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Abstract

We study the optimal monetary policy problem in a New Keynesian economy with a
zero lower bound (ZLB) on the nominal interest rate, when the steady state natural rate
(r∗) becomes permanently negative. We show that the optimal policy aims to approach
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response to shocks to the natural rate. Under plausible calibrations, the optimal policy
implies that the nominal rate remains at its ZLB most of the time. Despite the latter
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1 Introduction

Over the past decade, a growing consensus has emerged among academic economists and pol-

icymakers pointing to a substantial decline in the average natural rate of interest, a variable

often referred to as r∗. Some of the likely sources of that decline —including lower productivity

growth, demographic factors, higher inequality or enhanced precautionary savings induced by

higher uncertainty—suggest that such a downward trend is unlikely to be reversed in the near

future.1

A low r∗ has important implications for monetary policy, due to the presence of a zero

lower bound (ZLB) on the nominal interest rate. Thus, and given the inflation target, a low r∗

will generally hamper the ability of monetary policy to stabilize the economy, bringing about

more frequent episodes in which the ZLB becomes binding and the economy plunges into a

protracted recession with below-target inflation. Not surprisingly, the evidence of a decline in

r∗ has been a key motivation behind the monetary policy strategy reviews undertaken by many

central banks in recent years.

On the research front, and as discussed in the literature review below, several authors have

studied the problem of optimal monetary policy in the face of shocks that drive the natural

rate of interest temporarily into negative territory. A common finding of those analyses is that

an optimizing central bank will keep the short-term nominal rate at zero during those episodes,

and even for some time after the natural rate has returned to positive values —with the latter

feature often referred to as "lower for longer" policy. In all of those analyses, however, the

natural rate tends to gravitate towards a positive mean, i.e. r∗ > 0. By contrast, in the present

paper we study the problem of optimal monetary policy under the ZLB constraint when the

mean of the natural rate becomes permanently negative, i.e. r∗ < 0.

As discussed below, that environment is of particular interest since the coexistence of a

1See, e.g. Eggertsson et al. (2019) for a model-based analysis of some of the forces underlying the decline in
r∗. Rachel and Smith (2017) and Rachel and Summers (2019) argue for the likely permanent nature of recent
trends in those forces, especially those that manifest themselves as an outward shift in global savings. Despite
the strong global inflationary pressures at the time of writing this paper, we believe that the factors behind the
decline in r∗ not only have not disappeared, but they may have been enhanced by the impact on uncertainty of
the COVID pandemic or the Ukrainian war. If that is the case, the consequences of a low r∗ and its interaction
with the zero lower bound constraint are likely to take again center stage in the policy debate once inflation
returns to levels close to target.
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negative r∗ with the ZLB constraint makes it impossible to support the (first-best) zero inflation

outcome even in the deterministic case, i.e. in the absence of fluctuations in the natural rate.

In the latter case, the optimal policy implies positive inflation and a binding ZLB constraint in

the deterministic steady state, a feature that is absent from conventional analyses that assume

a positive r∗, in which the deterministic steady state is characterized by zero inflation and a

strictly positive nominal rate. The focus of our analysis lies, however, on the stochastic case,

i.e. in the optimal policy in the presence of fluctuations in the natural rate around r∗ < 0, and

on the implications of that policy for the nominal rate, inflation and the output gap.

While the assumption of a negative r∗ is at odds with the predictions of the standard macro

framework with an infinite-lived representative consumer, it can be microfounded once the latter

assumption is relaxed. Thus, for instance, models with overlapping generations, or heterogenous

agents and idiosyncratic shocks, can generate a negative r∗ under certain parameterizations.

Furthermore, we believe the assumption of a negative r∗ is more than a theoretical curiosum:

recent estimates of the evolution of the natural rate in advanced economies display a downward

trend that has attained negative territory in some cases.2 In any event, the relevance of a

negative r∗ can hardly be dismissed as a real possibility in a not too distant future, if the

trends in some of the fundamental forces behind the recent decline in the natural rate were to

persist or even strengthen further.

As much of the related literature, we cast our analysis of the optimal monetary policy

problem in the context of an otherwise standard New Keynesian model subject to a ZLB

constraint and a central bank loss function characterized by a conventional dual mandate.3 A

number of interesting results emerge from our analysis.

Focusing first on the deterministic case, we show that in response to an unanticipated decline

2A recent paper by Davis et al. (2023) uses a market-based approach to estimate the Postwar evolution of r∗

in ten industrialized economies. Their estimates of r∗ in 2020 are negative in 8 out of the 10 countries Evidence
on global r∗ in Del Negro et al. (2019) points to a probability of negative values between 2000 and 2016 (the
last period of their sample) in the 30-50 percent range. Brand and Mazelis (2019) use a semi-structural model
incorporating a Taylor rule, and also uncover negative estimates of r∗ in the US and the euro area from 2010
to the end of their sample period (2018)..

3We use the textbook New Keynesian model as a framework in which we revisit the optimal policy problem
in the presence of a negative r∗. This is meant to highlight in a most transparent way the key qualitative
implications of a negative r∗ for monetary policy. We believe that adding additional "realistic" features to
the model (e.g. imperfect credibility, parameter uncertainty, investment, etc.) would complicate the analysis
without qualitatively altering or shedding additional light on those key implications.
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in r∗ which brings the latter permanently into negative territory, the optimal policy aims at

steering the economy gradually towards a new steady state characterized by positive inflation.

The choice of a gradual transition (rather than an immediate jump to the new steady state)

makes it possible for inflation to remain closer to zero —its effi cient value—for a longer period,

which is welfare improving.

Secondly, we solve for the paths of inflation and the output gap implied by the optimal

(second-best) policy in the presence of fluctuations in the natural rate of interest around r∗ <

0. Not surprisingly, the presence of the ZLB constraint prevents the central bank from fully

stabilizing inflation and the output gap, so the first-best outcome cannot be attained. Most

interestingly, we show that if either the volatility of the natural rate is not too large (for any

given r∗) or if r∗ is low enough (for any assumed volatility of the natural rate), then the optimal

policy implies a persistently binding ZLB constraint, with the nominal rate remaining at zero

most of the time (all the time, in some of our simulations). Behind the appearance of extreme

passivity suggested by a near-constant policy rate, however, there is still a meaningful optimal

policy problem facing the central bank, which yields unique optimal paths for inflation and the

output gap.4

Thirdly, we show that average inflation under the optimal policy is decreasing and convex

in r∗. The resulting relation balances three requirements: (i) the intrinsic desirability of price

stability, which calls for inflation being as close to zero as possible, (ii) the equilibrium require-

ment that, on average, inflation must be no lower than −r∗ due to the ZLB constraint, and

(iii) a precautionary motive linked to the desire to limit the incidence of binding ZLB episodes.

Thus, when r∗ is positive and large the precautionary motive is negligible and optimal average

inflation is zero. As r∗ approaches zero from above, optimal average inflation becomes positive

due to a more significant precautionary motive, but it remains very low and responds less than

one-for-one to changes in r∗. The more r∗ moves into negative territory, the more optimal av-

erage inflation approaches −r∗, its minimum average value consistent with the ZLB constraint,

due to the increasing weight of the price stability motive resulting from the convexity of the

loss function. The convergence of optimal average inflation to −r∗ mirrors the convergence of
4This is because the constant interest rate policy is consistent with a continuum of paths for output and

inflation, which can be welfare-ranked.
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the average nominal rate to zero, and is thus associated with a near-permanently binding ZLB

constraint.

In order to characterize that finding more precisely, we introduce the concept of precaution-

ary inflation, which we define as the difference between optimal average inflation in the presence

of natural rate shocks and optimal inflation in the deterministic case. That measure can be

interpreted as capturing the central bank’s willingness to accept a higher average inflation in

order to limit the incidence of binding ZLB episodes. We show that precautionary inflation

displays a non-monotonic relation with r∗. Thus, when r∗ is very high, the risk of a binding

ZLB is low, and there is no need to deviate from the first-best outcome of zero inflation at all

times. At the other extreme, when r∗ is suffi ciently negative and, hence, the lower bound on

average inflation is already high, the central bank has little incentive to raise average inflation

further above that lower bound, and thus chooses to keep average inflation at the same level

as in the deterministic case. By contrast, precautionary inflation is strictly positive for a range

of r∗ values closer to zero, for which optimal inflation in the deterministic case is either zero

(if r∗ & 0) or positive but low (if r∗ . 0), since in that case the costs of deviations from full

price stability are relatively low, and are outweighed by the gains from a lower incidence of a

binding ZLB made possible by the additional policy space created by a higher average inflation

and nominal rate.

Fourthly, we describe one particular way in which the central bank can implement the

optimal (second best) policy. More specifically we propose a nonlinear policy rule which calls for

one-sided adjustments in the nominal rate in response to (off-equilibrium) deviations from the

desired inflation and output gap paths. In order to establish the implementability of those paths

as a unique equilibrium under the proposed rule, we derive and exploit a suffi cient condition

for local determinacy for a relatively general class of models with endogenous regime switches.

We believe the latter finding has some independent interest, beyond the application at hand,

and complements existing results in the literature for exogenous regime switching models.

The rest of the paper is organized as follows. The remaining of the present section provides

a brief review of the related literature. Section 2 formulates the optimal policy problem and

derives the associated optimality conditions. Section 3 analyzes the economy’s (deterministic)

transitional dynamics under the optimal policy. Section 4 characterizes the fluctuations of infla-
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tion and output around the steady state, in response to natural rate shocks. Section 5 discusses

the implementation of the optimal plan, deriving suffi cient conditions on the coeffi cients of a

proposed interest rate rule to support the optimal plan as a unique equilibrium. Section 6

concludes.

1.1 Related Literature

Our paper is related to a branch of the literature that studies the optimal design of monetary

policy in the presence of a ZLB constraint on the nominal rate. Since Krugman (1998), a number

of articles have studied optimal monetary policy with an occasionally binding zero lower bound

(ZLB) on the nominal interest rate. Closest to us is the work by Eggertsson and Woodford

(2003), Jung, Teranishi and Watanabe (2005), Adam and Billi (2006), and Nakov (2008), who

analyze the problem of optimal policy under commitment in the basic New Keynesian model

with a ZLB constraint.

A different line of work has focused on the implications of the ZLB for the optimal choice

of an inflation target, conditional on an assumed simple interest rate rule. Relevant papers

include Coibion et al. (2012), Bernanke et al. (2019), and Andrade et al. (2020, 2021).5 In all

the papers above, however, the natural interest rate remains negative only temporarily, with

the binding ZLB being a transitory phenomenon. In contrast, the analysis of the present paper

assumes a negative r∗, and hence a permanent “secular stagnation”environment, with a ZLB

that is binding most of the time, with the possible exception of brief periods in the wake of

large increases in the natural rate.6

A branch of the literature has uncovered the possibility of multiple equilibria in the presence

of the ZLB. A seminal contribution in that literature is Benhabib et al. (2001), which shows

5In that literature, the inflation target is usually defined as a parameter of the assumed interest rate rule
which has a natural interpretation as an inflation target. Thus, for example, π∗ is interpreted as the inflation
target in the simple interest rate rule

it = max{0, r∗ + π∗ + φπ(πt − π∗)}

With an occasionally binding ZLB, equilibrium average inflation is generally below the target π∗ under interest
rate rules of this type. By contrast, in the present paper we do not assume a simple rule and consider instead
the fully optimal policy and report the average inflation associated with the implied equilibrium. Coibion et al.
(2012) also analyze the case of optimal discretionary policy, in addition to a simple Taylor rule.

6The environment analyzed in the present paper is reminiscent of that described in Summer’s celebrated
speech on secular stagnation at the 2013 IMF annual Research Conference (Summers (2015)).
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the necessary existence of two steady states when the central bank follows a Taylor rule with

a ZLB constraint, with the low inflation, low interest rate steady state being globally stable.7

Armenter (2018) and Nakata and Schmidt (2019, 2022) show that the multiplicity property may

arise also when the central bank follows an optimal discretionary (time-consistent) policy, which

leads to the accommodation of occasional declines in private sector’s confidence, triggering a

persistent liquidity trap episode. Our analysis, by contrast, focuses on the optimal policy with

commitment, which yields a unique (second-best) equilibrium allocation.

Our finding that the optimal policy requires that the nominal rate remains constant at the

ZLB most of the time raises the possibility of equilibrium indeterminacy and the challenge of

finding a way to implement the constrained-effi cient outcome chosen by the central bank. This

leads us to propose a nonlinear policy rule which generates a representation of the deviations

from the optimal plan in the form of a system with switches between regimes, and for which we

study the conditions for uniqueness of its solution. From that perspective, the present paper

is related to a branch of the literature that studies the conditions for equilibrium determinacy

in regime-switching models. Applications of this literature have typically focused on regime

switches driven by exogenous stochastic variations in the coeffi cients of a Taylor-type interest

rate rule, which are often assumed to follow a finite-state Markov process. Prominent examples

include Davig and Leeper (2007), Farmer et al. (2009) and Barthélemy and Marx (2019). The

main difference in our approach is that under our assumed interest rate rule the model’s implied

regime switches are endogenous, i.e. the regime is a function of the state.8 That endogeneity

arises as a consequence of the particular nonlinearity embedded in the interest rate rule that

implements the optimal allocation, which makes the effective coeffi cients of the corresponding

linear model depend on the (off-equilibrium) deviations of inflation and output from their

7Aruoba et al. (2018) estimate a small-scale New Keynesian model with that multiplicity property, in which
the economy potentially fluctuates between the two steady states in response to sunspot shocks. For Japan
(though not the U.S.) they find evidence of an expectations-driven transition to the liquidity trap steady state.
Their evidence for the U.S. on the other hand suggests that the ZLB episode in that economy may instead have
been the result of adverse fundamental shocks Bullard (2020) makes a case for the relevance of that analysis
to the Japanese and U.S. economies. Mertens and Ravn (2014) examine the differential implications of fiscal
policy interventions in a neighborhood of the two steady states.

8Barthélemy and Marx (2017) also allow for endogeneity of the regime switches but only of a sort with
continuous transition probabilities, which rules out the threshold switches that arise naturally in models with a
ZLB constraint like ours.
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optimal paths.9 We believe our analysis may be of interest beyond the present application,

since its validity should carry over to a wide range of linear stochastic models with endogenous

regime switches.

2 The Optimal Monetary Policy Problem

The equilibrium conditions describing the economy’s non-policy block are assumed to be given

by

πt = βEt{πt+1}+ κyt (1)

yt = Et{yt+1} −
1

σ
(it − Et{πt+1} − rnt ) (2)

for t = 0, 1, 2, ...where πt denotes inflation, yt is the output gap, it is the short-term nominal

rate and rnt is the natural rate of interest.
10 Equation (1) is the familiar New Keynesian

Phillips curve, which can be derived from the aggregation of firms’price setting decisions in

an environment with price rigidities à la Calvo (1983). Equation (2) is the so-called dynamic

IS equation, which results from combining an Euler equation for (log) aggregate consumption,

a goods market clearing condition and an equation describing the evolution of output and the

real interest rate under flexible prices.11

Variations in the natural rate of interest rnt are assumed to be described by

rnt = r∗ + zt (3)

where {zt} follows an exogenous AR(1) process with zero mean, autoregressive coeffi cient ρz

and innovation variance σ2z. The unconditional mean of the natural rate is given by r
∗, which

coincides with the real interest rate, rt ≡ it − Et{πt+1}, in the deterministic steady state. In

much of the analysis below we assume

r∗ < 0 (4)

9One drawback of our approach, of limited consequence in our particular application, is that it only allows
us to derive suffi cient conditions for determinacy, i.e. we cannot establish necessity, in contrast with the papers
mentioned above.
10See, e.g., Woodford (2003) or Galí (2015) for a derivation of (1) and (2) in a standard New Keynesian

model. In a companion appendix, we show that similar equilibrium conditions obtain in an OLG version of the
New Keynesian model that allows for a negative steady state real rate, as considered below.
11Note that we write the previous equations in levels —as opposed to deviations from steady state values—

since the steady state is endogenous in our model, and the result of a policy choice. While (1) is derived as a
first-order approximation around a zero inflation steady state, we assume the approximation remains valid for
small deviations from that steady state, as considered in our analysis.
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In a companion appendix, we formally describe an environment where (1) and (2) obtain

as equilibrium conditions, and where the steady state real interest rate may be negative. The

proposed environment is a version of a New Keynesian model with overlapping generations

(NK-OLG) à la Blanchard-Yaari, as developed in Galí (2021).12 In that environment the steady

state real interest is not fully pinned down by the discount rate; instead it also depends on the

extent to which income of any given cohort declines over time as a result of retirement or other

shocks that make individuals leave employment permanently (e.g. skill obsolescence). That

phenomenon tends to enhance savings, lowering the steady state real rate, which may take a

negative value.13

The monetary authority is assumed to choose at t = 0 a state-contingent sequence {yt, πt}∞t=0
that minimizes the welfare loss function

1

2
E0

∞∑
t=0

βt
(
π2t + ϑy2t

)
subject to the sequence of constraints (1) and (2), as well the ZLB constraint

it ≥ 0 (5)

all for t = 0, 1, 2, ..14

Note that the ZLB constraint can be rewritten in terms of inflation and the output gap as:

rnt + Et{πt+1}+ σ(Et{yt+1} − yt) ≥ 0 (6)

for t = 0, 1, 2, ..

The (discounted) Lagrangian is given by:

L = E0
∞∑
t=0

βt
[

1

2

(
π2t + ϑy2t

)
− ξ1,t(πt − κyt − βπt+1)− ξ2,t[πt+1 + σ(yt+1 − yt)]

]
12The analysis in Galí (2021) focuses on the possibility of rational bubbles in that environment. Here we

assume away that possibility and focus instead on a bubbleless version of the NK-OLG model.
13As is well known, other departures from the representative consumer assumption are also consistent with

a negative steady state real rate, e.g., models with heterogenous households subject to idiosyncratic income
shocks, as in Aiyagari (1994) or Huggett (1993). In contrast with the NK-OLG model, those models do not
generally yield an aggregate Euler equation like (2), though the latter has been shown to constitute a good
approximation under plausible calibrations (see, e.g., Debortoli and Galí (2022)).
14As discussed in the companion appendix, the previous loss function can be microfounded as the second

order approximation to the expected welfare losses of individuals currently alive in a New Keynesian model
with overlapping generations.
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The associated optimality conditions are:

πt = ξ1,t − ξ1,t−1 + β−1ξ2,t−1 (7)

ϑyt = −κξ1,t − σξ2,t + σβ−1ξ2,t−1 (8)

ξ2,t ≥ 0 (9)

ξ2,t [rnt + Et{πt+1}+ σ(Et{yt+1} − yt)] = 0 (10)

which should be interpreted as holding for each date and state of nature. The previous condi-

tions, combined with (1), (2), (3), (6) and initial values for ξ1,−1 and ξ2,−1 (which will depend on

the particular problem analyzed) describe the economy’s equilibrium under the optimal policy.

In the next two sections, we characterize that equilibrium and provide simulations for a

calibrated version of the model. First we study the transitional dynamics in a deterministic

environment after an unanticipated shock to r∗. Then we introduce shocks to the natural rate

of interest and we look at the economy’s response to those shocks in a neighborhood of the new

(stochastic) steady state, as implied by the optimal policy.

3 Transitional Dynamics under the Optimal Policy

In the present section we focus on the equilibrium implied by the optimal policy with full

commitment (Ramsey) in a deterministic environment. More specifically, we assume that the

economy had been in a (deterministic) steady state for some time, with rnt = r∗ > 0, πt = 0

and it = r∗, for t = −1,−2, ...This is of course the (trivial) outcome of the optimal policy when

r∗ > 0 and in the absence of shocks.15

At t = 0 the economy is assumed to be hit by an unanticipated (MIT-type) shock that lowers

r∗ permanently, turning it negative, i.e. r∗ < 0 for t = 0, 1, 2, ...We start by characterizing the

new steady state under the optimal policy. In that steady state we must have i = π+r∗ ≥ 0 or,

equivalently, π ≥ −r∗ > 0. In addition, it follows from (7)-(10) that under the optimal policy:

π = β−1ξ2 ≥ 0

ϑy = −κξ1 + σ(β−1 − 1)ξ2
15Formally, this can be determined by evaluating (1) and the optimality conditions (7) through (10) at a

steady state with r∗ > 0. The only solution to that system is given by y = π = ξ1 = ξ2 = 0.
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ξ2 ≥ 0 ; r∗ + π = 0 ; ξ2(r
∗ + π) = 0

It is easy to check that the optimal policy requires that i = 0 in the new steady state. To

see this, note that if i > 0 then ξ2 = 0 implying π = 0, which is inconsistent with a steady

state. Thus the steady state under the optimal policy must satisfy:

π = −r∗ > 0

y =
1− β
κ

π = −1− β
κ

r∗ > 0

ξ2 = βπ = −βr∗ > 0

ξ1 = −ϑ
κ
y +

σ(β−1 − 1)

κ
ξ2

= −(1− β)

κ

(
σ − ϑ

κ

)
r∗

Note that this steady state is (globally) unique. This contrasts with the multiplicity of

steady states that generally arise in the presence of the ZLB constraint when the central bank

follows a Taylor-type interest rate rule as opposed to the optimal policy under commitment

that characterizes our analysis.16

Next we study the transitional dynamics, i.e. we characterize the equilibrium paths that

satisfy

π̂t = βπ̂t+1 + κŷt

π̂t = ξ̂1,t − ξ̂1,t−1 + β−1ξ̂2,t−1

ϑŷt = −κξ̂1,t − σξ̂2,t + σβ−1ξ̂2,t−1

ξ̂2,t + ξ2 ≥ 0

π̂t+1 + σ(ŷt+1 − ŷt) ≥ 0

(ξ̂2,t + ξ2) [π̂t+1 + σ(ŷt+1 − ŷt)] = 0

for t = 0, 1, 2, ....where a ”̂” symbol on a variable denotes deviations from its value in the

new steady state. Note also that ξ1,−1 = ξ2,−1 = 0, implying initial conditions ξ̂1,−1 = −ξ1
16See, e.g., Benhabib et al. (2001) for an analysis of the "perils of multiplicity" when the central bank follows

a conventional Taylor rule under a ZLB constraint. Bullard (2020) makes a case for the relevance of their
analysis to the Japanese and U.S. economies.
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and ξ̂2,−1 = −ξ2. We restrict ourselves to paths that converge to the new steady state, i.e.

limt→∞ x̂t = 0 for x̂t ∈ {π̂t, ŷt, ξ̂1,t, ξ̂2,t}.

Figure 1 illustrates the transitional dynamics for a calibrated version of our economy.17 In

particular, we assume σ = 1, β = 0.99, κ = 0.1717, ϑ = 0.0191, which are values consistent

with the baseline calibration in Galí (2015). In addition, we set r = −0.0025, implying an

annualized steady state natural rate of minus 1 percent. Interest rates and the inflation rate

are shown in annualized terms in all figures.

As shown in Figure 1, the transition to the steady state under the optimal policy is not

immediate. Instead, the initial values of inflation and the output gap are significantly below

their long run values of 1 and 0.058 percent, respectively, and adjust only gradually towards the

new steady state. In fact, inflation is negative for a few periods under our baseline calibration.18

By choosing a path like the one depicted in Figure 1, the central bank succeeds in keeping

inflation close to the first best temporarily, even though it is at the cost of a persistently

negative output gap. Given the relative small weight of the latter in the central bank’s loss

function under our baseline calibration (ϑ ' 0.02), that choice turns out to be more desirable

than jumping immediately to the new steady state (which would be perfectly feasible). The

persistent low inflation and output gaps are consistent with the observed path for the real rate,

which remains above its long run value r during the transition. Most interestingly, the path

for the real rate is entirely driven by expected inflation, since the nominal rate remains at the

ZLB throughout the transition. Thus, the central bank must implement its nontrivial optimal

plan while keeping the setting for its policy instrument unchanged. In section 5 below, we

discuss how the central bank may succeed in doing so, given the multiplicity of equilibrium

paths consistent with a constant nominal rate.

Our previous analysis of the Ramsey policy made the simplifying assumption that low trend

inflation (1%) would not alter much the linearized New Keynesian Phillips curve or the loss

function of the central bank (both derived around zero inflation). We can relax this assumption

by using the correct approximation of the New Keynesian Phillips curve following Ascari and

17We use Dynare’s perfect foresight solver, based on Kanzow and Petra (2004), to compute the transition
paths.
18The result of an optimal negative inflation in the short run is not general. In particular, it doesn’t obtain

when the weight on the output gap is raised suffi ciently (e.g. when ϑ = 1).
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Ropele (2007) and Ascari and Sbordone (2014), and by lowering the weight on the output gap

in the loss function following Lago Alves (2014) by a factor of 0.8. In Figure A1 in the Appendix

we show the counterpart to our Figure 1, based on this modified analysis. One can appreciate

small differences in the implied paths (e.g. for the output gap), but overall the results are quite

robust to allowing for positive trend inflation.

4 Aggregate Fluctuations under the Optimal Policy

In this section, we characterize the behavior of inflation and the output gap under the optimal

policy in a neighborhood of the (stochastic) steady state, in the presence of shocks to the natural

rate (i.e. fluctuations in zt). The (local) equilibrium dynamics are described by the system of

stochastic difference equations given by:

π̂t = βEt{π̂t+1}+ κŷt

π̂t = ξ̂1,t − ξ̂1,t−1 + β−1ξ̂2,t−1

ϑŷt = −κξ̂1,t − ξ̂2,t + β−1ξ̂2,t−1

ξ̂2,t + ξ2 ≥ 0

σ(Et{ŷt+1} − ŷt) + Et{π̂t+1}+ zt ≥ 0

[ξ̂2,t + ξ2][σ(Et{ŷt+1} − ŷt) + Et{π̂t+1}+ zt] = 0

for t = 0, 1, 2, ...We are interested in the equilibrium generated as an outcome of the optimal

policy under the timeless perspective, i.e. once the transition to the new steady state has been

completed. Accordingly, we assume the initial Lagrange multipliers are at their steady state

value, thus implying initial conditions ξ̂1,−1 = 0 and ξ̂2,−1 = 0. Appendix A describes our

approach to determining the solution to the system above.

Figure 2 displays the equilibrium path for inflation and the output gap under the optimal

policy, given a sequence of realized values of the shock {zt}, drawn from an AR(1) process

with autoregressive coeffi cient ρz = 0.5 and Gaussian innovations with standard deviations

σz = 0.0025. This calibration implies an unconditional standard deviation for the (annualized)

natural rate of 1.15 percent. Accordingly, rnt remains negative about 80% of the time. The
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remaining parameters are kept at their baseline settings. The top-left box of the Figure displays

the simulated path of the natural rate (in black) and the actual real rate (in blue) over 100

periods. Note that the latter is much smoother than the former, which reflects the central bank’s

inability to match fluctuations in the natural rate one-for-one, due to the ZLB constraint. As

a result, monetary policy can’t prevent some fluctuations in inflation and the output gap, as

illustrated in the two bottom plots. The resulting outcome of the optimal policy is thus clearly

second-best.

Most interestingly, we see that the nominal rate remains at the ZLB throughout the simula-

tion, as shown on the top-right plot of figure 2. Thus, the central bank must steer the economy

along the optimal path without changing the settings for its policy instrument, and keeping it

instead constant at zero.19 The reason why it does not lower the nominal rate in the face of a

negative natural rate is clear: the ZLB prevents it from doing so. Perhaps less obvious is why

it chooses to keep the nominal rate at zero even when the natural rate rises above zero. Intu-

itively, the anticipation that the central bank will keep the interest rate lower than the natural

rate when the latter is high helps stabilize inflation and the output gap when the natural rate

is low (and can thus not be matched due to the ZLB). More precisely, the stabilizing gains in

periods with a low natural rate from the anticipation of a constant zero nominal rate in future

periods when the natural rate is positive, more than offset the losses from not matching the

natural rate in the latter periods. As a result, the nominal rate remains at the ZLB throughout

the simulation. That strategy, which relies on the forward looking nature of aggregate demand

and inflation, can thus be viewed as a form of forward guidance.

The property of a constant nominal rate at zero is not general, however. In particular, the

central bank may find it desirable to deviate from the constant zero nominal rate policy in

response to an increase in the natural rate of interest that is suffi ciently large, and which would

induce very high inflation if not counteracted at least partly by an increase in the nominal rate.

This is illustrated in Figure 3, which shows a simulation of equilibrium fluctuations under the

optimal policy, based on a calibration identical to that underlying the simulations of Figure 2

19Given the assumed unbounded support of the natural rate, we cannot rule out that the nominal rate could
rise above zero temporarily, given a suffi ciently long simulation. But as discussed below in the context of Figure
4, this is not even the case under our baseline calibration when we simulate the economy over 10,000 periods.
On the other hand, the nominal rate rises occasionally above zero when we increase the variance of the shocks,
as discussed below.
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except for a higher shock volatility, with σz = 0.0075. Thus, in the simulation shown in Figure

3 there are three episodes in which the central bank optimally chooses to raise the nominal rate

above zero, even if only briefly. Roughly speaking, those episodes can be seen to take place

when two conditions are met simultaneously: (i) the natural interest rate is unusually high,

and (ii) this has not been preceded by a recent episode with an unusually low natural rate, for

in the latter case it would have been desirable to keep the nominal rate "low for longer" for the

reasons discussed above. Note, however, that the nominal rate remains at the ZLB for much of

the simulation, despite the high incidence of a positive natural rate.

In Figure 4 we display the fraction of time that the economy remains at the ZLB under

the optimal policy, as a function of r∗, based on a simulation with 10,000 observations for

each value of r∗, and under the baseline calibration for the shock volatility (σz = 0.0025) and

the remaining parameters. As Figure 4 makes clear, when r∗ is suffi ciently high (above 3%,

roughly), the incidence of the ZLB falls to zero. As r∗ decreases, the ZLB incidence starts rising

significantly above zero, with the mapping between the two variables becoming quite steep as

r∗ approaches zero, and reaching unity (i.e. a permanently binding ZLB, effectively) when r∗

is about −0.5% or below.

In Figures 5a and 5b, we display, respectively, the mean and standard deviation of inflation

under the optimal policy as a function of r∗, under the same baseline calibration as Figure 4. We

note that the range of r∗ values for which the first best is attained (i.e., for which the mean and

standard deviation of inflation are both zero) corresponds to that for which the ZLB is never

binding (r∗ above 3%, roughly). On the other hand, for a range or r∗ roughly between 1% and

3% the optimal policy is associated with an average inflation very close to zero, without being

able to fully stabilize that variable (and hence the output gap), due to the positive incidence

of binding ZLB episodes.20 For values of r∗ below 1%, average inflation becomes positive, and

keeps increasing as we lower r∗ further. The more r∗ moves into negative territory, the more

20Our findings for positive values of r∗ imply average inflation rates somewhat below those typically found
in the literature on the optimal inflation target in the presence of the ZLB (see, e.g., Coibion et al. (2012)
and Andrade et al. (2020)). The reason for this is that the previous literature assumes a simple interest rate
rule, while we analyze the fully optimal policy. The latter makes it possible to stabilize the economy with a
smaller "inflation cushion." Note also that in the above mentioned literature the inflation target is defined as
the parameter of the assumed interest rate rule that provides a reference value for inflation. In that context the
equilbrium average inflation is generally slightly lower than the inflation target, due to the occasionally binding
ZLB constraint that prevents the central bank from counteracting deflationary episodes.
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optimal average inflation approaches −r∗. That convergence of optimal average inflation to

−r∗ mirrors the convergence of the average nominal rate to zero, and is thus associated with a

permanently binding ZLB constraint.21

In order to understand that result, note that it follows from equation (2) that average

inflation must be equal to the average nominal rate minus r∗. Thus, the ZLB constraint implies

a lower bound for average inflation given by −r∗. In the deterministic economy, zero steady

state inflation is feasible and optimal when r∗ ≥ 0. On the other hand, when r∗ < 0, zero steady

state inflation is no longer feasible, and the optimal policy implies average inflation equal to

−r∗, the lowest feasible value. In the stochastic economy, on the other hand, there may be an

incentive to deviate from the previous prescription by allowing for a higher average inflation

and nominal rates, in order to build some "policy space" that allows the central bank to better

counteract adverse demand shocks. The previous motive can be characterized more precisely

by introducing the notion of precautionary inflation, denoted by πp, which we define as the

component of average inflation that results from a precautionary motive, i.e. from the desire

to limit the incidence of the ZLB. More specifically, we define precautionary inflation for any

given r∗ as the difference between average inflation under the optimal policy, π(r∗), and the

optimal steady state inflation in the corresponding deterministic economy, which is given by

max{0,−r∗}. Formally,

πp(r∗) = π(r∗)−max{0,−r∗}

Figure 6 displays precautionary inflation as a function of r∗ under our baseline calibration.

Note that the implied mapping is clearly non-monotonic. Thus, for r∗ suffi ciently high, the

risk of a binding ZLB is low, and there is no need to deviate from the first-best outcome of

zero inflation at all times. At the other extreme, when r∗ is suffi ciently negative and, hence,

the lower bound on average inflation (given by −r∗) is already high, the central bank has little

incentive to raise average inflation further above that lower bound, so it chooses to keep average

21Our finding of a one-to-one (inverse) mapping between optimal average inflation and r∗ is reminiscent of
a similar finding in Andrade et al. (2020). In the latter paper, however, that finding emerges for positive but
relatively low values of r∗, while in the present paper it does so only for negative values of r∗. The reason for
the difference lies in the different assumptions made on the nature of policy (simple rule vs. fully optimal with
commitment). In our analysis, the optimal policy with commitment makes it possible to limit the incidence of
costly ZLB episodes while maintaining an average inflation close to zero; this is not feasible under the simple
rule assumed in Andrade et al. (2020), so a higher inflation target is desirable in that case.
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inflation at the same level as in the deterministic case. By contrast, precautionary inflation

is strictly positive for a range of r∗ values closer to zero, for which optimal inflation in the

deterministic case is either zero (if r∗ & 0) or positive but low (if r∗ . 0), since in that case

the costs of deviations from full price stability are relatively low, and are outweighed by the

gains from a lower incidence of a binding ZLB made possible by the choice of a higher average

inflation.

As illustrated previously by Figures 2 and 3, the extent of ZLB incidence does not only

depend on r∗ but also on the volatility of the natural rate. This is confirmed and shown more

clearly in Figure 7, which displays (in the shaded area) the set of values for r∗ and σz for

which the ZLB is (near) permanently binding.22 Three observations are worth making. First,

we see that an equilibrium with a (near) permanently binding ZLB emerges under the optimal

policy only if r∗ < 0. Secondly, for any given negative r∗, the ZLB constraint becomes (near)

permanently binding under the optimal policy as long as σz is suffi ciently low. Finally, we see

that the lower is r∗ the larger is the volatility of the natural rate required in order to observe,

even if only occasionally, a positive nominal rate under the optimal policy.

Similar qualitative findings to those discussed in the present section emerge when we replace

shocks to the natural rate with cost-push shocks, i.e. exogenous disturbances to the New

Keynesian Phillips curve (1). As is well known, in that case a trade-off between inflation

stabilization and output gap stabilization emerges independently of the presence of a ZLB (see,

e.g., Clarida et al. (1999)), with the optimal policy calling for output gap variations in order

to dampen fluctuations in inflation. As in the environment analyzed above, with a negative r∗

and relatively small shocks, the (second-best) management of output and inflation fluctuations

is consistent with a nominal rate that remains at zero throughout our simulation. In response

to suffi ciently large positive (i.e. inflationary) cost push shocks, on the other hand, the policy

rate under the optimal policy temporarily rises above zero. This is illustrated in Figures A2a

and A2b in the Appendix, which display simulations of the equilibrium outcomes under the

optimal policy in the presence of cost-push shocks. See Appendix B for a presentation of the

22We use the near qualifier to stress the fact that we cannot rule out in theory the possibility of brief episodes
with positive nominal rates in response to a sequence of large positive realizations of the natural rate, even
though that event has not materialized even once over a 10,000 period simulation for the calibrations for which
a unit incidence of a binding ZLB is reported.
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modified model and calibration.

How the central bank manages to steer the economy as required by the solution to its

optimal policy problem while keeping the nominal rate unchanged at zero is the subject of the

next section.

5 Optimal Monetary Policy Implementation under a ZLB
Constraint

Let (i∗t , y
∗
t , π

∗
t ) denote the central bank’s optimal plan, i.e. the solution to the policy problem

analyzed in the previous sections. Next we consider one particular way of implementing that

plan as the unique equilibrium, through an interest rate rule that responds to eventual deviations

from that plan. We then impose conditions on the rule coeffi cients that guarantee that such

deviations do not occur in any bounded equilibrium (i.e. they become off-equilibrium paths).23

Consider thus deviations from the optimal plan satisfying the equilibrium conditions (1),

(2) and (5). Formally, and letting π̃t ≡ πt − π∗t , ỹt ≡ yt − y∗t and ĩt ≡ it − i∗t , we have

π̃t = βEt{π̃t+1}+ κỹt (11)

ỹt = Et{ỹt+1} −
1

σ
(̃it − Et{π̃t+1}) (12)

as well as the ZLB constraint

ĩt ≥ −i∗t (13)

for all t.24

We complement the previous equations with the following piece-wise linear interest rate rule

it = i∗t + φ(q)π π̃t + φ(q)y ỹt (14)

where q ∈ {1, 2, 3, 4} denotes the "regime" prevailing at each point in time, which is determined

by the sign configuration of the deviations of inflation and the output gap from their values

23See Svensson and Woodford (2004) for a similar approach in the context of a linear model (i.e. without the
ZLB constraint).
24Note that the previous representation in terms of equilibrium deviations from the optimal plan holds inde-

pendently of the underlying source of fluctuations (natural rate shocks or cost-push shocks). More generally,
(i∗t , y

∗
t , π

∗
t ) can be interpreted as the central bank’s desired equilibrium path, which may or may not coincide

with the solution to the optimal policy problem analyzed above.
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under the optimal plan. Thus, the central bank conducts monetary policy by setting the

nominal rate to i∗t as prescribed by the optimal plan, unless inflation and/or the output gap

deviate from their corresponding optimal paths, in which case the nominal rate responds to

those deviations according to (14).

More specifically, we define the following regimes, with the corresponding sign restrictions

on their associated rule coeffi cients:

q = 1 : π̃t ≥ 0, ỹt ≥ 0 ⇒ φ(1)π ≥ 0, φ(1)y ≥ 0

q = 2 : π̃t < 0, ỹt < 0 ⇒ φ(2)π ≤ 0, φ(2)y ≤ 0

q = 3 : π̃t ≥ 0, ỹt < 0 ⇒ φ(3)π ≥ 0, φ(3)y ≤ 0

q = 4 : π̃t < 0, ỹt ≥ 0 ⇒ φ(4)π ≤ 0, φ(4)y ≥ 0

(15)

Note that the specification of rule (14) together with the sign restrictions in (15) guarantee

that it ≥ i∗t ≥ 0 for all t, thus meeting the ZLB constraint (13) at all times, even on any

off-equilibrium path.

Note that π̃t = ỹt = ĩt = 0 for all t is always a solution to the system (11)-(13), and the

one which corresponds to the desired outcome, i.e. the optimal plan. Our objective is to study

the conditions on φ(q)π and φ(q)y , for q ∈ {1, 2, 3, 4} that guarantee that the previous solution is

(locally) unique or, equivalently, that the optimal plan is effectively implemented.25

We tackle this problem by treating (11)-(12) as a regime switching model, with endogenous

regime switches. Then we apply a novel result that allows us to establish suffi cient conditions for

the (local) uniqueness of the solution of an endogenous regime switching model. The advantage

of our approach is that we do not need to specify a law of motion describing the transition

across regimes. Given the potential interest of the latter result beyond the problem at hand,

we first state it for a more general setting before we apply it to the model above.

5.1 A Suffi cient Condition for Equilibrium Determinacy of an En-
dogenous Regime Switching Model

Consider a regime switching model whose equilibrium is described by a system of difference

equations of the form:

xt = AtEt{xt+1} (16)
25The fact that the proposed interest rate rule includes only contemporaneous values should not be interpreted

as suggesting the the optimal policy is not history-dependent, since that history-dependence is already embedded
in the "targets" π∗t , y

∗
t and i

∗
t .
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where xt is an (n× 1) vector of non-predetermined variables and At is an (n× n) matrix. We

assume At ∈ A where A ≡ {A(1),A(2), ...,A(Q)} is a finite set of (n× n) nonsingular matrices.

The evolution of At over time is left unspecified. It may evolve exogenously, e.g. according to a

Markov process. Alternatively, At may vary endogenously, i.e. it may be a function of current

and lagged values of xt.

It is clear that xt = 0 for all t is a solution to (16). Our goal is to establish suffi cient

conditions on A that guarantee that xt = 0 for all t is the only bounded solution to (16). We

take this to be the case if limT→+∞ Et{‖xt+T‖} > M ||xt|| for any scalar M > 0 and xt 6= 0,

and where ‖·‖ is the usual L2 norm.

Let us define the induced matrix norm ‖A‖ ≡ maxx ‖Ax‖ subject to ‖x‖ = 1. In addition,

define α ≡ max{
∥∥A(1)

∥∥,∥∥A(2)
∥∥ , ....∥∥A(Q)

∥∥}. Note that nonsingularity of A(q) for q = 1, 2, ...Q

implies α > 0.

Theorem [suffi cient condition for determinacy] : If α < 1, then xt = 0 for all t is the only

bounded solution to (16)

Proof: See Appendix C

Remark: the previous condition is suffi cient but not necessary. As a counterexample consider

a switching regime model given by (16) with At = A(1) for odd t and At = A(2) for even t,

where

A(1) =

[
1.1 0
0 0.5

]
; A(2) =

[
0.5 0
0 1.1

]
Note that the previous model does not satisfy the suffi ciency condition since α = 1.1 > 1.

Yet, xt = 0 can be shown to be the only bounded solution. See Appendix D for a proof.26

Remark: note that ‖A‖ < 1 implies that all the eigenvalues of A lie within the unit circle,

though the converse is not true. See Appendix E for a proof. Hence our suffi cient condition

α < 1 also implies that xt = 0 is the unique bounded solution for each of the "single regime"

models xt = A(q)Et{xt+1}, for q = 1, 2, ..., Q. By contrast, under the usual eigenvalue criterion,

the equilibrium may be unique for each of the "single regime" models but indeterminate for

the regime-switching model. The latter possibility is discussed in Barthélemy and Marx (2019)

in the context of a New Keynesian model with exogenous switches in the interest rate rule

26We thank Danila Smirnov for suggesting this counterexample.
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coeffi cients: they show how indeterminacy may emerge even if each of the regimes adheres to

the Taylor principle when considered in isolation (i.e. it satisfies the eigenvalue condition for

uniqueness in the corresponding single regime economy). Our strengthened condition, in terms

of the norm of the A(q) matrices as opposed to their eigenvalues, rules out such a possibility:

if the norm condition is satisfied for each of the regimes in isolation, then it is also satisfied

"globally" for the regime-switching model.

Remark: an alternative suffi cient condition for determinacy is given by ρ(A) < 1, where

ρ(A) ≡ limT→+∞max{||Ai1Ai2···AiT ||
1
T : Ai ∈ A} is the joint spectral radius of A. The

proof is almost identical to that in Appendix C. Note that this alternative condition is weaker

than α < 1 but is not necessary either. In particular, the counterexample above also applies,

since ρ(A) > 1.1. We prefer to work with the norm condition since it is easier to check

computationally.

5.2 Application to the Problem of Optimal Monetary Policy Imple-
mentation

Next, we apply the result of the previous subsection to the problem of implementation of the

optimal monetary policy analyzed above. Recall that feasible deviations from the optimal

outcome are described by (11), (12) and (14), with the latter effectively defining four regimes.

Plugging (14) into (12) to eliminate ĩt, and after some straightforward substitutions, we can

represent the dynamics for xt ≡ [ỹt, π̃t]
′ as in (16), with

A(q) ≡ 1

σ + φ(q)y + κφ(q)π

[
σ 1− βφ(q)π
σκ κ+ β(σ + φ(q)y )

]
for q ∈ {1, 2, 3, 4}, corresponding to the four regimes defined above.

The colored areas in Figure 8 display the configurations of (φ(q)π , φ(q)y ) values for which

α < 1, i.e. for which
∥∥A(q)

∥∥ < 1, for q ∈ {1, 2, 3, 4}. Note that each regime corresponds to a

different quadrant of the Figure, with the corresponding configurations of determinacy-inducing

coeffi cients depicted in a different color for each regime. Thus, to the extent that the central

bank adopts rule (14) with coeffi cients that fall within the depicted regions under each regime,

no deviations from the desired allocation will be consistent with a (bounded) equilibrium, and

hence the adopted rule will indeed implement the desired allocation (y∗t , π
∗
t ), while satisfying
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the ZLB constraint. For completeness, Figure 8 also displays in light grey the set of (φ(q)π , φ(q)y )

values for which the two eigenvalues of A(q) fall within the unit circle, which correspond to

the necessary and suffi cient condition for (local) uniqueness in a single regime economy. Note

that, for each regime the light grey area subsumes the colored regions, consistent with the fact

that the former represent necessary and suffi cient conditions, while the latter only suffi cient,

for each single regime model.

Finally, a word about some of the rule’s implications. As discussed above, the rule instructs

the central bank to deviate from the interest rate i∗t implied by the optimal policy if and only

if inflation and/or output deviate from their optimal values, π∗t and y
∗
t . If the rule coeffi cients

satisfy the suffi cient condition for a unique equilibrium (as assumed in our simulations), those

deviations remain off-equilibrium, i.e. they never materialize ex-post. While the previous

feature is often found in interest rate rules that implement a desired feasible allocation,27 a

specific characteristic of our nonlinear rule is that, by construction, all its implied off-equilibrium

deviations for the nominal rate are positive, i.e. they involve raising the nominal interest rate

above i∗t . That property guarantees that the ZLB constraint is never violated, not even on

off-equilibrium paths, given that i∗t ≥ 0 for all t.

Needless to say, some of the off-equilibrium interest rate movements called for by the rule

may be perceived ex-post as being suboptimal (e.g. raising the interest rate if inflation falls

below its level under the optimal plan), but this sort of time inconsistency is inherent to optimal

policies under commitment even in the absence of the ZLB constraint, their benefits arising from

the (desirable) effects of their anticipation (as it is the case here).28

6 Concluding Remarks

The analysis in the present paper has shown that in response to a permanent decline in the

natural rate of interest, so that the latter’s mean, r∗, becomes negative, a central bank may

optimally choose to keep the policy rate at zero permanently . We have also shown that in such

27See, e.g., the discussion in Galí (2015, chapters 4 and 5) regarding the implementation of optimal policies
through interest rate rules, in the context of a baseline New Keynesian model without a ZLB constraint.
28Departures from the assumption of full credibility adopted here will generally have implications on the

optimal policy outcomes. Given the absence of a widely accepted model of imperfect credibility we do not
pursue this avenue here.
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an environment, and despite the possible constancy of the policy rate, there is still a meaningful

optimal policy problem: a fully credible central bank operating under commitment can keep

influencing macro outcomes and implement the constrained-effi cient allocation in the face of

continuous shocks that may impinge on the economy.

More specifically, we have studied the optimal monetary policy problem in a New Keynesian

economy with a zero lower bound (ZLB) on the nominal interest rate, and in which r∗ becomes

permanently negative. In the deterministic case the optimal policy aims to approach gradually

the new steady state with positive average inflation, while keeping the policy rate at zero. A

gradualist approach minimizes welfare losses by keeping inflation close to zero for longer.

In the presence of shocks to the natural rate of interest, and once the new (stochastic) steady

state has been attained, the optimal policy problem yields unique optimal paths for inflation

and the output gap. If r∗ is suffi ciently negative and the shocks to the natural rate are not too

large, the optimal policy requires that the nominal rate remains at its ZLB permanently.

Finally we have shown that the central bank can implement the optimal policy as a (locally)

unique equilibrium by means of an appropriate nonlinear state-contingent rule consistent with

the ZLB. In order to establish that result, we derive a suffi cient condition for local determinacy

in a more general model of endogenous regime switches. That result may be of interest beyond

the problem studied in the present paper.

In order to keep the analysis as close as possible to that of the standard monetary policy

problem in the New Keynesian model, we have abstracted from both quantitative easing (QE)

and fiscal policy, among other possible instruments. Those additional policy instruments may

help improve the outcome in the face of a permanently negative r∗. In the case of QE, the

analysis of its role would require modifying the standard New Keynesian environment in order

to overcome the well-known irrelevance result (Eggertsson and Woodford (2003)) and render

it effective independently of interest rate policy.29 We plan to pursue that analysis in future

work.

29See, e.g., Nisticò and Seccareccia (2022).
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APPENDIX A: Solving for the local equilibrium dynamics under the optimal

policy

We use the numerical algorithm for solving rational expectations models as implemented in

the CompEcon toolkit of Miranda and Fackler (2002). In particular, we solve for the optimal

policy x as a function of the state s, when equilibrium is governed by a system of the form

f [st, xt, Eth(st+1, xt+1)] = ξt

where s follows the state transition function

st+1 = g(st, xt, εt+1)

and xt and ξt in our case satisfy the following Kuhn-Tucker condition

it > 0, ξ2t > 0, it > 0⇒ ξ2t = 0.

The solution is obtained with the collocation method, which consists of approximating the

expectation functions by linear combinations of known basis functions, θj. The corresponding

coeffi cients, cj, are determined by requiring the approximating function to satisfy the equilib-

rium equations exactly at n collocation nodes:

h[s, x(s)] ≈
n∑
j=1

cjθj(s)

For a given value of the coeffi cient vector c, the equilibrium policies xi are computed at the

n collocation nodes si by solving a standard root-finding problem. The coeffi cient vector c is

updated solving the n-dimensional linear system

n∑
j=1

cjθj (si) = h (si, xi)

The previous iterative procedure is repeated until the distance between successive values

of c becomes suffi ciently small. To approximate the expectation functions, we discretize the

innovation to rnt using a K-node Gaussian quadrature scheme:

Eh[s, x(s)] ≈
K∑
k=1

n∑
j=1

ωkcjθj [g (si, x, εk)]
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where εk and ωk are Gaussian quadrature nodes and weights chosen so that the discrete dis-

tribution approximates the continuous univariate normal distribution N(0, σ2). We use linear

splines on a uniform grid of 200 points for values of the natural rate of interest between −10

percent and +10 percent, so that each point on the grid corresponds to 10 basis points.

APPENDIX B: The Case of Cost-Push Shocks

As a robustness exercise we have also analyzed the optimal policy in response to ineffi cient or

"cost-push" shocks. In that case the equilibrium conditions describing the economy’s non-policy

block are given by:

πt = βEt{πt+1}+ κyt + ut (A.1)

yt = Et{yt+1} −
1

σ
(it − Et{πt+1} − r∗) (A.2)

where {ut} is a cost push shock that is assumed to follow an AR(1) process with autoregressive

coeffi cient ρu and white noise Gaussian innovations with variance σ
2
u.

The analysis of the optimal monetary policy proceeds unchanged, except for the two equa-

tions above. Figure A.2a displays simulations associated with the optimal policy under our

baseline calibration, with ρu = 0.5 and σ2u = (0.00125)2 and with the remaining parame-

ters unchanged. Figure A.2b displays analogous results for the case of "large" shocks, with

σ2u = (0.0075)2. As discussed in the main text, the qualitative findings are analogous to those

obtained under the assumption of shocks to the natural rate of interest.

APPENDIX C: Proof of Theorem [suffi ciency conditions for determinacy]

By the law of iterated expectations

xt = AtEt+T−1{xt+1}

= Et{AtAt+1···At+T−1xt+T}

Thus,

‖xt‖ = ‖Et{AtAt+1···At+T−1xt+T}‖

≤ Et{‖AtAt+1···At+T−1xt+T}‖}

≤ Et{‖AtAt+1···At+T−1‖ ‖xt+T‖}

≤ αT Et{‖xt+T‖}
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where the last inequality uses the fact that

‖Ai1Ai2···AiT ‖ ≤ ‖Ai1‖ ‖Ai2‖ ··· ‖AiT ‖ ≤ αT

where Ai ∈ A.

Accordingly, α < 1 implies that limT→+∞ Et{‖xt+T‖} > M ‖xt‖ for any arbitrarily large

M > 0 and xt 6= 0. QED.

APPENDIX D [A Counterexample]

Letting A ≡ A(1)A(2) = A(2)A(1) we can write

xt = ATEt{xt+2T}

Thus,

‖xt‖ ≤
∥∥AT

∥∥ Et{‖xt+2T‖}
= ‖A‖T Et{‖xt+2T‖}

In our numerical example ‖A‖ = 0.55 < 1. Accordingly,

Et{‖xt+2T‖} = 0.55−T ‖xt‖

which implies limT→+∞ Et{‖xt+T‖} > M ‖xt‖ for any arbitrarily large M > 0 and xt 6= 0.

QED.

APPENDIX E [Eigenvalue vs. Norm Criteria]

Let A be a nonsingular matrix with ‖A‖ < 1. Thus, 0 < x′A′Ax < 1 for all x such

that ‖x‖ = 1. Let Q be the matrix of (orthonormal) eigenvectors of A′A and let Υ be the

corresponding (diagonal) matrix with (real) eigenvalues on its diagonal. Thus, A′AQ = QΥ

with Q′Q = I. Hence Q′A′AQ = Υ, with all diagonal elements of Υ between zero and one.

Thus we can write A′A = QΥQ′ or, equivalently, A′QQ′A = (QΥ
1
2 )(Υ

1
2Q
′
) implying A′Q =

QΥ
1
2 . Thus the eigenvalues of A′ (and, hence, of A, since both share the same characteristic

polynomial) are given by the diagonal elements of Υ
1
2 and are thus real and between zero and

one. This is precisely the condition for determinacy in a single regime model.
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Figure 1: Transitional dynamics under the optimal monetary policy. Inflation and interest rates

in annualized terms.
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Figure 2: Aggregate fluctuations under the optimal monetary policy and baseline calibration.

Inflation and interest rates in annualized terms.
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Figure 3: Aggregate fluctuations under the optimal monetary policy with higher shock volatility.

Inflation and interest rates in annualized terms.
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Figure 4: ZLB incidence under the optimal monetary policy.
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Figure 5a: Average inflation under the optimal monetary policy in annualized terms.
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Figure 5b: Volatility of inflation under the optimal monetary policy in annualized terms.
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Figure 8: Implementation of the optimal monetary policy with state-contingent interest rate

rule. Colored areas show values of the rule coeffi cients consistent with the suffi cient condition

for determinacy.
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Figure A1: Optimal transition paths with and without Ascari and Sbordone (2014) and Lago

Alves (2014) corrections for positive trend inflation.
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Figure A2a: Aggregate fluctuations under the optimal monetary policy with cost-push shocks.

Inflation and interest rates in annualized terms.
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Abstract

We provide microfoundations to the New Keynesian model with a negative steady state real interest
rate used in Billi, Galí and Nakov (2022). The model described below is a "bubbleless" version of the
overlapping generations model developed in Galí (2021), augmented with discount factor shocks. It
is shown to have log-linearized equilibrium conditions that take the same form as those of a standard
New Keynesian model with an infinitely-lived representative consumer, but with a potentially negative
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In this Appendix to our paper "Optimal Monetary Policy with r∗ < 0" we provide microfoundations to

the log-linearized equilibrium conditions used in Billi, Galí and Nakov (2022), as well as our assumption of

a negative steady state real interest rate. In particular, we show they correspond to those of a "bubbleless"

version of the New Keynesian model with overlapping generations developed in Galí (2021), augmented

with discount factor shocks. Our description draws heavily from that paper.

Sections 1 through 4 analyze the problems of consumers and firms, and derive the economy’s equili-

brum conditions. Section 5 characterizes the economy’s steady state. Section 6 derives the log-linearized

equilibrium conditions and shows their equivalence to those of a standard New Keynesian model with

a representative household, but with a steady state real interest rate that is potentially negative, as

assumed in Billi, Galí and Nakov (2022). Section 7 derives a second-order approximation to the objective

function of a central bank that seeks to maximize the discounted sum of period average utilities. That

approximation is shown to have a representation as a discounted sum of a linear combination of the

squares of the output gap and inflation, as in the standard New Keynesian model with a representative

consumer.

1 Consumers

We assume an economy with overlapping generations of the "perpetual youth" type, as in Yaari (1965)

and Blanchard (1985). The size of the population is constant and normalized to one. Each individual has

a constant probability γ of surviving into the following period, independently of his age and economic

status ("active" or "retired"). A cohort of size 1− γ is born (in an economic sense) and becomes active

each period. Thus, the size in period t ≥ s of the cohort born in period s is given by (1− γ)γt−s.

At any point in time, two types of individuals coexist in the economy, "active" and "inactive." Active

individuals supply labor and manage their own firms, which they set up when they are born. We assume

that each active individual faces a constant probability 1− υ of becoming "inactive," i.e. of permanently

losing his job and quitting his entrepreneurial activities. For concreteness, below we refer to the status

after that transition as "retirement," though it should be clear that it can be given a broad interpretation

related to skill obsolescence (due to age, health, technological or other exogenous factors). The previous

assumptions imply that the size of the active population (and, hence, the measure of firms) at any point

in time is constant and given by α ≡ (1− γ)/(1− υγ) ∈ (0, 1].

A representative consumer from cohort s chooses a consumption plan to maximize expected lifetime

1



utility

Es
∞∑
t=s

(βγ)t−sU(Ct|s, Nt|s;Zt)

where β ≡ exp{−ρ} ∈ (0, 1) is the discount factor, Ct|s ≡
(
α−

1
ε

∫ α
0 Ct|s(i)

1− 1
ε di
) ε
ε−1

is a consumption

index, Ct|s(i) is the quantity consumed of good i ∈ [0, α]. Nt|s denotes work hours. Zt is an exogenous

preference shifter. Period utility is given by

U(Ct|s, Nt|s;Zt) =

(
logCt|s −

1

1 + ϕ
Nt|s

)
Zt

with zt ≡ logZt assumed to follow an AR(1) process with zero mean and autoregressive coeffi cient ρz.

Utility maximization is subject to the sequence of period budget constraints

1

Pt

∫ α

0
Pt(i)Ct|s(i)di+ Et{Λt,t+1Ãt+1|s} = At|s +WtNt|s + Tt (1)

for t = s, s + 1, s + 2, .., where Pt(i) is the price of good i ∈ [0, α], Pt ≡
(
α−1

∫ α
0 Pt(i)

1−εdi
) 1
1−ε is the

price index, and Wt is the real wage. Complete markets for state-contingent securities are assumed, with

Et{Λt,t+1Ãt+1|s} being the market value of a portfolio of securities purchased in period t and yielding

a stochastic payoff Ãt+1|s at t + 1 (expressed in units of the consumption index), where Λt,t+1 is the

stochastic discount factor for one-period-ahead (real) payoffs. Variable At|s denotes financial wealth at

the start of period t. Tt denotes lump-sum transfers.

Only individuals who are alive can trade in securities markets. Note that the existence of complete

securities markets allows individuals to insure against the loss of income due to retirement. For individuals

other than those born in period t, At|s = Ãt|s/γ, where the term 1/γ captures the additional return on

wealth resulting from an annuity contract. As in Blanchard (1985), that contract has the holder receive

each period from a (perfectly competitive) insurance firm an annuity payment proportional to his financial

wealth, in exchange for transferring that wealth to the insurance firm upon death.1

Both the wage and work hours are taken as given by each individual. Each firm determines the work

hours it wants to hire, given desired output and technology. Aggregate work hours, Nt, are allocated

uniformly among all active individuals, i.e. Na
t|s = Nt/α, with superscript a referring to an active

individual. On the other hand, N r
t|s = 0, with superscript r referring to a retired individual.

Finally, we assume a solvency constraint of the form limT→∞ γ
TEt{Λt,t+TAt+T |s} ≥ 0 for all t, where

Λt,t+T is determined recursively by Λt,t+T = Λt,t+T−1Λt+T−1,t+T .2

1Thus, individuals who hold negative assets will pay an annuity fee to the insurance company. The latter absorbs the
debt in case of death. This insurance arrangement can also be replicated through securities markets.

2Note that (Λγ)−1 is the "effective" (i.e. including the impact of the annuity) interest rate paid by a borrower in the
steady state. The solvency constraint thus has the usual interpretation of a no-Ponzi game condition.

2



The optimal allocation of expenditures yields a set of demand functions

Ct|s(i) =
1

α

(
Pt(i)

Pt

)−ε
Ct|s (2)

for all i ∈ [0, α], which in turn imply
∫ α
0 Pt|s(i)Ct|s(i)di = PtCt|s. The previous result, together with the

assumptions made above allows to rewrite the period budget constraint as:

Ct|s + γEt{Λt,t+1At+1|s} = At|s +WtNt (3)

The consumer’s optimal plan must satisfy the optimality condition3

Λt,t+1 = β
Ct|s
Ct+1|s

Zt+1
Zt

(4)

and the transversality condition

lim
T→∞

γTEt
{

Λt,t+TAt+T |s
}

= 0 (5)

with (4) holding for all possible states of nature (conditional on the individual remaining alive in t+ 1).

1.1 Derivation of Individual Consumption Functions

The intertemporal budget constraint as of period t for an active individual born in period s ≤ t can be

derived by iterating (3) forward from t onwards to yield:

∞∑
k=0

γkEt{Λt,t+kCt+k|s} = Aat|s +
1

α

∞∑
k=0

(γυ)kEt{Λt,t+kWt+kNt+k} (6)

For retired individuals the corresponding constraint is:

∞∑
k=0

γkEt{Λt,t+kCt+k|s} = Art|s (7)

Combining (4) with (6) and (7), we obtain the individual consumption functions

Cat|s = (1− βγ)Z̃t

[
Aat|s +

1

α

∞∑
k=0

(υγ)kEt{Λt,t+kWt+kNt+k}
]

(8)

Crt|s = (1− βγ)Z̃tA
r
t|s (9)

for t ≥ s, and where Z̃t ≡ Zt
(1−βγ)

∑∞
k=0(βγ)

kEt{Zt+k}
.

3Note that in the optimality condition the survival probability γ and the extra return 1/γ resulting from the annuity
contract cancel each other.
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2 Firms

Each individual is endowed with the know-how to produce a differentiated good, and sets up a firm with

that purpose at birth. That firm remains operative until its founder retires or dies, whatever comes first.4

All firms have an identical technology, represented by the linear production function

Yt(i) = Nt(i) (10)

where Yt(i) and Nt(i) denote output and employment for firm i ∈ [0, α], respectively. Individuals cannot

work at their own firms, and must hire instead labor services provided by others.5

Aggregation of (2) across consumers yields the demand schedule facing any given firm

Ct(i) =
1

α

(
Pt(i)

Pt

)−ε
Ct (11)

where Ct ≡ (1− γ)
∑t

s=−∞ γ
t−sCt|s denotes aggregate consumption in period t. Each firm takes as given

the aggregate price level Pt and aggregate consumption Ct.

As in Calvo (1983), each firm is assumed to freely set the price of its good with probability 1−θ in any

given period, independently of the time elapsed since the last price adjustment. With probability θ, an

incumbent firm keeps its price unchanged, while a newly created firm sets a price equal to the economy’s

average price in the previous period.6 Accordingly, the aggregate price dynamics are described by

P 1−εt = θP 1−εt−1 + (1− θ)(P ∗t )1−ε

where P ∗t is the price set in period t by firms optimizing their price.7 Log-linearizing the previous

difference equation around the zero inflation equilibrium yields (letting lower case letters denote the logs

of the original variables):

pt = θpt−1 + (1− θ)p∗t (12)

i.e. the current price level is a weighted average of last period’s price level and the newly set price, all in

logs, with the weights given by the fraction of firms that do not and do adjust prices, respectively.

In both environments, a firm adjusting its price in period t will choose the price P ∗t that maximizes

max
P ∗t

∞∑
k=0

(υγθ)kEt
{

Λt,t+kYt+k|t

(
P ∗t
Pt+k

− (1− τ)Wt+k

)}
4By equating the probability of a firm’s survival to that of its owner remaining active we effectively equate the rate

at which dividends and labor income are discounted, which simplifies considerably the analysis below. All the qualitative
results discussed below carry over to the case of different rates of "retirement" for firms and individuals, but at the cost of
more cumbersome algebra.

5We assume that each firm newly set up in any given period inherits the index of an exiting firm.
6Alternatively, a fraction θ of newly created firms "inherit" the price in the previous period for the good they replace. In

either case we assume a transfer system which equalizes the wealth across members of the new cohort.
7Note that the price is common to all those firms, since they face an identical problem.
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subject to the sequence of demand constraints

Yt+k|t =
1

α

(
P ∗t
Pt+k

)−ε
Ct+k (13)

for k = 0, 1, 2, ...where Yt+k|t denotes output in period t+ k for a firm that last reset its price in period t

and τ is a constant employment subsidy.8 Note that the (υγ)k component of the factor used in discounting

future profits corresponds to the probability that the firm remains operative k periods ahead, while the

θk component is the probability that the newly set price remains effective k periods ahead. Aside from

the additional discounting tied to firms’finite lives, the above optimal price-setting problem is identical

to that in the standard New Keynesian model, so the reader is referred to Galí (2015) for a discussion

and derivation details.

The optimality condition associated with the problem above takes the form

∞∑
k=0

(υγθ)kEt
{

Λt,t+kYt+k|t

(
P ∗t
Pt+k

−M(1− τ)Wt+k

)}
= 0 (14)

whereM≡ ε
ε−1 is the optimal markup under flexible prices.

A first-order Taylor expansion of (14) around the zero inflation balanced growth path yields (after

some algebraic manipulation):

p∗t = µ+ (1− Λυγθ)
∞∑
k=0

(Λυγθ)kEt{ψt+k} (15)

where ψt ≡ log((1 − τ)PtWt) is the (log) nominal marginal cost, µ ≡ logM, and Λ is the value of the

stochastic discount factor Λt,t+1 evaluated at the steady state. Throughout we maintain the assumption

that Λυγθ ∈ [0, 1), which guarantees that the firm’s problem is well defined in a neighborhood of the zero

inflation steady state.9

Letting µt ≡ pt − ψt = − log[(1 − τ)Wt] denote the average (log) price markup, and combining (12)

and (15) yields the inflation equation:

πt = ΛυγEt{πt+1} − λ(µt − µ) (16)

where πt ≡ pt − pt−1 denotes inflation and λ ≡ (1− θ)(1− Λυγθ)/θ > 0.10

Next, we turn to wage setting. As noted above, work hours are demand determined and allocated

uniformly among active individuals. For convenience, we assume an ad-hoc wage schedule linking the
8The firm’s demand schedule (13) can be derived by aggregating (11) across cohorts.
9Below we show that Λυ = β must hold in the steady state, which verifies the maintained assumption.
10Note that in the standard NK model with a representative consumer, the coeffi cient on expected inflation is given by

β while the slope coeffi cient is λ ≡ (1−θ)(1−βθ)
θ

. Those expressions correspond to the limit of the expressions in the text as
υγ → 1, and given that Λ = β under the assumption of an infinitely-lived representative consumer.
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real wage Wt to the average consumption and work hours of active individuals:

Wt = Θ
Ct
α

(
Nt

α

)ϕ
(17)

where Nt ≡
∫ α
0 Nt(i)di denotes aggregate work hours and α is the aggregate labor supply. The wage is

taken as given by firms.11 Equivalently, and using the fact that Yt = Nt = Ct in equilibrium, we can

rewrite (17) as:

Wt = Θ

(
Yt
α

)1+ϕ
(18)

Wage schedule (17) and production function (10), together with the assumptions of a constant flexible

price markup M and a constant employment subsidy τ , jointly imply a constant natural (i.e. flexible

price) level of output given by Y n
t = α((1− τ)MΘ)

− 1
1+ϕ ≡ Y n for all t.

Taking logs on (17), and combining the resulting expression with µt = − log[(1− τ)Wt] and (16), we

obtain a version of the New Keynesian Phillips curve

πt = ΛυγEt{πt+1}+ κŷt (19)

where κ ≡ λ(1 +ϕ), and ŷt ≡ log(Yt/Y ) is the output gap. Note that, in contrast with the standard New

Keynesian model, the coeffi cient on expected inflation is not pinned down by the consumer’s discount

factor. Instead it depends on parameters affecting the life expectancy of firms (through υγ), as well as the

steady state discount factor Λ, all of which determine the effective "forward-lookingness" of price-setting.

3 Asset Markets

In addition to annuity contracts and a complete set of state-contingent securities, we assume the existence

of markets for some other specific assets, whose prices and returns must satisfy certain equilibrium

conditions.

In particular, let QBt ≡ exp{−it} denote the price of a one-period nominally riskless pure discount

bond, with it denoting the corresponding yield. Thus, we must have12

QBt = Et
{

Λt,t+1
Pt
Pt+1

}
(20)

thus implying the steady state relation Λ ≡ exp{−r∗}, where r∗ denotes the real return on the riskless

nominal bond in steady state.

11Note that Ct
α

(
Nt
α

)ϕ
is the average marginal rate of substitution between consumption and work hours across active

individuals, so Θ can be interpreted as an average wage markup. Below we make assumptions on Θ that guarantee the wage
is above the marginal rate of substitution for all individuals.
12Note also that in the asset pricing equations, and from the viewpoint of an individual investor, the probability of

remaining alive γ and the extra return 1/γ resulting from the annuity contract cancel each other.
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Stocks in individual firms trade at a price (before dividends) QFt (i), for all i ∈ [0, α], which must

satisfy the equilibrium condition:

QFt (i) = Dt(i) + υγEt
{

Λt,t+1Q
F
t+1(i)

}
(21)

where Dt(i) ≡ Yt(i)
(
Pt(i)
Pt
− (1− τ)Wt

)
denotes firm i’s dividends, and υγ is the probability that any firm

survives into next period. Solving (21) forward under the assumption that limk→∞(υγ)kEt {Λt,t+kQt+k(i)} =

0, and aggregating across firms we obtain:

QFt ≡
∫ α

0
QFt (i)di

=
∞∑
k=0

(υγ)kEt{Λt,t+kDt+k} (22)

where Dt ≡
∫ α
0 Dt(i)di denotes aggregate dividends. Note that the fact that individual firms are finitely-

lived makes it possible for the aggregate value of currently traded firms to be finite even if the interest rate

were to be negative. Note also that, in contrast with Galí (2021), we are abstracting from the possibility

of a bubble component in stock prices.

4 Market Clearing

Goods market clearing requires Yt(i) = (1 − γ)
∑t

s=−∞ γ
t−sCt|s(i) for all i ∈ [0, α]. Letting Yt ≡(

α−
1
ε

∫ α
0 Yt(i)

1− 1
ε di
) ε
ε−1

denote aggregate output, we have:

Yt = (1− γ)

t∑
s=−∞

γt−sCt|s

= Ct

Note also that in equilibrium

Nt =

∫ α

0
Nt(i)di

= ∆p
tYt

where ∆p
t ≡ 1

α

∫ α
0 (Pt(i)/Pt)

−εdi is an index of relative price distortions which, up to a first-order approx-

imation, equals unity near a zero inflation steady state.

Asset market clearing requires

(1− γ)

t∑
s=−∞

γt−s(υt−sAat|s + (1− υt−s)Art|s) = QFt (23)
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Aggregation of consumption functions (8) and (9) across individuals and cohorts, combined with

asset market clearing condition (23), and the expression for firms’market value (22) yields the aggregate

consumption function:

Ct = (1− βγ)Z̃t

[
QFt +

∞∑
k=0

(υγ)kEt{Λt,t+kWt+kNt+k}
]

= (1− βγ)Z̃t

[ ∞∑
k=0

(υγ)kEt{Λt,t+kYt+k}
]

= (1− βγ)Z̃tXt (24)

where

Xt ≡
∞∑
k=0

(υγ)kEt{Λt,t+kYt+k} (25)

can be interpreted as total wealth (i.e. the discounted sum of current and expected future income) of

individuals currently alive. Note that we can rewrite (25) in recursive form as:

Xt ≡ υγEt{Λt,t+1Xt+1}+ Yt (26)

Next, we characterize the economy’s steady state consistent with zero inflation.

5 Steady State

In a perfect foresight steady state, the discount factor is constant and satisfies Λ = exp{−r∗}, as implied

by (20), where r∗ denotes the steady state real interest rate. Note also that a steady state with zero

inflation requires that actual and desired markups coincide, i.e. (1 − τ)W = 1/M. Combined with the

wage rule (18), the previous condition implies that steady state output Y coincides with the (constant)

natural level of output Y = Y n = α((1− τ)MΘ)
− 1
1+ϕ , as derived above.

Evaluating (24) and (25) at the steady state, and noting that in the latter Z̃ = 1, yields

C =
1− βγ

1− Λυγ
Y (27)

where C denotes aggregate consumption evaluated at the steady state. Goods market clearing requires

that C = Y thus implying Λυ = β. Equivalently,

r∗ = ρ+ log υ

8



Note that the steady state real interest rate is increasing in υ. The reason is that an increase in that

parameter raises desired consumption by increasing the expected stream of future income for currently

active individuals, for any given level of aggregate output. In order for the goods market to clear, an

increase in the interest rate is required.

When υ = 1 (i.e., no retirement) the steady state real interest rate is pinned down by the discount

rate, i.e. r∗ = ρ > 0, as in the standard representative agent model, and is thus constrained to be

positive. More generally, r∗ becomes negative if and only if υ < β. This is thus the case consistent with

the analysis in Billi, Galí and Nakov (2022).13

The key role of retirement or, more generally, the anticipation of declining relative income in bring-

ing about an interest rate lower than the growth rate was a central theme in Blanchard (1985) in a

deterministic OLG model.14

6 Log-linearized Equilibrium Conditions around the Steady State

Given the steady state relation Λυ = β, we can rewrite the New Keynesian Phillips curve (19) as

πt = βγEt{πt+1}+ κŷt (28)

which takes the same form as in the standard NK model, and as equation (1) in Billi, Galí and Nakov

(2022), with the discount factor in the latter suitably redefined.

Log-linearization of the bond-pricing equation (20) yields:

−Et{λ̂t,t+1} = it − Et{πt+1} − r∗ ≡ r̂t

Furthermore, log-linearization of the aggregate consumption function (24) yields:

ĉt = x̂t +
βγ(1− ρz)
1− βγρz

zt (29)

where x̂t ≡ log(Xt/X) and X(1 − βγ) = Y . On the other hand, log-linearization of (26) around the

steady state yields

x̂t = βγEt{x̂t+1} − βγr̂t + (1− βγ)ŷt (30)

13Note also that a change in the expected lifetime, as indexed by γ, does not have an independent effect on r. The reason
is that, when Λυ = β, a change in γ scales in the same proportion the present value of consumption and that of income,
leaving aggregate consumption unchanged and making an adjustment in the real rate unnecessary. The independence of the
steady state real interest rate from γ is a consequence of the log utility specification assumed here. That property is not
critical from the viewpoint of the present paper, since there are other factors (the probability of retirement, in particular),
that can drive the real interest rate towards negative values.
14 In the classical OLG framework with two-period lives, the assumption of declining labor income, usually in the form of

a lower endowment or no labor supply for the old, plays a key role in lowering the real interest rate below the growth rate,
thus creating the conditions for the emergence of bubbles.

9



Combining (29) and (30) we can write the aggregate consumption function as:

ĉt = βγEt{ĉt+1} − βγr̂t + (1− βγ)ŷt + βγ(1− ρz)zt

Imposing the goods market clearing condition ĉt = ŷt for all t and rearranging terms yields the

dynamic IS equation:

ŷt = Et{ŷt+1} − (it − Et{πt+1} − rnt )

with rnt = r∗ + (1 − ρz)zt and with r∗ < 0 under the assumption that υ < β. This representation

corresponds to (2) in Billi, Galí and Nakov (2022) under the assumption that σ = 1 and after an

innocuous rescaling of zt.

7 Welfare

In the present section we provide a welfare-theoretical justification for the central bank loss function

assumed in Billi, Galí and Nakov (2022). We start by deriving an expression for average utility across

individuals alive in period t, denoted by Ut, as a function of aggregate variables. Before we carry out that

derivation we take a brief detour to show how individual consumption relates to aggregate consumption

over an individual’s lifetime.

7.1 The Evolution of Relative Consumption

For the purposes of this section, and for analytical convenience, we assume a self-financing transfer scheme

that equates the financial wealth of all newly born consumers, independently of whether their firm (which

is their only asset when born) optimizes or not the price in its first period of operations. Under that

assumption, the financial wealth of a newly born individual is given by Aat|t = 1
αQ

F
t where QFt is the

aggregate market value of firms operating in period t. Thus, evaluating (8) for s = t and imposing the

previous assumption we can write:

Cat|t =

(
1− βγ
α

)
Z̃t

[
QFt +

∞∑
k=0

(υγ)kEt{Λt,t+kWt+kNt+k}
]

=

(
1− βγ
α

)
Z̃tXt (31)

Combining (24) and (31) implies that consumption of the newly born must satisfy:

Cat|t =
1

α
Ct (32)
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Furthermore, we can write

Ct+1 = (1− γ)Ct+1|t+1 + (1− γ)
t∑

s=−∞
γt+1−sCt+1|s

= (1− υγ)Ct+1 + (1− γ)

t∑
s=−∞

γt+1−sCt+1|s

=
1− γ
υ

t∑
s=−∞

γt−sCt+1|s

=
1− γ
υ

t∑
s=−∞

γt−sCt|s
β

Λt,t+1

Zt+1
Zt

=
1

υ

β

Λt,t+1

Zt+1
Zt

Ct (33)

where the second equality makes use of (32) and the fourth equality invokes the optimality condition (4).

Combining (4) and (33) we obtain the following law of motion for the relative consumption of a

household of a given cohort:
Ct+1|s
Ct+1

= υ
Ct|s
Ct

from which it follows that
Ct+k|s
Ct+k

= υk
Ct|s
Ct

for k = 0, 1, 2, ... and for all t ≥ s.

Evaluating the previous expression at s = t we obtain:

Ct+k|t
Ct+k

= υk
Ct|t
Ct

= υk
1

α
(34)

where the second equality follows from (32).

7.2 An Objective Function for the Central Bank

We define average period t utility across individuals alive as follows

Ut =

[
(1− γ)

t∑
s=−∞

γt−s logCt|s −
α

1 + ϕ

(
Nt

α

)1+ϕ]
Zt

=

[
(1− γ)

t∑
s=−∞

γt−s log

(
υt−sCt
α

)
− α

1 + ϕ

(
Nt

α

)1+ϕ]
Zt

=

[
logCt −

1

(1 + ϕ)αϕ
N1+ϕ
t

]
Zt + t.i.p.
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Assuming the same discount factor for the central bank as for individual consumers, and ignoring

terms independent from policy, we obtain an objective function for the central bank, expressed in terms

of aggregate variables, given by:

L ≡
∞∑
t=0

(βγ)tV (Ct, Nt;Zt)

where V (C,N ;Z) ≡
[
logC − 1

(1+ϕ)αϕN
1+ϕ
]
Z.

Next, we derive a second order approximation to the previous objective function. In doing so, and

following conventional practice, we assume that the employment subsidy τ is chosen to guarantee that

the steady state output is given by Y = α
ϕ

1+ϕ , which is the level that maximizes period utility log Y −
1

(1+ϕ)αϕY
1+ϕ. This requires that α(1− τ)MΘ = 1.15

Thus, and up to a second order approximation, in a neighborhood of the optimal steady state, we

have:

Vt − V '
(
Ct − C
C

)
(1 + zt)−

1

2

(
Ct − C
C

)2
−
(
Nt −N
N

)
(1 + zt)−

ϕ

2

(
Nt −N
N

)2
'

(
ŷt +

1

2
ŷ2t

)
(1 + zt)−

1

2
ŷ2t −

(
n̂t +

1

2
n̂2t

)
(1 + zt)−

ϕ

2
n̂2t

' ŷt(1 + zt)− (ŷt + log ∆p
t )(1 + zt)−

1 + ϕ

2
ŷ2t

' − ε
2
vari{pt(i)} −

1 + ϕ

2
ŷ2t

where we have used the approximation log ∆p
t ' ε

2vari{pt(i)} as derived in Woodford (2003, chapter 6).

Similarly, as proved in Woodford (2003, chapter 6), we have

∞∑
t=0

(βγ)tvari{pt(i)} '
1

λ

∞∑
t=0

(βγ)tπ2t

It follows that in a neighborhood of the optimal steady state

∞∑
t=0

(βγ)t(V − Vt) '
1

2

∞∑
t=0

(βγ)t
[
(1 + ϕ)ŷ2t +

ε

λ
π2t

]
=

ε

2λ

∞∑
t=0

(βγ)t
(
ϑŷ2t + π2t

)
where ϑ ≡ κ

ε . The last expression corresponds to the loss function used in Billi, Galí and Nakov (2022),

up to multiplicative scalar and after a suitable reinterpretation of the discount factor.

15Note that in the limiting case of an infinitely-lived representative consumer (α = 1) and perfectly competitive labor
markets (Θ = 1) the previous condition takes the familiar form (1− τ)M = 1.
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