large. Otherwise, the issuer would deplete
all resources and be insolvent prior to the conversion game. This is because solvency, i.e. no rationing, at
t = 1 now requires that N(κ−δ /N)+ δ < Nr and the new condition for weakly positive profits is given by:

r− δ
N−(κ−

δ
N )A

r θ −ψ

1− (κ− δ

N )A
−βgτ2 > 0,∀g ∈ {1, ...,G},θ ∈ [θ ,θ ],

which holds if ψ < θ −β1τ2κ and κ ≤ r−ψr/θ .
Note that ∆i(θ ,δ ) > 0,∀θ ∈ (θ`,θh),gi ∈ {s, ...,G} if:

ψ > ((βG−αG)τ2 + τ1)(1− (κ−δ /N))≥ ψ ,∀N ∈ [0,1],

where I used θh(δ ,N) ≡ (1− (κ−δ /N))r/(r−κ) < r/(r−κ),∀N ∈ [0,1] such that δ < κN.

State z = 1: Borrower is a speculator. Due to the conversion demand by the speculator at the beginning
of t = 1, the critical threshold Â1(N;θ ,κ ,δ ) has to be modified:

Â1(N;θ1,δ ) ≡
θ1−1+ δ

N

(
1− θ1

r

)
(

κ− δ

N

)
(θ1− r)

r (35)

and the indifference condition is now given by:

∆i,1(A;θ1,N,δ ) =


(βgi −αgi)τ2− τ1 if A≤ Â1(N;θ1,δ )

1+(βgi −αgi)τ2− τ1−
r− δ

N −(κ− δ
N )A

r θ1−ψ

1− δ
N−(κ− δ

N )A
if A> Â1(N;θ1δ ).

(36)

The equilibrium condition in state z = 1 when the borrower is a speculator is:

Iθ1(θ
∗
1 ,`, µ`;N,δ ) ≡ (β −α−2γ(`;N,δ ))τ2− τ1 (37)

+
∫ 1

θ∗1−1+ δ
N

(
1−

θ∗1
r

)
(κ− δ

N )(θ∗1−r)
r

1−
r− δ

N−(κ− δ
N )A

r θ ∗1 −ψ

1− δ

N −
(

κ− δ

N

)
A

dA = 0.

State z = 2: Borrower is not a speculator. Since the stablecoin borrower does not demand conversion at
t = 1 independent of the fundamental realization, the threshold Â2(N;θ2,δ ) is higher than Â1(N;θ1,δ ):

Â2(N;θ ,δ ) ≡ θ2−1(
κ− δ

N

)
(θ2− r)

r > Â1(N;θ1,δ ) (38)

and the indifference condition is now given by:

∆i,2(A;θ2,N,δ ) =


(βgi −αgi)τ2− τ1 if A≤ Â2(N;θ2,δ )

1+(βgi −αgi)τ2− τ1−
r−(κ− δ

N )A
r θ2−ψ

1−(κ− δ
N )A

if A> Â2(N;θ2,δ ).
(39)
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The equilibrium condition in state z = 1 when the borrower is a speculator is:

Iθ2(θ
∗
2 ,`, µ`;N,δ ) ≡ (β −α−2γ(`;N,δ ))τ2− τ1 (40)

+
∫ 1

θ∗2−1

(κ− δ
N )(θ∗2−r)

r

1−
r−(κ− δ

N )A
r θ ∗2 −ψ

1−
(

κ− δ

N

)
A

dA = 0.

Note that for a givenN the equilibrium conditions in (37) and (40) diverge if δ increases and they converge
to Equation (14) in the limit if δ ↘ 0.

A.6.2 The stablecoin lending game at t = 0

For σ ↘ 0 the differential payoff of coin holder i belonging to group gi from participating in stablecoin
lending instead of abstaining from it is:

∆`
i (θ
∗
1 ,θ ∗2 ;γgi ,r`) ≡ q

( ∫ θ∗1
θ

(
(κ + r`)

r−κ
r θ1−ψ

1−κ
−κ(1− τ1−αgiτ2)

)
dθ +

∫
θ

θ∗1
r`dθ

)
+(1−q)

( ∫ θ∗2
θ

(
(κ + r`)

r−κ+ δ
N

r θ2−ψ

1−κ+ δ
N
−κ(1− τ1−αgiτ2)

)
dθ +

∫
θ

θ∗2
r`dθ

)
. (41)

Note that d∆`
i (θ
∗;γgi ,r`)/dγgi > 0, meaning that coin holders belonging to a group with a higher probability

of beingmatchedwith a sellerwho has a preference for coin payments do have a higher benefit from lending.
Intuitively, they benefit less from the option to demand conversion to cash at t = 1, because it is more likely
that they have to convert back to stablecoins at t = 2. Moreover, dθ ∗1,2/dr` = 0 and d∆`

i (θ
∗;γgi ,r`)/dr` > 0.

The borrower optimally makes a take-it-or-leave-it offer that allows her to borrow δ coins at the lowest
possible cost by optimally calibrating r` such that just enough stablecoin holders are willing to participate.
Hence, the stablecoin lending equilibrium conditions are given by ∆`

i (θ
∗
1 ,θ ∗2 ;γ`,r`) = 0 and Equation (34),

which can be solved for the two unknowns r` and `.

A.6.3 The modified stablecoins adoption game at t = 0

For σ ↘ 0 the modified differential payoff from adoption of consumer i belonging to group gi ∈ [s,`] is:

∆0
i (θ

∗
1 ,θ ∗2 ;γgi) ≡ −(1+ rd−αgiτ2)(θ −θ ) (42)

+q

(∫
θ∗1

θ

(
κ(1− τ1−αgiτ2)+ (1−κ)

( r−κ

r θ −ψ

1−κ
−βgiτ2

))
dθ +

∫
θ

θ∗1

(1−βgiτ2)dθ

)

+(1−q)

∫ θ∗2

θ

κ(1− τ1−αgiτ2)+ (1−κ)

 r−κ+ δ
N

r θ −ψ

1−κ + δ

N

−βgiτ2

dθ +
∫

θ

θ∗2

(1−βgiτ2)dθ

 .

The solution to the adoption game solves ∆0
i (θ

∗
1 ,θ ∗2 ; γ̃) = 0, where γ̃ ∈ [γ1,γ`]. First, observe that for

q↘ 0 stablecoin lending promotes adoption by increasing ∆0
i . Second, observe that from the analysis of the

stablecoin lending game ∆0
i (θ

∗
1 ,θ ∗2 ;γ`) > 0 if ` ≥ s, which is the relevant scenario. An important insight is

that ∆0
i is independent of ` and of r` for ` > s.

If the sparse distribution of groups results in no group having the threshold type γ̃ , then the marginal

53



group s∗, the adoption rate N∗, and µ∗s are given by:

s∗(γ̃) = argmin
g

g1γg>γ̃ if @g s.t. γg = γ̃

µ
∗
s = 0

N∗(s∗, µ
∗
s ) = ΣG

g=smg.

Instead, if there exists a group s such that γs = γ̃ , where µ∗s ∈ [0,1], then:

s∗(γ̃) = argmin
g

g1γg≥γ̃∗ if ∃g s.t. γg = γ̃

N∗(s∗, µ
∗
s ) = ΣG

g=s+1mg + µsms.

Observe that the fixed size of the stablecoin lending market effectively means that r∗` is determined
autonomously by ∆`

i (θ
∗
1 ,θ ∗2 ;γ`,r`) = 0, because Iθ1(θ

∗
1 ,`, µ`;N,δ ) = 0 and Iθ2(θ

∗
2 ,`, µ`;N,δ ) = 0 only depend

on δ (both, directly and indirectly via ` and µ`) and not on r`. Similarly, ∆0
i (θ

∗
1 ,θ ∗2 ; γ̃) = 0 does not depend

on r`, but only on δ (directly). I will use this insight in the comparative statics analysis of Proposition 8.
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