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Abstract

Shocks to a bank’s ability to raise liquidity at short notice can trigger depositor
panics. Why don’t banks take a more active role in managing these risks? We study
contingent risk management (hedging) in a standard global-games model of a bank
run. Banks fail to hedge precisely when the exposure to a shock is most severe, just
when risk management would have the biggest impact. Higher bank capital and
broader deposit-insurance coverage crowd out hedging, yet encourage more banks
to establish risk management desks in the first place. The model also yields testable
implications for hedging incentives and policy design.
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1 Introduction

The recent collapse of several financial institutions and the precarious positions of others
provides a stark reminder of how issues related to financial instability and depositor
behavior are still of paramount concern, even after a decade of higher capital ratios,
broader deposit-insurance coverage, and tighter supervision following the Great Financial
Crisis (GFC). For instance, Silicon Valley Bank (SVB), a large regional lender in California,
suffered unexpectedly large withdrawals in March 2023. These outflows, exacerbated by
the declining market value of assets due to rising interest rates, triggered a severe liquidity
crisis. While there appear to have been many reasons for SVB’s difficulties (Fed Board,
2023), the ensuing panics occurred despite little evidence of long-term insolvency for SVB.
Similarly, large deposit outflows were observed at other medium-sized banks (Caglio et
al., 2024; Choi et al., 2024), creating a crisis of confidence within the banking sector.

For many institutions affected by the Regional Banking Crisis of 2023, the primary
concern appeared to revolve around depressed asset valuations upon early liquidation
rather than accumulating loan losses or other asset impairments. These vulnerabilities
could have been mitigated through standard risk management tools, such as interest rate
swaps to hedge duration risk in a rising rate environment. Yet many banks, especially
smaller and mid-sized ones, appeared to engage in little risk management, with the most
vulnerable banks even decreasing existing hedges (McPhail et al., 2023; Granja et al., 2024).

Against this backdrop, our paper poses three questions. First, anticipating the pos-
sibility of depositor panics driven by reduced asset valuations before maturity, why do
banks not take a more active role in reducing their exposure to these risks? Second, how
do banks’ incentives to manage risk depend on the degree of exposure to runs that banks
face? Third, how do capital structure and deposit insurance, two key elements in the
policy toolkit, influence a bank’s incentives to manage risk?

To address these questions, we develop a two-period global-games model of bank
runs in the tradition of Goldstein and Pauzner (2005). A monopolistic bank funds itself
with deposits and equity to invest in a risky long-term project. Depositors receive noisy
private signals about the bank’s fundamentals and decide whether to withdraw early. To
this framework, we add two additional important features. First, the bank faces the risk
of a negative shock to the interim value of its assets (e.g., Allen and Gale (2007); Vives
(2014); Liu (2023)).1 This makes the early liquidation of assets costly for the bank, as well

1This can capture several reasons, such as a poor management of the asset, changes in the availability
of the secondary market for assets (“market freezes”) or in its competitiveness (e.g., Shleifer and Vishny,
1986), and changes in market interest rates. When part of the bank’s portfolio are fixed-income assets, such
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as possibly for depositors when many demand early repayment. Second, the bank has
access to a contingent risk management tool to hedge against such shocks. We consider
a parsimonious specification in which the bank can take a costly action to increase the
interim asset value upon a negative shock.2 We use this framework to analyze how shock
severity–and the resulting bank fragility–affects ex-ante incentives to manage risk.

We first analyze the interim withdrawal stage and show that, as is standard in the
literature, our model features a unique equilibrium in which all depositors choose to
withdraw early–they run–if the signal about the fundamental is unfavorable. When the
interim asset value of the bank is low, some of these runs are pure panics, driven by a
coordination failure among depositors in withdrawal choices. The fundamental cutoff,
or depositor run threshold, below which runs occur depends crucially on the realized
interim asset value. Consistent with other work (e.g., Vives 2014; Liu 2023), the realization
of a negative shock to the interim asset value leads to a greater probability of depositor
runs.3 However, greater bank capital reduces coordination failure and bank fragility.

Given the heightened run risk associated with negative shocks to the interim value
of assets, we then examine whether banks have incentives to hedge this risk by using a
contingent risk management tool and explore how these incentives vary with the severity
of shocks. We find that while banks have an incentive to manage much of their risk when
the degree of exposure is relatively small, they discontinue risk management altogether
as exposure increases. Strikingly, the cessation of risk management occurs when fragility
is most severe–precisely when hedging would be most effective in terms of reducing
depositors’ incentives to run. This choice constitutes a risk management failure: banks
choose not to hedge the risk of negative shocks in situations where a constrained planner
would choose to do so, and the bank hedges less than the planner. The identification of
when and why banks fail to manage risk is the main contribution of this paper.

The intuition for this result is that as the negative shock to the interim value of as-
sets grows, bank fragility increases and expected profits decline. Eventually, the bank’s

as corporate loans or government bonds, their market value declines substantially when interest rates rise
sharply, perhaps due to a rapid tightening of monetary policy.

2We interpret the hedging tool broadly as any action that reduces the exposure of the bank’s assets to
factors that may lower their interim value. This includes activities such as monitoring asset quality, improv-
ing marketability through search for more liquid resale markets, or identifying reliable counterparties. The
tool can also be understood as a derivative contract–such as a swap–that pays off in the event of a negative
shock. We explore this interpretation in more detail in an extension in Section 5.3.

3We primarily focus on shocks that affect financial fragility, but that do not necessarily affect the long-term
value of investments. Such shocks are destabilizing but would have no real consequences if the projects
were held to maturity. This approach isolates effects stemming from changes in depositor behavior, rather
that from investment profitability. We extend our analysis to shocks to the long-term return in Section 5.4.
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benefit from survival, which is inversely related to the probability of a run, becomes too
small relative to the cost of establishing risk management capabilities.This mechanism
bears resemblance to the classic debt overhang problem (Myers, 1977), where efficient in-
vestments are forgone because their benefits accrue primarily to existing creditors under
high leverage. However, whereas debt overhang reflects misaligned financial incentives,
our model emphasizes the role of a coordination failure among depositors in shaping
risk management incentives. Specifically, once the shock is sufficiently severe, the cost of
effectively reducing the probability of runs falls short of the bank’s benefit, making it pri-
vately unprofitable to hedge precisely when fragility is highest. This distinction not only
separates our mechanism from the debt overhang literature but also implies markedly
different comparative statics, as we describe below.

Our result on risk management failure yields various testable implications. First, our
framework highlights that small banks are less likely to engage in risk management
activities than large banks because the overall cost of risk management is higher for them
on a per-dollar of assets basis. This implication resonates with the 2023 U.S. Regional
Banking Crisis, in which several mid-sized banks failed to hedge rising interest rate risk
despite growing exposures. Put differently, large banks engage in risk management for a
broader range of shocks than small banks.

Our analysis also highlights the role that core features of modern banking systems,
such as bank capital and deposit insurance (or other government guarantees for bank
deposits) play in shaping risk management incentives. Specifically, we show that better
capitalized banks and those with a higher share of insured deposits choose to hedge
less on the intensive margin, as both capital and deposit insurance reduce exposure to
runs and thus lower the marginal benefit of hedging. This crowding-out effect stands
in contrast to the classic debt overhang problem, where more capital strengthens risk
management incentives, highlighting the distinct strategic mechanism in our framework.
At the same time, both capital and deposit insurance increase the likelihood that a bank
engages in risk management at all, making them complements to the establishment of a
risk management desk. These differential effects on the intensive and extensive margin of
risk management yield a second set of testable implications that are unique to our model
and can inform future empirical work. Banks with a more stable funding base (because
of better capitalization or a higher share of insured deposits) are more inclined to do at
least some risk management, but the level of risk management that is optimal for them
is lower than for banks with a less stable funding base. To our knowledge, these aspects
have not been studied theoretically before, but are consistent with empirical findings in
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Bianchi et al. (2025), who show that banks with less capital and with a lower degree of
deposit funding exhibit a greater intensity of hedging in response to increased interest
rate risk exposure.

Finally, we consider several extensions and robustness checks. First, while we initially
keep deposit rates fixed in the model, we show that our main results also obtain when
we endogenize the terms of the deposit contract so that consumers choose whether to
accept the deposit contract offered by the bank. Second, we endogenize the bank’s capital
structure and show that banks generally have an incentive to raise equity capital, thus
validating our focus on the role of capital for bank’s risk management choices. This occurs
because bank capital serves as a non-contingent tool for managing risk, reducing fragility in
all states of the world. Third, we micro-found the hedge used by the bank and show that
the bank, as before, chooses not to engage in risk management for a severe enough shock to
its interim asset value. Hence, our results are robust to alternative ways of modeling risk
management. Fourth, we broaden our focus from liquidity risk to credit risk and show
that the same forces can give rise to the cessation of risk management in that context.
Fifth, we show that bank risk-management decisions are indeed inefficient, justifying our
label of risk management failures. Due to its lack of commitment, banks do less risk
management (on both the intensive and extensive margins) than what would be chosen
by a constrained social planner with the power to commit to future risk management
when raising deposits.

Our results have normative implications. As the bank’s capital structure decision is not
subject to the commitment problem associated with risk management, the bank’s privately
optimal choice of capital is constrained efficient. This implies that there is no scope for
prudential regulation of bank capital in our framework. As a result, our model emphasizes
and isolates a failure of bank risk management separately from any concerns about bank
capital. Even when the private and social incentives for bank capital are fully aligned,
risk management failures can occur. Our result, therefore, suggests that bank capital
regulation is not a substitute for the prudential regulation of bank risk management.

Our contribution is to provide a rational framework analyzing how banks’ hedging
decisions endogenously affect the probability of depositor runs, while shocks simulta-
neously impact both the run thresholds and hedging incentives—a feedback mechanism
absent in existing risk management literature. Studying this interaction reveals not only
that risk management fails when financial stability concerns are most acute, but we can
also separate the extensive margin (establishing risk management) from the intensive
margin (hedging intensity). In particular, we show that standard regulatory tools have
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opposing effects across these margins: while they reduce the need to hedge intensely, they
encourage more banks to establish some degree of risk management operations. To the
extent that there may also exist information asymmetries or behavioral factors that can
in practice drive depositor behavior, we believe that those would magnify the effects we
identify, but they are not necessary to generate the failures of risk management that we
establish. Institutions’ reduced incentives to manage risk, which emerge precisely as such
risk increases, arises as a natural consequence of the maximization problem banks face.

Literature. Our paper contributes to the literature on bank fragility and related policy re-
sponses. Panic-driven depositor runs, whereby crises are self-fulfilling phenomena due to
strategic complementarities in withdrawal decisions, have been extensively studied since
Diamond and Dybvig (1983). The global games framework (Carlsson and van Damme,
1993; Morris and Shin, 2003; Vives, 2005) links depositors’ incentives to economic funda-
mentals (Rochet and Vives, 2004; Goldstein and Pauzner, 2005), allowing the probability
of a run to depend endogenously on bank characteristics and policy. Examples include
work on the implications for fragility of information disclosure (Bouvard et al., 2015),
debt maturity (Eisenbach, 2017), the level of debt collateralization (Ahnert et al., 2019),
government guarantees (Allen et al., 2018; Carletti et al., 2023a), bank capital and portfolio
liquidity (Kashyap et al., 2023), bank resolution (Schilling, 2023), and interventions (Shen
and Zou, 2024). Our paper uses similar methods to analyze how risk management affects
the probability of a run.

In our framework, risk management is motivated by the increased fragility brought
about by a negative shock to the interim value of assets. Prior work has established a link
between interim values and bank fragility (Vives, 2014; Liu, 2023). Building on this, we
analyze the extent to which risk management can mitigate such fragility. Crucially, we also
study how the severity of the shock, and the associated fragility, affects banks’ incentives
to manage risk in the first place, an aspect that to our knowledge has not previously been
studied but which is important for the debate on the stability of the banking sector.

Our main result is that banks fail to engage in risk management precisely when shocks
are severe and runs are likely. By focusing on incentives to hedge against liquidity
risk, our analysis complements existing work on risk management failures, which mostly
centers on credit risk. Like us, Bouvard and Lee (2020) model coordination failures,
but focus on underinvestment in information acquisition, whereas we study effort to
mitigate identified risks. Rampini and Viswanathan (2010, 2013) show that financially
constrained firms are less likely to hedge—an implication that aligns with our result
on bank size. However, the mechanism differs: we emphasize depositor coordination
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failures, not limited pledgeability. This distinction enables us to analyze both contingent
and non-contingent policy tools. In their dynamic model, Rampini and Viswanathan
(2013) also find that firms neglect risk management when shocks accumulate. Despite the
differences in focus and modelling approach, our paper shares with theirs the implication
that banks fail to engage in risk management when it would be most needed.

Our analysis also relates to recent work on the 2023 U.S. regional banking crisis, which
featured panic-induced runs unfolding at unprecedented speed in a digitized, social
media-driven environment (Cookson et al., 2023). Granja et al. (2024) emphasize SVB’s
large asset losses following monetary tightening and its heavy reliance on uninsured
deposits as key factors behind a solvency-driven run. Complementing these perspectives,
Cipriani et al. (2024) provide empirical evidence that coordination failures, rather than
fundamentals alone, played a crucial role in the 2023 bank runs. Drechsler et al. (2023)
attribute the runs to a coordination failure over the value of a bank’s deposit franchise
(Drechsler et al., 2017), which is highly sensitive to withdrawals in a high-rate environment.
In contrast, we focus on how anticipated losses in interim asset values can destabilize banks
at the time of withdrawals, and why banks fail to implement adequate risk management
strategies in response. In this respect, our view aligns with Dursun-de Neef et al. (2023),
Metrick (2024), and others, who argue that SVB’s collapse was driven by losses from
liquidating long-term assets, thus highlighting the fragility stemming from inadequate
ex-ante risk mitigation.

Our result on the relationship between the use of contingent risk management tools
and bank capital, which dampens the strategic complementarity in depositors’ withdrawal
decisions and so limits the occurrence of runs, speaks to the emerging discussion on the
implications of the Regional Banking Crisis for banking regulation (Acharya et al., 2023).
Since bank incentives to put in place risk management operations increase in bank capital,
our analysis identifies a novel complementarity between bank capital and contingent risk
management that underscores the value of capital beyond its well-known stabilizing role.

Structure. The paper is organized as follows. Section 2 describes the model and char-
acterizes depositors’ withdrawal decisions. Section 3 analyzes the incentives for risk
management. Section 4 studies how these incentives are shaped by bank capital and de-
posit insurance. Section 5 discusses robustness and extensions, where we endogenize the
deposit rate and bank capital, consider an alternative approach to modelling risk man-
agement, extend the result to credit risk, and finally examine an efficiency benchmark.
Finally, Section 6 concludes. All proofs are in the Appendix.
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2 Model

2.1 Environment

We build on Goldstein and Pauzner (2005) and Carletti et al. (2023b) to examine the risk
management incentives of a bank. The economy extends over three dates t = 0,1,2, and is
populated by a monopolistic bank and a unit continuum of consumers indexed by i∈ [0,1].
All agents are risk neutral, do not discount the future, and use a single divisible good for
consumption and investment. Consumers are indifferent between consuming at either
date. At t = 0, the bank is endowed with k ∈ (0,1) units (bank capital) and consumers
are endowed with 1− k units each, which they deposit in exchange for a deposit contract
allowing them to withdraw at par at t = 1 and a promised repayment r2 > 1 at t = 2.4

The bank has access to a profitable but risky long-term investment technology, such as
corporate loans, that requires an investment of one unit at t = 0. It returns ℓ if liquidated
prematurely at t = 1 and Rθ upon maturity at t = 2, where θ ∼ U [0,1] represents the
fundamentals of the economy and R is a constant that reflects the return from financial
intermediation, which is assumed throughout to be high enough to ensure bank viability.5

The bank is exposed to the possibility that the interim value of its asset ℓ may suffer a
negative shock and turn out to be lower. Accordingly, we assume that the interim value
of bank assets is stochastic (as in e.g., Allen and Gale, 2004, 2007; Eisenbach, 2017), and its
realization is publicly observed at the beginning of t = 1:

ℓ=

ℓL w.p. p

ℓH w.p. 1− p,
(1)

where 0 < ℓL < ℓH ≤ 1 and p ∈ (0,1).6 There are many reasons why such a shock may
arise. For instance, mismanagement of assets could reduce their value in outside use.
Alternatively, part of the bank’s portfolio may be fixed-income assets whose market value
declines substantially when interest rates rise, perhaps due to a rapid tightening of mon-
etary policy. A third possibility is that secondary markets for bank assets may suddenly

4Demand deposits are a common source of commercial bank funding. In the United States, for example,
three quarters are deposits, half of which are uninsured (Egan et al., 2017). Carletti et al. (2023a) show
that demand deposits arise as the ex-ante optimal arrangement in a closely related model (without risk
management choice). Other motives for demandable debt include liquidity needs (Diamond and Dybvig,
1983) or resolving an agency conflict (Calomiris and Kahn, 1991; Diamond and Rajan, 2001).

5In Appendix A.6 we allow for a more general distribution and show that our main result of zero risk
management effort continues to hold under weaker conditions.

6A low enough probability p ensures that the bank is viable ex ante even if ℓL becomes arbitrarily small.
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and unexpectedly dry up (“market freezes”). In all of these instances, the realized value
of bank assets if liquidated early may be lower than initially anticipated.

We envision risk management as a way to hedge against the realization of such a nega-
tive shock. We incorporate this by assuming that the bank can hedge at t = 0 against the
shock of a low interim value ℓ= ℓL. In the main text, we use a parsimonious specification
of an observable but non-verifiable effort choice subject to non-pecuniary costs. The bank
exerts risk management effort z ≥ 0 at t = 0 after deposits are raised to maximize expected
profits. Risk management improves the interim asset value after the negative shock to:7

ℓL + z. (2)

The cost of risk management is non-pecuniary and is given by:

c
z2

2
+F , (3)

where the variable part of the cost, parameterized by c> 0, may represent the bank’s search
effort in finding an appropriate hedging instrument or partner, collateral and margins that
the seller might need to pledge against the derivative position, or counterparty risk. It
may also reflect the cost of diligently monitoring the bank’s assets or of identifying resale
partners and opportunities, thus increasing secondary market liquidity. The fixed part,
parameterized by F ≥ 0, may be interpreted as the cost of establishing a risk management
desk, identifying the risk to be hedged, or understanding the bank’s exposure.

Two remarks on this cost specification are in order. First, since risk management is non-
verifiable, the bank cannot credibly commit to its future choice when raising deposits.
However, depositors observe the realized interim value of bank assets when deciding
whether to withdraw at the interim date. Second, the assumption of a quadratic cost
of risk management is clearly stylized. For example, these costs may be convex but not
exactly quadratic, or maybe these costs are not even convex to start with. The point of
our assumption is to stack the odds against us. That is, it should be easy for the bank to
engage in some risk management (because of zero marginal costs at z = 0).

Our notion of risk management in the main text is narrow on purpose, targeted to
mitigate the exact risk that the bank faces: a low interim value of its assets. This isolates
the bank’s risk management function from other possible motives related to increasing
bank profits even when there is no bank instability (i.e., a depositor run). To allow for a

7Jackson and Pennacchi (2021) model a bank that can exert costly effort to improve the value of its assets
in a default state. Their focus is on the creation of safe assets by private intermediaries and the public sector.
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broader notion of risk management and to micro-found our cost structure, we consider a
specific hedging tool–a swap contract–in Section 5.3, which leads to a payout in the event
of a negative shock irrespective of whether assets are actually liquidated. We also consider
broader sources of risk that may similarly affect financial fragility, such as shocks to R, in
Section 5.4.

Depositors can simultaneously withdraw their funds before the bank’s investment
matures. At t = 1, each depositor receives a noisy private signal about the fundamental:

si = θ + εi, (4)

where εi ∼U [− ϵ,+ ϵ] are identically and independently distributed. Following much of
the global-games literature, we assume vanishing noise to simplify the analysis, ϵ→ 0.8

The bank satisfies early withdrawals, denoted by n, by liquidating its investment. If
withdrawal demand exceeds the interim value of the bank’s assets (i.e., if n(1− k) > ℓ),
each depositor receives an equal share of the proceeds at t = 1. If the remaining investment
proceeds are not enough to satisfy depositors upon maturity at t = 2, the bank is bankrupt.
In this case, the bank makes zero profits by limited liability and depositors receive nothing
because of bankruptcy costs (we assume full bankruptcy costs for simplicity).9

Date 0 Date 1 Date 2

1. Bank raises funds 3. The interim asset value is observed 6. Investment matures
for risky investment

4. The fundamental θ is realized but 7. Residual depositors
unobserved; depositors receive a noisy are paid

2. Bank chooses its private signal si and may withdraw
risk management z 8. Consumption

5. Bank liquidates to meet withdrawals

Table 1: Timeline of events.

Table 1 shows the timeline. We solve the model backwards, starting with the with-
drawal game at t = 1 in Section 2.2, which summarizes results known in the global-games
literature. Equipped with this, we turn to our main interest of the bank’s risk manage-

8Vanishing private noise simplifies the analysis of the bank’s ex-ante choices of the deposit contract and
its risk management. Vives (2014) studies the properties of equilibria in a global-games bank-run setup
when this assumption is relaxed. See Ahnert and Kakhbod (2017) for information acquisition by investors.

9There is evidence of large bankruptcy costs in practice. For example, James (1991) measures the losses
associated with bank failure as the difference between the book value of assets and the recovery value less
direct costs associated with failure. These losses amount to about 30% of failed banks’ assets.
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ment choice in Section 3. In these sections, we take the deposit contract and bank capital
structure as given, but we will endogenize them in Sections 5.1 and 5.2, respectively.

2.2 Depositors’ withdrawal choices

We start with the withdrawal choices for a given deposit contract {1,r2} and risk manage-
ment z. With a slight abuse of notation, let ℓ denote the effective interim asset value, which
is either ℓH or ℓL+ z. We focus on the case of z < ℓH −ℓL, so risk management does not fully
compensate for the lower interim value upon the negative shock. As shown in Section 3,
this inequality arises naturally when the variable cost parameter c is not too small.

This subgame is a fairly standard bank-run global game and we start by establishing
dominance bounds. For a low fundamental, withdrawing is a dominant action for deposi-
tors. This arises for θ < θ , where the lower dominance bound θ solves Rθ −(1−k)r2 ≡ 0. In
the lower dominance region [0,θ ], the bank is insolvent at t = 2 even if no depositor with-
draws at t = 1. Thus, each depositor receives nothing at t = 2 (due to costly bankruptcy)
and so finds it optimal to withdraw early irrespective of what other depositors do. Fol-
lowing Goldstein and Pauzner (2005), we assume an exogenous upper dominance bound
θ ∈ (0,1) above which the bank always has enough resources to settle interim claims.
Specifically, we assume ℓ = 1 for θ ≥ θ . Therefore, waiting until t = 2 is a dominant
action for a depositor for θ ≥ θ : the interim value fully covers the promised payment to
all withdrawing depositors, so early withdrawals do not impose any loss on depositors
who wait. Accordingly, these depositors prefer the payment of r2 at t = 2 over the lower
unit payment at t = 1. The upper dominance region [θ ,1] can be arbitrarily small, and we
assume θ → 1. (For all θ < θ , the interim value remains as specified in Equation (1).)

For the intermediate range (θ ,θ ), the withdrawal choice of a depositor depends on the
withdrawal choices of other depositors. The following lemma describes these choices and
characterizes the bank failure threshold as well as its comparative statics. It also describes
the nature of runs (that is, fundamental-driven or also due to panics).10

Lemma 1. All depositors withdraw their funds at t = 1 and the bank fails if the fundamental θ

falls below a threshold θ ∗:

10The run thresholds below are derived under the assumption that the contract is incentive compatible,
in the sense that depositors do not always run, so the bank accrues positive expected profits. For this to be
the case, the repayment r2 promised to depositors must be sufficiently high relative to what they can obtain
if they withdraw early. Formally, this requires that r2 > r̂2 > 1, with the cutoff r̂2 derived in the Appendix
A.1. This condition is always satisfied in equilibrium when the bank chooses r2 optimally, as in Section 5.1.
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(i) For ℓ≥ 1−k, the threshold equals the lower dominance bound (only fundamental runs exist):

θ
∗ = θ ≡ (1− k)r2

R
. (5)

The bank failure threshold decreases in bank capital, ∂θ /∂k < 0.

(ii) For 1− k > ℓ, there are also panic runs and the threshold is:

θ
∗ =

(1− k)r2

(
1− α

r2

)
R
(

1− 1−k
ℓ

α

r2

) = θ
r2 −α

r2 − α(1−k)
ℓ

> θ , (6)

where α ≡
∫ n

0 dn +
∫ 1

n
1
ndn is a depositor’s expected payoff from withdrawing early and

n ≡ ℓ/(1− k) is the maximal level of withdrawals the bank can serve in full at the interim.

The run threshold decreases in bank capital and the interim value at a diminishing rate,
∂θ ∗/∂k < 0, ∂ 2θ ∗/∂k2 > 0, and ∂θ ∗/∂ℓ < 0, ∂ 2θ ∗/∂ℓ2 > 0. The effects of capital and the
interim value on the run threshold are substitutes, ∂ 2θ ∗/∂ℓ∂k > 0. The panic-run range
decreases in capital and the interim value, ∂ (θ ∗−θ )/∂k < 0 and ∂ (θ ∗−θ )/∂ℓ < 0.

Proof: See Appendix A.1. □

Lemma 1 establishes the existence of a unique equilibrium of the withdrawal subgame
in which depositors use threshold strategies and choose to withdraw upon unfavorable
signals, si < s∗. For vanishing private noise, this signal threshold converges to a funda-
mental threshold, s∗ → θ ∗. This implies that, in equilibrium, all depositors behave alike:
all withdraw for θ < θ ∗ and nobody withdraws for θ > θ ∗. The failure threshold θ ∗ fully
summarizes the ex-ante probability of a bank run, which is our measure of bank stability.

When the interim asset value ℓ covers the repayment to all depositors 1− k, there is no
strategic complementarity among depositors and runs only occur when the investment
return is low (fundamental runs for θ ≤ θ ). Conversely, for ℓ < 1− k, panic runs arise for
θ < θ < θ ∗ because the bank’s ability to repay withdrawing depositors in full depends
on the volume of withdrawals. Specifically, depositors fear that others may withdraw
and that the bank will not have enough interim resources to repay them. A negative
shock to the interim asset value exacerbates the coordination failure among depositors
and increases both the likelihood of bank failure and the range of panic runs.11

11These findings are consistent with and analogous to the result in Vives (2014), who considers comparative
statics to the interim value of the bank’s assets and shows that lower interim values lead to a greater risk
of panic runs. Although that setting is slightly different, and does not consider directly the withdrawal
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In what follows, we focus on the case where ℓH ≤ 1− k, so that panic runs can arise
and the relevant failure thresholds are given by Equation (6) when evaluated at ℓ= ℓL + z

and ℓ = ℓH , respectively. A panic run features the liquidation of profitable projects and
is therefore always inefficient. This may create an incentive for the bank to reduce the
ex-ante probability of a run via risk management, which we turn to next.

3 Risk management incentives

We turn to the bank’s choice of risk management. Throughout the paper we focus on a
high enough variable cost parameter to ensure that ℓL + z < ℓH , so the bank is more fragile
upon the negative shock to the interim value of bank assets, θ ∗

L > θ ∗
H ≡ θ ∗(ℓH ,k) and z is

indeed a tool to manage the increased fragility brought about by the fall in ℓ. As done in
the previous section, here again we keep the deposit contract r2 fixed in order to isolate the
direct effect from changes in the interim value ℓL on the bank’s risk management incentives.
This makes the analysis more tractable and the economics at work more transparent. Of
course, changes in the interim value also affect depositors’ expected return, which then
may require the bank to adjust the deposit rate to ensure depositors’ participation. We
consider this indirect effect in Section 5.1.

The bank chooses risk management z to maximize its expected profits Π. The bank
receives zero upon a bank run, and makes positive profits absent a run (which occurs for
θ ≥ θ ∗

L and θ ≥ θ ∗
H , respectively). In these cases, the bank’s investment returns Rθ , so that

after repaying depositors the bank’s payoff is Rθ − (1−k)r2. Integrating over the possible
realizations of the fundamentals and accounting for the cost of risk management yields:

Π(z) ≡ p
∫ 1

θ∗
L

[Rθ − (1− k)r2]dθ +(1− p)
∫ 1

θ∗
H

[Rθ − (1− k)r2]dθ − c
z2

2
−F1{z>0}. (7)

Differentiating (7) with respect to z gives us the first-order condition (that abstracts from
the fixed cost):

dΠ
dz

= p[Rθ
∗
L − (1− k)r2]

(
−dθ ∗

L
dz

)
− cz = 0, (8)

where dθ ∗
L /dz= dθ ∗

L /dℓbecause of the substitutability of ℓL and z, with the latter derivative
given in the proof of Lemma 1. The first term in Equation (8) is the marginal benefit
of risk management: higher z reduces the failure threshold upon a shock, θ ∗

L , which

incentives of depositors, the mechanism here is similar: the reduced interim value worsens the coordination
failure among depositors (or fund managers in Rochet and Vives, 2004; Vives, 2014).
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benefits the bank through the increase in residual profits around the failure threshold,
Rθ ∗

L − (1− k)r2 > 0. The second term in (8) is the marginal cost of risk management.

Let ẑ solve Equation (8). We have the following result about the bank’s risk management.

Proposition 1. For all ℓL such that θ ∗
L (ẑ,ℓL) < θ , a negative shock to the interim asset value

increases the incentives to manage risk at the intensive margin: dẑ/dℓL < 0. Moreover, risk
management incentives decrease as bank capital and the variable cost parameter c increase, while
they increase as the probability of the negative shock increases: dẑ/dk < 0, dẑ/dc < 0, dẑ/d p > 0.

Proof: See Appendix A.2. □

Proposition 1 establishes that a lower interim asset value increase the banker’s incentives
for risk management, dẑ/dℓL < 0. This result is driven by the increased sensitivity of the
run probability for any θ ∗

L < θ , which increases the marginal benefit of risk management.

Whether the bank actually does any risk management depends on whether it is suffi-
ciently profitable. In other words, whether engaging in any risk management is optimal
(on the extensive margin) depends on the benefit of risk management compared to the
overall cost of setting up risk management operations, that is Π(ẑ(ℓL)|ℓL)−Π(0|ℓL).

A crucial ingredient for our result is that fragility increases as the shock to the interim
asset value is more severe, even when considering the bank’s optimal risk management
choice. We show this formally in Lemma 2 below: while the incentives for risk manage-
ment ẑ = ẑ(ℓL) increase in shock severity, this never fully offsets the negative shock.

Lemma 2. For all ℓL such that θ ∗
L (ẑ,ℓL) < θ , the run threshold decreases in ℓL, dθ∗

L (ẑ,ℓL)
dℓL

< 0.

Proof: See Appendix A.3. □

Due to higher bank fragility upon a more severe shock to the interim asset value, bank
profits in the low state decrease. This happens up to the point where the benefits of risk
management are insufficient to justify the costs, as summarized in Proposition 2.

Proposition 2. For any F ≥ 0 and c > ĉ, where ĉ is characterized in the appendix, the bank stops
doing risk management when the interim asset value falls below a unique cutoff ℓ̃L = ℓ̃L(F ,c) ∈
(0,ℓ), where ℓ solves θ ∗

L (0,ℓ) = θ . That is, z∗ = 0 whenever ℓL < ℓ̃L.

Proof: See Appendix A.4. □

For sufficiently severe shocks, the bank does not set up any risk management operations
at all. This occurs in a range of parameters where the cost of doing risk management, as
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captured by the fixed and variable cost parameters F and c, are such that in the presence
of less severe shocks (i.e., larger values of ℓL) the bank would choose to manage risk.12

The result of zero risk management choice occurs even though the marginal impact
of hedging on the run probability increases as ℓL decreases, that is ∂θ ∗

L /∂ z decreases in
ℓL. Yet, the differential profit the bank can accrue from risk management shrinks as the
negative shock becomes extreme. In this circumstance, two forces are at play. First, the
bank’s profits when doing risk management decrease, which is driven by the higher run
threshold (Lemma 2). Second, upon extreme negative shocks, the probability of a run
without risk management reaches its upper bound, thus becoming insensitive to changes
in the interim asset value. Hence, even in the absence of the fixed cost (that is, for F = 0),
the gains to the bank from risk management monotonically decrease in the severity of the
shock (lower ℓL).13 The cutoff ĉ is the level of the variable cost parameter at which the
bank cannot avoid a run when the shock to the interim asset value is most extreme (for
ℓL → 0). In other words, it ensures that, for an extreme shock, the level of risk management
necessary for the bank to reduce the run probability is too costly–even with a zero fixed
cost, F = 0.14

The results of Proposition 1 and 2 are shown in the left panel of Figure 1, which shows
how the optimal level of risk management effort z∗ changes with the interim asset value.
For low interim values, ℓL < ℓ̃L, the bank chooses not to set up a risk management desk,
so z∗ = 0. Conversely, the bank sets up a risk management desk when the negative shock
to the interim value is less severe. In this case, the bank’s optimal risk management effort
is z∗ = ẑ, and these incentives are higher for lower levels of the interim asset value ℓL. The
right panel of Figure 1 shows how the bank failure threshold θ ∗

L depends on the interim
asset value ℓL, taking into account the optimal risk management choice z∗. For ℓL > ℓ̃L,
the bank chooses to set up a risk management desk and the bank failure threshold is
lowered from the gray dashed line to the black solid line due to the stabilizing effect of
risk management. The right panel also illustrates the result of Lemma 2: the probability

12Note that this assumes that the fixed cost parameter F is not too large. Otherwise, and trivially, even
for very mild shocks the bank would not find it optimal to engage in risk management.

13The key mechanism driving the risk management failure result arises even without relying on the
upper dominance region when we allow for a thin-tailed distribution of the economic fundamental θ , as
we show in Appendix A.6. There, we consider a standard symmetric Beta distribution. We show that risk
management failures arise before the fundamental threshold reaches the upper dominance bound. The
main reason why this occurs is that, with a “thin tail” for realizations of the fundamental θ , the net benefit
to doing risk management decreases as the negative shocks become sufficiently severe.

14A strictly positive fixed costs associated with risk management seems natural because of the nature of
the activity, which involves tasking specific employees with identifying risk exposures and finding ways of
hedging that risk. Our argument is merely that, for the purposes of the theoretical results, a positive fixed
cost is not needed, even though they are likely important in practice.
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Figure 1: The left panel shows the risk management intensity z∗ as a function of ℓL (red solid
line) and the right panel shows the equilibrium run threshold θ ∗

L as a function of ℓL for the case
when z = 0 (gray dashed line) and for the case when z∗ = ẑ > 0 (black solid line). This numerical
illustration uses the parameters: R = 3, p = 1/4, k = 1/10, c = 50, F = 0, and r2 = 6/5.

of a bank run increases monotonically in the severity of the shock (as ℓL decreases).

As indicated by the cutoff ℓ̃L(F ,c) in Proposition 2, the realized shock to the interim
value ℓL and the magnitude of the fixed cost F matter jointly for the bank’s decision
to engage in risk management. In other words, banks with different fixed cost F have
a different tolerance to shocks and, in turn, incentive to engage in risk management.
Corollary 1 (below) establishes an equivalent interpretation: for any given shock ℓL, there
must be a threshold fixed cost F associated with setting up risk management operations,
whereby banks with higher fixed cost prefer not to do so. Denote such a cutoff value as F̂

(as defined in Appendix A.5), which is strictly positive for ℓL ∈ (ℓ̃L(0,c),ℓ).

Corollary 1. The cutoff F̂ increases in ℓL: ∂ F̂/∂ℓL > 0.

Proof: See Appendix A.5. □

With a higher interim value of bank assets, the bank can achieve a positive profit from
risk management upon a negative shock even for a higher fixed cost of setting up risk
management operations. This result suggests an empirical link between bank size and
the choice to set up risk management operations. To the extent that for larger banks the
fixed cost F represents a smaller fraction of their total assets and revenue, we expect that
larger banks find it optimal to set up risk management operations even when faced with
the possibility of more extreme negative shocks to the interim value of their assets. By
contrast, smaller banks engage in no risk management even for smaller possible shocks,
recognizing that the benefit of managing this risk is insufficient to cover the costs in setting
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up such operations.15 This testable implication may inform future empirical work.

4 The role of bank capital and deposit insurance

We next study how the level of bank capital (Section 4.1) and deposit insurance coverage
(Section 4.2) affect the risk management effort at the intensive margin as well as the
profitability of setting up risk management operations at the extensive margin. This
analysis contributes to a nuanced understanding of how traditional tools of financial
regulation interact with the contingent risk management tool at the heart of this paper.

4.1 Bank capital and risk management

In Section 3 we showed that a higher level of bank capital (e.g., due to higher regulatory
bank capital requirements) crowds out risk management effort if the solution to the risk
management problem is interior (Proposition 1). In other words, k and z are substitutes
along the intensive margin, reflecting that more capitalized banks are less subject to run risk
and financial instability and, hence, have less need to manage this risk. In essence, bank
capital acts as a non-contingent tool for risk management, reducing the bank’s exposure
to depositor runs for any interim asset value, regardless of whether a shock is realized or
not. However, as we show below, k and z are not substitutes along the extensive margin.

The following result states that higher bank capital is a catalyst for using contingent risk
management, whereby it facilitates the choice of a positive z∗. In other words, bank capital
is complementary to establishing a risk management desk, even if it mutes the bank’s
marginal incentives to exert effort. To show this complementarity along the extensive
margin, we study how the threshold of the fixed cost is affected by bank capital.

Proposition 3. The fixed cost threshold F̂ increases in bank capital, dF̂/dk > 0.

Proof: See Appendix A.7. □

The fixed cost threshold below which the bank chooses to set up risk management
operations and, hence, chooses a strictly positive amount of risk management, z∗ > 0,

15It is straightforward to see that if all bank operations are scaled by a variable S, then the cutoff value of
the fixed cost F above which banks do not engage in any risk management becomes F̂/S. Hence, for larger
S, a given bank is more likely to have risk management operations in place, whereas smaller banks avoid
such costs and instead risk collapse in the event of a sufficiently large negative shock.
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increases in bank capital. As bank capital increases, a larger set of banks finds it optimal
to hedge their exposures. Therefore, a positive and complementary relationship between
bank capital and setting up a risk management desk arises, which can be viewed as the
effect of capital on the extensive margin of risk management. Intuitively, more bank capital
increases bank profits when it survives until the final date since it reduces the probability
of runs in both states (that is, it lowers θ ∗

L and θ ∗
H) as well as the repayment obligation to

depositors, (1− k)r2. As a result, the bank is more willing to bear the cost of setting up a
risk management desk since it has more to gain by doing so.16

Bank capital and risk management
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Figure 2: The left panel again shows z∗ as a function of ℓL, but now for a lower level of bank
capital k′ = 0.08 (red solid line) and for the higher level of bank capital k = 0.10 previously shown
in Figure 1 (red dotted line). The right panel shows the bank failure thresholds for both levels of
capital, θ ∗

L (k
′,z) and θ ∗

L (k,z), as a function of ℓL. The black solid and gray dashed lines depict the
run thresholds for the case when z = 0 and z∗ = ẑ > 0 for the lower level of capital, k′, and for the
higher level of bank capital, k, respectively. All other parameters are the same as in Figure 1.

Figure 2 shows the impact of changes to bank capital. The left panel shows the optimal
level of risk management effort z∗ and the right panel shows the bank failure threshold as
a function of the interim value for two different levels of bank capital. We use the baseline
level of bank capital k = 0.10 from Figure 1 and add a 20% lower level of bank capital
k′ = 0.08. The higher level of bank capital is associated with a lower risk management
effort, ẑ(k) < ẑ(k′), conditional on setting up a risk management desk. That is, a bank
with more capital does less risk management at the intensive margin, implying that bank
capital crowds out risk management effort, meaning that the two are substitutes. As
discussed above, this result is due to the stabilizing role of bank capital, which is reflected

16Our results on the extensive margin of risk management complement existing work that argues that
non-contingent risk management tools such as bank capital and liquidity buffers discipline risk-taking (see,
for example, Furlong and Keeley (1989), Admati et al. (2013), and Calomiris et al. (2023)).
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in a lower run threshold for a higher levels of capital, i.e., θ ∗
L (k,z = 0) < θ ∗

L (k
′,z = 0), as

shown in Lemma 1 and represented by upper gray dashed and black solid lines. Also,
θ ∗

L (k,z∗) < θ ∗
L (k

′,z∗), as seen by comparing the lower gray dashed and black solid lines.

However, the complementary relationship between bank capital and the establishment
of a risk management desk can also be seen in Figure 2, and is illustrated by the interval
(ℓ̃L(k,F), ℓ̃L(k′,F)) of interim values where a higher level of capital is a catalyst for the
establishment of a risk management desk. The figure thus illustrates how a bank with
higher capital will engage in risk management activities even at lower levels of interim
value or, equivalently, at higher levels of fixed costs, compared to a bank with less capital.

To show that banks indeed may want to raise capital as a source of financing even if,
arguably, it represents a more expensive form of financing, we endogenize bank capital in
Section 5.2. There we show that banks have incentives to use equity capital in equilibrium.

4.2 Deposit insurance

In the previous sections, we have assumed that all deposits are uninsured, as is common in
the literature on financial fragility. In practice, however, many deposits are often insured,
and this insurance is likely to affect depositor behavior and thus, by extension, how banks
respond. In this section, we extend the analysis to consider the role that deposit insurance
(DI) plays for the bank’s risk management choice. To do so, we assume that a fraction
σ ∈ [0,1] of depositors is insured. Insured depositors are certain to receive the promised
repayment and thus have no incentive to withdraw early, regardless of the signal si.17 For
simplicity, we assume that the outside option of consumers is ρD = 1 in this subsection.

We have two findings. First, and consistent with the banking literature, DI has a
stabilizing effect on bank fragility. Second, and our main insight, we link this beneficial
stabilizing effect of DI to the bank’s risk management choice and find that it reduces the
bank’s marginal incentives to manage risk along the intensive margin. This crowding out
result is much alike the other non-contingent tool we studied earlier, namely capital. At
the same time, however, DI acts as a catalyst for establishing a risk management desk. In
other words, even though the degree of risk management decreases conditional on the
bank actually spending resources on managing such risk, the extensive margin effect of
deposit insurance is to promote the creation of a risk management desk. Taken together,

17This specification resembles the sleepy (or inactive) depositor specification in Chen et al. (2010), although
we assume that depositors’ type is known, so the bank offers two deposit rates. Alternative approaches to
modelling deposit insurance include Allen et al. (2018) and Dávila and Goldstein (2023).

18



deposit insurance coverage acts very similarly to bank capital, as analyzed in Section 4.1.

Let rI
2 and rU

2 denote the promised time 2 repayment for insured and uninsured depos-
itors, respectively. As before, we solve the model by working backwards, starting with
withdrawal decisions of the fraction 1−σ of uninsured depositors, for a given deposit
contract {1,rI

2,rU
2 }, capital structure k, and risk management choice z. To simplify the expo-

sition, we introduce the subscript σ for all thresholds and define the average deposit rate
as r2,σ ≡ σrI

2 +(1−σ)rU
2 . As in the baseline model, we describe depositors’ withdrawal

decisions for a generic ℓ because its realization is known at t = 1.

In the baseline model, panic-driven runs exist only if there is strategic complementarity
in depositors’ withdrawal decisions, which occurs when the interim value ℓ is insufficient
to cover the repayment of all depositors at time t = 1, ℓ < 1− k. Generalizing this bound
by noting that a fraction σ of depositors is insured and never withdraws, strategic com-
plementarity in depositors’ withdrawal decisions arises only for interim values below a
threshold ℓ̌σ (k) =

(
1−σ +σ/rU

2
)
(1− k), which we derive in Appendix A.8. Note that ℓ̌

equals 1− k for σ = 0, as in the baseline model, and dℓ̌σ /dσ < 0. Lemma 3 extends our
results in Lemma 1 on the existence of a unique equilibrium of the withdrawal game.

Lemma 3. Uninsured depositors withdraw at t = 1 only if the fundamental of the economy θ is
below a critical cutoff. This threshold is given by θ σ whenever ℓ≥ ℓ̌σ and by θ ∗

σ for ℓ < ℓ̌σ , with
θ ∗

σ ≥ θ σ . Both thresholds, defined in the Appendix, decrease in σ : ∂θ σ /∂σ < 0 and ∂θ ∗
σ /∂σ < 0.

Proof: See Appendix A.8. □

As in the baseline model, a unique threshold equilibrium emerges in the character-
ization of depositors’ withdrawal decisions. The exact threshold and the type of runs
depend on the level of the interim value relative to the amount of bank capital and on
the degree of DI coverage, summarized in the cutoff ℓ̌σ (k). When the interim value, the
fraction of insured depositors, and bank capital are high, so that ℓ≥ ℓ̌σ , only fundamental
runs occur, while panic runs emerge in equilibrium otherwise. Importantly, DI increases
financial stability along two dimensions: it reduces the range of parameters for which
panic runs occur, and it reduces the strategic complementarity in depositors’ withdrawal
decisions. To focus on situations in which financial fragility is of real concern, we again
restrict attention to the case of ℓ < ℓ̌σ henceforth. This is equivalent to assuming that the
degree of deposit insurance coverage, σ , is not so large that all fragility is eliminated.

Having characterized uninsured depositors’ withdrawal decisions, we move to the
bank’s choice of risk management. We first restate the expression for expected bank
profits. Relative to (7), we need to replace θ ∗ with the one characterized in Lemma 3. We
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also account for the two types of depositors. Expected profits are then given by:

Πσ (z) ≡ p
∫ 1

θ∗
L,σ

[Rθ − (1− k)r2,σ ]dθ +(1− p)
∫ 1

θ∗
H,σ

[Rθ − (1− k)r2,σ ]dθ − c
z2

2
−F1{z>0}.

Again ignoring the fixed cost, the optimal level of risk management is ẑσ . Proposition 4
complements Proposition 1 by examining how the bank’s incentives are affected by DI.

Proposition 4. Let ℓL < ℓ̌σ . The incentives to manage risk along the intensive margin increase as
the interim value in the event of a shock decreases, dẑσ /dℓL < 0, and the incentives decrease as the
fraction of insured depositors increases, dẑσ /dσ < 0.

Proof: See Appendix A.9. □

The first result is identical to that in Proposition 1, suggesting that the key mechanics
with deposit insurance are similar to the baseline model. The second result about the effect
of DI coverage mirrors a similar result obtained for bank capital: having more insured
deposits makes the bank more stable, reducing the need to engage in risk management
along the intensive margin.

Next, we show that the result of zero risk management choice (as characterized in
Proposition 2) similarly holds in this setting, with the bank deciding not to manage risk
as the shock to the interim asset value becomes more severe. What is more, DI can be a
catalyst for setting up a risk management desk, again similar to bank capital.

Proposition 5. For any F ≥ 0 and c > ĉσ , the bank stops doing risk management when the interim
asset value falls below a unique cutoff ℓ̃σ = ℓ̃σ (F ,c) ∈ (0,ℓσ ), where ℓσ solves θ ∗

L,σ (ℓσ ) = θ . That
is, z∗σ = 0 whenever ℓL < ℓ̃σ (or, equivalently, F < F̂σ ). This threshold increases in DI coverage,
dF̂σ /dσ > 0.

Proof: See Appendix A.10. □

Intuitively, the complementary relationship between deposit insurance and setting up a
risk management desk–the extensive margin effect of deposit insurance on risk manage-
ment–arises because of the stabilizing effect of DI, which increases the expected profits of
the bank from risk management by reducing the probability of a run.
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5 Discussion of robustness and extensions

We extend our analysis in various ways to establish robustness and to incorporate greater
realism. First, we show that our finding of a zero risk management choice is robust to the
endogenization of deposit rates in Section 5.1. We then extend our model by endogenizing
the bank capital structure in Section 5.2. Next, we consider an alternative, and perhaps
more realistic, modelling approach to risk management in Section 5.3 and show that our
main results are robust. Thereafter, we consider a different source of risk (credit risk as
opposed to liquidity risk) in Section 5.4. We show that our main mechanism leading to
zero risk management choices (via compressed bank profits as adverse shocks become
more severe) applies more generally. Finally, Section 5.5 solves a constrained planner
problem and shows that there is a wedge between the private and social incentives for
risk management, confirming our argument that there are failures in risk management.

5.1 Endogenous deposit rates

To clearly illustrate the main forces at work, we have so far held the promised repayment
to depositors r2 constant when varying the interim asset value. However, the equilibrium
repayment clearly depends on the interim value since changes in the distribution of ℓ

affect the expected value of the deposit claim and hence shift depositors’ participation
constraint. Here, we demonstrate that our main result on zero risk management choice
continues to hold when the indirect effects arising from the need to ensure depositors’
participation are taken into account. Let the outside option of consumers yield a (gross)
return of ρD ≥ 1. The bank raises funds from consumers in exchange for a deposit contract
and sets the deposit rate r2 to maximize expected profits subject to consumer participation.

As a first step, the following lemma establishes how the interim value ℓL affects r2 in
the baseline model (without deposit insurance) and no risk management, z = 0.

Lemma 4. Lower interim values are associated with a higher deposit repayment in equilibrium:
dr∗2/dℓL < 0 and dr∗2/dℓH < 0.

Proof. See Online Appendix A.11. □

Lemma 4 shows that the possibility of a larger negative shock leads the bank to offer
a higher repayment r2 to depositors. In the next lemma we study the implication for the
overall effect of a change in the level of the interim value ℓL on the run threshold.
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Lemma 5. The run threshold increases upon a more severe shock to the interim value: dθ ∗
L /dℓL < 0.

Proof. See Online Appendix A.12. □

Lemma 5 establishes that similar comparative statics to those obtained in Lemma 1 (for
the case when r2 is held fixed) also hold when r2 is endogenous and pinned down by
the binding participation constraint of investors.18 This occurs even though, as shown in
Lemma 4, r2 must increase whenever ℓL decreases in order to compensate depositors for
the potentially larger drop in the interim value of the bank’s assets. The increase in r2,
however, reduces depositors’ incentives to run, thus lowering θ ∗, and at least partially
offsets the effect of the drop in ℓL. Nevertheless, Lemma 5 establishes that the overall
equilibrium effect of a change in ℓL is unchanged, because the indirect effect coming from
the change in r2 does not fully offset the direct effect. The implication is that, as before, a
larger negative shock to the interim value of bank assets is destabilizing.

Having characterized how the probability of a run changes with the interim asset
value, the following proposition restates our main result in the context where r2 (ℓL) is
endogenous and is set to satisfy depositors’ participation constraint.

Proposition 6. For any F ≥ 0 and c > č, the bank stops doing risk management when the interim
asset value falls below a unique cutoff ℓ̃r2 ∈ (0, ℓ̌), where ℓ̌ solves θ ∗

L (0, ℓ̌) = θ . That is, z∗ = 0
whenever ℓL < ℓ̃r2 .

Proof. See Online Appendix A.13. □

Proposition 6 shows that our main result on the lack of risk management incentives
when the shock to the interim asset value becomes severe continues to hold when r2 is
endogenized. As before, the constraint that c is not too small is there only to guarantee
that risk management is not so cheap that the bank can simply fully offset any shock, no
matter how negative. Hence, the bank’s decision not to manage risk obtained earlier did
not arise from the assumption that deposit interest rates were fixed, but rather stems from
how bank incentives are altered as shocks become sufficiently large.

18The lemma focuses on the deposit rate corresponding to the solution to the binding participation
constraint. In principle, the bank may find it optimal to increase r2 further in this setting, leaving some slack
in depositors’ participation constraint. Such strategy could be optimal since a higher deposit rate reduces
the run threshold and so may have a beneficial effect on the bank’s expected profits. As shown in Ahnert et
al. (2023), parametric restrictions on the investment profitability R ensure that the participation constraint
binds in equilibrium.
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5.2 Endogenous bank capital

So far, we have treated bank capital as exogenous, so that the comparative statics with
respect to k could be interpreted as the response to a change in binding capital require-
ments, for instance. In this section, we endogenize the bank’s capital structure. We show
that the bank finds it optimal to raise a strictly positive amount of capital as long as the
cost of bank capital is not too high relative to the cost of deposit funding. Intuitively, the
bank values the role of bank capital as a non-contingent risk management tool that can
reduce the probability of bank runs in all states.

To study this issue, suppose that the banker raises capital and deposits at the beginning
of t = 0, so that k and r2 are jointly determined. Assume also that the outside options of
bank equity holders is ρE ≥ ρD.19 To ease the exposition, we focus on a parameter space
where depositors’ participation constraint binds. Thus, the banker’s problem is:

max
k,r2

Π = p
∫ 1

θ∗
L

[Rθ − (1− k)r2]dθ +(1− p)
∫ 1

θ∗
H

[Rθ − (1− k)r2]dθ −ρEk− c
z2

2
−F1{z>0}, (9)

where the term ρEk represents the cost of equity for the bank. This maximization problem
is subject to the participation constraints of the banker, Π ≥ 0, and depositors:

V ≡ pℓ

[∫
θ∗

L

0

ℓL + z
1− k

dθ +
∫ 1

θ∗
L

r2 dθ

]
+(1− pℓ)

[∫
θ∗

H

0

ℓH

1− k
dθ +

∫ 1

θ∗
H

r2 dθ

]
= ρD, (10)

where we used the fact that depositors receive an equal share of liquidation proceeds at
time 1. Note that risk management effort is determined at the end of time 0, so it depends
on the prevailing level of bank capital and the deposit rate z = z∗(k,r2).

We can now characterizes the bank’s optimal capital structure.

Proposition 7. The bank is funded with equity and debt, k∗ ∈ (0,1), if the cost of equity, ρE , is
not too high relative to the cost of debt, ρD.

Proof: See Online Appendix A.14. □

This proposition states that a positive but not too high equity premium results in a pos-

19While it is widely accepted that the cost of bank equity is higher than the cost of debt, due to factors such
as taxes (Modigliani and Miller 1958, 1963), bankruptcy costs (Myers 1977), asymmetric information (Myers
and Majluf 1984), as well as a cost of contingencies and limited financial market participation (Barberis
et al. 2006; Guiso et al. 2008; Guiso and Sodini 2013), the magnitude of the equity premium is debated
(Admati et al. 2013). See Allen et al. (2015) for a general equilibrium framework in which the cost of equity
endogenously emerges as higher than the cost of deposits.
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itive and interior choice of bank capital, k∗ ∈ (0,1). The intuition stems from recognizing
that panic runs, which are the result of coordination failures among depositors, destroy
welfare. As a result, the use of instruments or tools that can reduce the probability of a run
will, all else equal, lead to a Pareto improvement as both depositors and the bank benefit
from this reduction. Therefore, as long as the cost of equity capital, ρE , is not too much
higher than the cost of debt, ρD, raising at least some amount of equity will be optimal for
the bank. Ceteris paribus, depositors also benefit from capital because (i) it reduces the
run threshold θ ∗, thus making it more likely that they receive the promised payment at
t = 2; and (ii) it increases the repayment upon a run. In equilibrium, this then allows the
bank to reduce the date 2 repayment, r∗2, and increases its profits.

The privately optimal choice of capital characterized in Proposition 7 is constrained
efficient. That is, a social planner facing depositor runs and the bank’s risk management
decision would also choose k∗, trading off the higher cost of capital against the benefits in
terms of lower run probability. As a result, there is no scope for prudential regulation of
capital in our framework. However, the result in Section 4.1 highlights the effect of the
level of bank capital on risk management, both on the intensive and extensive margins,
pointing to an intricate relationship between capital and risk management. If the planner
were to choose both capital and risk management, this interaction should lead to the use
of both of these tools for managing financial stability and maximizing welfare.

5.3 Alternative modelling of risk-management: a swap

In the baseline model, we considered the benefit of risk management to be narrowly
targeted to address the specific risk to which the bank is exposed to, namely the possibility
that the interim value of assets turns out to be low. As a result, our notion of risk
management was geared towards raising the interim value from ℓL to ℓL + z in the state
with the negative shock. In this section, we broaden the analysis by considering an
alternative modelling approach to risk management that resembles a swap. For example,
interpreting the shock to the interim asset value as the result of monetary tightening,
banks can use interest rate derivatives (e.g., an interest rate swap) to hedge against the
drop in the value of their assets. In the context of our model the bank can buy a swap to
obtain extra resources z in state L in exchange for a cash payment in state H.20

20An interest rate swap allows two counterparties to exchange cash payments based on changes in the
interest rate. The swap seller receives a net payment when the interest rate falls, while its counterparty, the
swap buyer, receives a net payment when the interest rate rises. This simplified modelling abstracts from
payments of margin calls when the value of the derivative position worsens. Accounting for those would
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This extension serves two purposes. First, it shows that our main result (the bank
does not engage in risk management anticipating a severe shock) is robust to allowing for
more general, and perhaps also more realistic, tools for managing risk. Second, it micro-
founds the assumption of a convex cost of risk management used in the previous sections,
showing that this cost structure can arise endogenously with other risk management tools.

For simplicity, we assume that the swap contract is free from counterparty risk and
senior to other claims on the bank (see Dasgupta 2004 for a similar assumption). This
could be because of collateral set aside for the transaction, which is then exempt from the
resources of the bank depositors have access to when running (see, e.g., Ahnert et al. 2019).
Also for simplicity, we focus on the symmetric case p = 1/2, which makes the design of an
actuarially fair swap particularly simple: the bank receives z in state L and pays z in state
H, for which it has to liquidate some investment. Importantly, the transfer of resources
is independent of whether the bank liquidates any assets (i.e., independent of whether a
run occurs) and does not require funding at t = 0 beyond setting up the risk management
desk at non-pecuniary fixed cost F ≥ 0, consistent with Bretscher et al. (2018). While all
results in this section hold for F = 0, we allow a for a positive fixed cost for consistency
with previous sections.

Since our focus is on the bank’s exposure to and management of risk, we restrict the
transfer z such that the total resources available to the bank in state L (upon the negative
shock) are never greater than in state H. That is, the negative state remains the less
favorable one even after optimally managing risk (or not) by the bank. Formally, this
means that the bank’s resources in the low state, ℓL + z in the event of liquidation, are not
greater than in the high state, (ℓH − z)/ℓH . This restriction on z arises naturally for many
parameter constellations given the increasing (endogenous) cost of risk management, but
we assume it exogenously to make the analysis more tractable.21

The analysis proceeds as in the baseline model. First, we characterize depositors’
withdrawal decisions. Then, we move to analyze the bank’s incentives to manage risk.

Lemma 6. Depositors withdraw at the interim date in state L and H if the fundamental of the
economy θ falls below the cutoffs θ ∗

L,S and θ ∗
H,S, respectively. The threshold θ ∗

L,S decreases in z,

increase the outflow of funds from the counterparty, who is having the net outflow of funds, thus affecting
the cost of the swap. Abstracting from these additional considerations biases against our desired result.

21This constraint on the transfer of resources from state H to state L also serves to rule out the possibility that
the bank is unable to repay depositors in state H even if the realization of the fundamental is most favorable.
Hence, the assumption is primarily about preserving intermediation. In practice, larger swap positions are
prohibited by financial regulators: to reduce the risk of under-capitalization stemming from complex or
concentrated derivatives exposures, the Basel III reforms require that all material risk exposures—including
contingent derivatives positions—be fully captured by capital requirements. See e.g., BCBS (2017).
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while θ ∗
H,S increases in it.

Proof: See Online Appendix A.15. □

Having characterized depositors’ withdrawal decisions, expected bank profits are:

Πs(z) ≡
1
2

∫ 1

θ∗
L,S

[Rθ + z− (1− k)r2]dθ +
1
2

∫ 1

θ∗
H,S

[Rθ

(
1− z

ℓH

)
− (1− k)r2]dθ −F1{z>0}, (11)

where the first term captures the profits the bank accrues in state L, ΠS,L, while the second
one represents the profits accrued in state H, ΠS,H . The effect of the risk management is
twofold. First, it affects the bank’s exposure to runs (via changes in both failure thresholds).
Second, it affects the amount of profits the bank accrues conditional on surviving a run.
Compared to the baseline model, the effect on the failure threshold in the high state and
the direct effects on profitability are novel channels.

The right panel in Figure 3 illustrates the differential effect of z on the bank’s profits,
which is driven by its differential effect on the failure thresholds established in Lemma
6. The figure shows the case where the bank finds it optimal to engage in some risk
management. Entering into the swap contract benefits the bank in state L, but entails a
cost in state H. The figure illustrates that the magnitude of benefits and costs, as captured
by the different slope of the two curves, changes with the risk management effort. When
effort is small, a marginal change in z leads to an increase in state L profits larger than the
decrease in profits in state H, so the bank engages in risk management. On the contrary,
when z is high, an increase in z has a stronger impact on the profits in state H than in state
L, so that the endogenous cost of additional risk management at that point exceeds its
benefits.

The next proposition proves that, as in the baseline model, the bank does not engage
in risk management when the shock to the interim asset is sufficiently severe. The formal
proof relies on the condition that ℓH is low enough (the precise condition is stated in the
appendix). While this sufficient condition may be seen as restrictive, numerical examples
(including the one reported here) show that the result arises much more generally.

Proposition 8. For F ≥ 0 and ℓH low enough, the bank does not do any risk management when
the interim asset value falls below some cutoff ℓ̃L,S > 0.

Proof. See Online Appendix A.16 □

Proposition 8 confirms that our results on the lack of risk management incentives when
the shock to the interim asset value becomes severe, illustrated in the left panel of Figure 3,
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is robust to allowing for more general tools of risk management with an endogenous cost.
Consistent with the baseline model, the choice of a positive level of risk management,
denoted as z∗ ≡ ẑS, decreases in the interim value ℓL and drops to zero when the shock to
the interim value is severe. Additional features that are likely important in practice, such
as margin calls that would rise the cost of risk management further, would reinforce the
result.

Risk management choice and expected bank profits
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Figure 3: The left panel shows the equilibrium level of risk management z∗ as a function of the
realized interim value ℓL. The right panel shows bank profits ΠL,S (solid line) and ΠH,S (dotted
line) as a function of z. Parameters: R = 5, k = 1/5, ℓL = 2/5, ℓH = 9/10, r2 = 2 and F = 2/5.

To complete the analysis, we establish in Proposition 9 that the endogenous cost of
risk management, which in this setup is given by the decline in bank profits in the high
state as a result of the transfer z, shares similar characteristics to the reduced-form cost
function we assumed for the baseline analysis. In particular, we demonstrate that the cost
of taking the swap, denoted by C, is generally convex. While the formal result below uses
a (somewhat restrictive) sufficient condition related to the interim asset value in the high
state, numerical examples show that this convexity holds more broadly and arises in all
examples we have constructed.

Proposition 9. If ℓH ≤ (1 − k)/2, then the endogenous cost of risk management is convex,
d2C/dz2 > 0.

Proof: See Online Appendix A.17. □
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5.4 Credit risk management

So far, we focused only on liquidity risk and established a zero risk management result.
A natural question is to what extent our results extend to other sources of risk, and in
particular to credit risk, a primary type of risk that banks are regularly exposed to. While
our framework up to now has endeavored to isolate the effect of shocks to only financial
stability, here we allow for shocks that directly affect the long-term return of the bank’s
project and hence constitute credit risk. Specifically, suppose now that ℓ ∈ (0,1) is a
constant and a credit risk shock is represented by the long-term return R taking one of
two possible values, RL or RH , with p as the probability of the low state. Credit risk
management (CRM) is again a state-contingent tool that improves the payoff in the low
state from RL to RL + z. For simplicity, the bank’s cost structure is as in the main model.

A shock to the bank’s return (i.e., lower values of RL, which represent greater credit
risk) increases bank fragility. That is, the probability of a depositor run increases, as we
show in the proof of the result below. Formally, θ ∗(RL) decreases in RL, paralleling the
effect of shocks to the interim asset value, ℓL. As in the the baseline model, the key to our
result is that a shock increases bank fragility (even after accounting for the optimal risk
management effort). Let z∗CRM be the bank’s optimal choice of (credit) risk management.

Proposition 10. For all c > ĉCRM (defined in the appendix), there exists a threshold value R̃L > 0
such that the bank stops doing risk management when RL falls below R̃L: z∗CRM = 0 for all RL ≤ R̃L.

Proof: See Online Appendix A.18. □

This result mirrors the result in Proposition 2, showing that zero risk management also
arises when credit risk is the main source of risk. Thus, our main mechanism naturally
extends to other sources of risk, including to settings where the possible shocks directly
affect the value of the project, rather than only indirectly through its effect on financial
stability. Analogous to our baseline model, the bank’s expected profits in the low state
are reduced, eventually resulting in zero risk management. The condition on the variable
cost parameter c is also the analog of the one included in Proposition 2, guaranteeing that
the bank cannot avoid a run when the shock is at its most extreme value, that is for RL → 0.

5.5 Constrained inefficiency

In this section we compare the solution to a constrained-planner problem to the one
obtained privately by a bank. Our focus is on the main model analyzed in Section 3 with
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the shock to the interim asset value and an exogenous cost structure of risk management
effort. This analysis establishes that the private incentives for risk management effort are
insufficient and that our main result is indeed one of a failure in risk management.

The key friction that the planner can resolve is that it can commit to a risk management
choice when raising deposit funding. This allows the planner P to internalize how the
deposit rate, r2, demanded by consumers at the funding stage depends on the committed
risk management effort, zP. By contrast, the bank has no such commitment since risk
management actions are not verifiable. Formally, we consider a constrained planner who
maximizes utilitarian welfare and takes the incomplete information in the economy and,
in particular, the depositors’ withdrawal choices as given. Thus, the planner takes the
failure threshold θ ∗ specified in Lemma 1 as given, as does the bank. We focus again on
the case where bank leverage is relatively high for the same reason as before: ℓH ≤ 1−k, so
there are panic runs. We also assume that the participation constraint of investors binds,
which pins down the equilibrium deposit rate. We have the following results.

Proposition 11. There are risk management failures along two dimensions:

(i) The planner engages in risk management for a larger range of parameters, F̂P > F̂ .

(ii) Along the intensive margin, the planner can increase welfare by commiting to a higher level
of risk management than the bank, ẑP > ẑ.

Proof: See Online Appendix A.19. □

The intuition for these results is as follows. The commitment power of the planner
implies that the deposit rates are responsive to future risk management choices, reducing
the funding cost of the bank. On the intensive margin, i.e. when the bank engages in
risk management, the planner engages in more risk management than the bank. On
the extensive margin, it also sets up a risk management desk for a larger range of fixed
costs. In this sense, the privately optimal risk management failures are excessive. A direct
implication of these results is that the bank is excessively fragile (because it engages in too
little risk management), which is socially costly.

6 Conclusion

Runs on banks have been pervasive historically, and recent episodes demonstrate that they
continue to be a concern for bank shareholders, depositors, and regulators. Moreover, the
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failure of a number of financial institutions in 2023 proved once again that the conditions
at which banks can obtain funds at short notice to meet withdrawals play a crucial role
for their stability. Specifically, negative shocks to the interim value of bank assets, even
if anticipated, can lead to greater instability and trigger a bank run. These channels of
fragility and their implications for risk management have been largely ignored so far.

Incorporating such risk into a canonical global-games model of bank runs, we consider
the question of what incentives a bank may have to hedge these risks. We show that even
if a bank’s marginal incentives to manage risk may increase as the severity of the possible
negative shock increases, the bank’s profitability nevertheless declines. For sufficiently
large negative shocks, the bank may not find it profitable to set up any risk management
operations. As a result, risk management operations are abandoned (or never entertained
in the first place) precisely when managing those risks would have the largest impact in
terms of improving financial stability.

Our framework helps to understand how private sector incentives to manage risk
may differ from social incentives, and which bank characteristics play a role in shaping
those incentives (e.g., bank size, capitalization, stability of the funding base). Hence, our
analysis also helps understand the benefit of different mitigating tools available either to
the banker or to a regulator. Because the model endogenizes both the extensive margin
(whether a risk-management desk is set up) and the intensive margin (how much hedging
effort is exerted), it clarifies how non-contingent instruments such as bank capital and
deposit-insurance coverage reshape bankers’ trade-offs and the regulator’s toolkit.

30



References
Acharya, Viral V., Matthew P. Richardson, Kermit L. Schoenholtz, Bruce Tuckman,

Richard Berner, Stephen G. Cecchetti, Sehwa Kim, Seil Kim, Thomas Philippon,
Stephen G. Ryan et al., “SVB and beyond: The banking stress of 2023,” Available at
SSRN 4513276, 2023.

Admati, Anat R., Peter M. DeMarzo, Martin F. Hellwig, and Paul C. Pfleiderer, “Fallacies,
Irrelevant Facts, and Myths in the Discussion of Capital Regulation: Why Bank Equity
is Not Socially Expensive,” Available at SSRN 2349739, 2013.

Ahnert, Toni and Ali Kakhbod, “Information Choice and Amplification of Financial
Crises,” The Review of Financial Studies, 2017, 30 (6), 2130–78.
, Kartik Anand, Prasanna Gai, and James Chapman, “Asset encumbrance, bank fund-
ing, and fragility,” The Review of Financial Studies, 2019, 32 (6), 2422–2455.
, Peter Hoffmann, Agnese Leonello, and Davide Porcellacchia, “Central Bank Digital
Currency and Financial Stability,” CEPR DP 18222, 2023.

Allen, Franklin and Douglas Gale, “Financial Intermediaries and Markets,” Econometrica,
2004, 72 (4), 1023–1061.
and , Understanding Financial Crises, Oxford University Press, 2007.
, Elena Carletti, and Robert Marquez, “Deposits and bank capital structure,” Journal of
Financial Economics, 2015, 118 (3), 601–619.
, , Itay Goldstein, and Agnese Leonello, “Government guarantees and financial
stability,” Journal of Economic Theory, 2018, 177, 518–557.

Barberis, Nicholas, Ming Huang, and Richard H. Thaler, “Individual Preferences, Mon-
etary Gambles, and Stock Market Participation,” American Economic Review, 2006, 96 (4),
1069–1090.

BCBS, “Basel III: Finalising post-crisis reforms,” Bank for International Settlements, Decem-
ber 2017.

Bianchi, Michele, Dario Ruzzi, and Anatoli Segura, “Dynamic interest rate risk hedging:
Evidence from Italian banks,” Mimeo, 2025.

Bouvard, Matthieu and Samuel Lee, “Risk management failures,” The Review of Financial
Studies, 2020, 33 (6), 2468–2505.
, Pierre Chaigneau, and Adolfo De Motta, “Transparency in the financial system:
Rollover risk and crises,” The Journal of Finance, 2015, 70 (4), 1805–1837.

Bretscher, Lorenzo, Lukas Schmid, and Andrea Vedolin, “Interest Rate Risk Management
in Uncertain Times,” The Review of Financial Studies, 2018, 31 (8), 3019–60.

Caglio, Cecilia, Jennifer Dlugosz, and Marcelo Rezende, “Flight to Safety in the Regional
Bank Crisis of 2023,” Mimeo, 2024.

Calomiris, Charles and Charles Kahn, “The Role of Demandable Debt in Structuring
Optimal Banking Arrangements,” American Economic Review, 1991, 81 (3), 497–513.

31



Calomiris, Charles W., Madalen Castells-Jauregui, Florian Heider, and Marie Hoerova,
“A Theory of Bank Liquidity Requirements,” Mimeo, 2023.

Carletti, Elena, Agnese Leonello, and Robert Marquez, “Demandable Debt without
Liquidity Insurance,” Mimeo, 2023.
, , and , “Loan guarantees, bank underwriting policies and financial stability,”
Journal of Financial Economics, 2023, 149 (2), 260–295.

Carlsson, Hans and Eric van Damme, “Global Games and Equilibrium Selection,” Econo-
metrica, 1993, 61 (5), 989–1018.

Chen, Qi, Itay Goldstein, and Wei Jiang, “Payoff complementarities and financial
fragility: Evidence from mutual fund outflows,” Journal of Financial Economics, 2010,
97 (2), 239–262.

Choi, Dong Beom, Paul Goldsmith-Pinkham, and Yorulmazer Tanju, “Contagion Effects
of the Silicon Valley Bank Run,” NBER Working Paper No. 31772, 2024.

Cipriani, Marco, Thomas M. Eisenbach, and Anna Kovner, “Tracing Bank Runs in Real
Time,” Federal Reserve Bank of New York Staff Reports, no. 1104, 2024.

Cookson, J. Anthony, Corbin Fox, Javier Gil-Bazo, Juan Felipe Imbet, and Christoph
Schiller, “Social Media as a Bank Run Catalyst,” Mimeo, 2023.

Dasgupta, Amil, “Financial Contagion Through Capital Connections: A Model of the
Origin and Spread of Bank Panics,” Journal of the European Economic Association, 2004, 2
(6), 1049–14.

Dávila, Eduardo and Itay Goldstein, “Optimal deposit insurance,” Journal of Political
Economy, 2023, 131 (7), 1676–1730.

Diamond, Douglas and Raghuram Rajan, “Liquidity Risk, Liquidity Creation, and Fi-
nancial Fragility: A Theory of Banking,” Journal of Political Economy, 2001, 109 (2),
287–327.

Diamond, D.W. and P.H. Dybvig, “Bank Runs, Deposit Insurance and Liquidity,” Journal
of Political Economy, 1983, 91, 401–19.

Drechsler, Itamar, Alexi Savov, and Philipp Schnabl, “The deposits channel of monetary
policy,” The Quarterly Journal of Economics, 2017, 132 (4), 1819–1876.
, , , and Olivier Wang, “Banking on Uninsured Deposits,” Mimeo, 2023.

Egan, Mark, Ali Hortacsu, and Gregor Matvos, “Deposit Competition and Financial
Fragility: Evidence from the US Banking Sector,” American Economic Review, 2017, 107
(1), 169–216.

Eisenbach, Thomas M., “Rollover risk as market discipline: A two-sided inefficiency,”
Journal of Financial Economics, 2017, 126 (2), 252–269.

Fed Board, “Review of the Federal Reserve’s Supervision and Regulation of Silicon Valley
Banks,” Report April, 2023.

Furlong, Frederick T. and Michael C. Keeley, “Capital Regulation and Bank Risk-Taking:
A Note,” Journal of Banking & Finance, 1989, 13 (6), 883–891.

32



Goldstein, Itay and Ady Pauzner, “Demand Deposit Contracts and the Probability of
Bank Runs,” Journal of Finance, 2005, 60 (3), 1293–1327.

Granja, João, Erica Xuewei Jiang, Gregor Matvos, Tomasz Piskorski, and Amit Seru,
“Book-Value Risk Management of Banks: Limited Hedging, HTM Accounting, and
Rising Interest Rates,” NBER Working Paper No. 32293, 2024.

Guiso, Luigi and Paolo Sodini, “Household Finance: An Emerging Field,” in George M.
Constantinides, Harris Milton, and Rene M. Stulz, eds., Handbook of the Economics of
Finance, Vol. 2, part B, Elsevier B.V., 2013, pp. 1397–1532.
, Paola Sapienza, and Luigi Zingales, “Trusting the Stock Market Trusting the Stock
Market,” Journal of Finance, 2008, 63 (6), 2557–2600.

Jackson, Timothy and George Pennacchi, “How should governments create liquidity?,”
Journal of Monetary Economics, 2021, 118, 281–95.

James, Christopher, “The losses realized in bank failures,” Journal of Finance, 1991, 46(4),
1223–1242.

Kashyap, Anil K., Dimitrios P. Tsomocos, and Alexandros P. Vardoulakis, “Optimal
bank regulation in the presence of credit and run-risk,” Journal of Political Economy,
2023, forthcoming.

Liu, Xuewen, “A Model of Systemic Bank Runs,” The Journal of Finance, 2023, 78 (2), 731–93.
McPhail, Lihong, Philipp Schnabl, and Bruce Tuckman, “Do Banks Hedge Using Interest

Rate Swaps?,” OCE Staff Papers and Reports, Number 2019-011, 2023.
Metrick, Andrew, “The Failure of Silicon Valley Bank and the Panic of 2023,” Journal of

Economic Perspectives, 2024, 38 (1), 133–152.
Modigliani, Franco and Merton H. Miller, “The Cost of Capital, Corporate Finance and

the Theory of Investment,” The American Economic Review, 1958, 48 (3), 261–297.
and , “Corporate Income Taxes and the Cost of Capital: A Correction,” The American
Economic Review, 1963, 53 (3), 433–443.

Morris, Stephen and Hyun Shin, “Global games: Theory and applications,” in Mathias
Dewatripont, Lars Hansen, and Stephen Turnovsky, eds., Advances in Economics and
Econometrics (Proceedings of the 8th World Congress of the Econometric Society), Cambridge
University Press 2003.

Myers, Stewart C., “Determinants of corporate borrowing,” Journal of financial economics,
1977, 5 (2), 147–175.
and Nicholas S. Majluf, “Corporate financing and investment decisions when firms

have information that investors do not have,” Journal of Financial Economics, 1984, 13,
187–221.

Rampini, Adriano A. and S. Viswanathan, “Collateral, risk management, and the distri-
bution of debt capacity,” The Journal of Finance, 2010, 65 (6), 2293–2322.
and , “Collateral and capital structure,” Journal of Financial Economics, 2013, 109 (2),

466–492.

33



Rochet, Jean-Charles and Xavier Vives, “Coordination Failures and the Lender of Last
Resort: Was Bagehot Right after All?,” Journal of the European Economic Association,
December 2004, 2 (6), 1116–1147.

Schilling, Linda, “Optimal Forbearance of Bank Resolution,” Journal of Finance, 2023.
Shen, Lin and Junyuan Zou, “Intervention with Screening in Panic-Based Runs,” The

Journal of Finance, 2024, 79 (1), 357–412.
Shleifer, Andrei and Robert W. Vishny, “Greenmail, white knights, and shareholders’

interest,” The Rand Journal of Economics, 1986, pp. 293–309.
Vives, Xavier, “Complementarities and Games: New Developments,” Journal of Economic

Literature, 2005, 43, 437–79.
, “Strategic Complementarity, Fragility, and Regulation,” The Review of Financial Studies,
2014, 27 (12), 3547–92.

Özlem Dursun-de Neef, Steven Ongena, and Alexander Schandlbauer, “Monetary pol-
icy, HTM securities, and uninsured deposit withdrawals,” Mimeo, 2023.

34



A Appendix

A.1 Proof of Lemma 1

Low interim asset value relative to depositor base: ℓ < 1−k. The proof builds closely on
Carletti et al. (2023b), who adapt the proof in Goldstein and Pauzner (2005) to establish
the existence and uniqueness of a monotone equilibrium when banks maximize profits.

For θ ∈ (θ ,θ ), depositor withdrawal choices determine whether the bank is illiquid or
insolvent. When the liquidation proceeds at t = 1 are insufficient to meet withdrawals,
n > n = ℓ/(1− k) < 1, the bank is illiquid. Otherwise, it continues to operate until t = 2.
If the bank cannot meet remaining withdrawals, n > n̂, it is bankrupt due to insolvency at
t = 2, where n̂ arises from:

Rθ

(
1− (1− k)n

ℓ

)
− (1− k) (1−n) r2 = 0 ⇒ n̂ ≡ Rθ − (1− k)r2

Rθ (1−k)
ℓ − (1− k)r2

< 1. (12)

The first term of the solvency condition in Equation (12) on the left is the return on
the part of the project not liquidated at t = 1 and the second term represents remaining
withdrawals at t = 2. Table 2 shows the payoffs of depositors associated with the two
withdrawal actions. Depositors’ payoffs depend on the realized economic fundamental θ

and the proportion n of depositors withdrawing.

aggregate action

individual action

n ≤ n̂
bank is solvent

n̂ < n ≤ n
bank is insolvent
but liquid at t = 1

n > n
bank is insolvent

and illiquid at t = 1
Withdraw 1 1 ℓ/(1− k)n
Don’t withdraw r2 0 0

Table 2: Payoffs in the withdrawal game for intermediate realized fundamentals, θ ∈ (θ ,θ ).

For vanishing noise, we can write the indifference condition of the marginal depositor
as: ∫ n̂

0
r2dn =

∫ n

0
dn+

∫ 1

n

ℓ

(1− k)n
dn = α . (13)

Using the marginal depositor’s expected payoff from withdrawing, α = ℓ
1−k

[
1− ln

(
ℓ

1−k

)]
,

we obtain the fundamental threshold from Lemma 1. Throughout we focus on a high
enough deposit rate r2, for which r2 > α(1− k)/ℓ. For lower values of r2, it is a dominant
strategy for depositors to withdraw at time 1, so θ ∗ = θ . This arises if Condition (13) holds

as a strict inequality, which yields: r2 < r̂2 ≡
(

θ

θ
− ℓ

1−k

)
(1−ln( ℓ

1−k ))
θ

θ
−1

, with r̂2 >
α(1−k)

ℓ .
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High interim value relative to depositor base: ℓ ≥ 1 − k. For ℓ = 1 − k, we have
n = 1 and α = 1. Furthermore, the bank’s solvency condition, characterized in (12), can
be rearranged to [Rθ − (1− k)r2] (1− n) = 0, which is positive for θ > θ and negative
for θ < θ . It follows that a depositor’s expected payoff from withdrawing at t = 1 and
t = 2 is independent of n, and so the relevant bank failure threshold is θ because r2 > 1.
Intuitively, the withdrawals do not impose a loss on other depositors when ℓ = 1− k.
The fundamental-run threshold in (5) decreases in bank capital, ∂θ

∂k = −r2/R < 0. Hence,
the solvency condition in (12) becomes less binding for any n when ℓ exceeds 1 − k.
Intuitively, a high interim value relative to the deposit base means that withdrawals
by other depositors increases a given depositor’s incentive not to withdraw (strategic
substitutability). It follows that, for any ℓ > 1− k, the relevant threshold is still θ . Finally,
we have ∂ 2θ /∂k2 = 0 and ∂θ /∂ℓ= 0 = ∂ 2θ /∂ℓ2 = ∂ 2θ /∂k∂ℓ.

Comparative statics of the failure threshold for ℓ < 1− k. Next, we analyze how the
bank failure threshold with panics, θ ∗, changes with bank capital, the interim value of
the bank asset, and both of them. Since ℓ is used to generically denote both ℓL + z and
ℓH , and since z and ℓL are perfect substitutes, it follows that the comparative statics with
respect to ℓ below can be used for the comparative statics with respect to ℓL, ℓH , and z. The
interim value and bank capital only enter into the failure threshold in Equation (6) as their
ratio, ℓ/(1−k)≡ x. It is easy to see that dx/dℓ= (1−k)−1 > 0, dx/dk = ℓ(1−k)−2 > 0, and
d2x/dkdℓ = (1− k)−2 > 0. Using this definition, we can express the marginal depositor’s
expected payoff from withdrawing as α = x(1− ln(x)), with dα/dx = − ln(x) > 0 because
x < 1. Inserting the definitions of α and x into (6) yields θ ∗ = θ

r2−x(1−ln(x))
r2−(1−ln(x)) > θ . Define β as

θ ∗ ≡ θβ , so β > 1 for panic runs. We can write the difference as θ ∗−θ = θ
(1−x)(1−ln(x))
r2−(1−ln(x)) =

θ
1−x
r2

1−ln(x)−1
, which decreases in x because both effects of x reduce the left-hand side: d(θ ∗−

θ )/dx < 0. This implies that d(θ ∗−θ )/dℓ < 0 and d(θ ∗−θ )/dk < 0. Note that dθ ∗/dℓ=

(dθ ∗/dx)(dx/dℓ) because dθ /dℓ = 0. Moreover, dθ ∗/dk = βdθ /dk+ (dθ ∗/dx)(dx/dk).
Thus, it is critical to determine the derivative w.r.t. x: dθ∗

dx = θ
(1−ln(x))2−r2(1/x−ln(x))

[r2−(1−ln(x))]2
< 0,

because x < 1 and r2 ≥ r̂2 > α/x in any equilibrium. The numerator is negative even at
r2 = α/x, and it decreases in r2. Since dθ ∗/dx < 0, we obtain dθ ∗/dk < 0 and dθ ∗/dℓ < 0.

Turning to second derivatives, note that d2θ ∗/dℓ2 = (d2θ ∗/dx2)(dx/dℓ)because d2x/dℓ2 =
0. Thus, d2θ ∗/dℓ2 > 0 iff d2θ ∗/dx2 > 0. Moreover, d2θ ∗/dℓdk = (dθ ∗/dx)(d2x/dkdℓ) +
(d2θ ∗/dx2)(dx/dℓ). Hence, a sufficient condition for d2θ ∗/dℓdk > 0 is also d2θ ∗/dx2 > 0.
Next, d2θ∗

dx2 = θ r2

x2 [r2−(1−ln(x))]3
(2(1− x)+ (1+ x)[r2 − (1− ln(x))]) > 0. Hence, d2θ ∗/dℓ2 > 0

and d2θ ∗/dℓdk > 0. To obtain the sign of d2θ ∗/dk2, we differentiate θ ∗:

dθ ∗

dk
=

r2
2 (x− r2 − ln (x))

R (r2 − (1− ln (x)))2 < 0,
d2θ ∗

dk2 =
dθ ∗

dk
2 (r2 − (x− ln (x)))+ (x−1) (r2 − (1− ln (x)))

(1− k) (x− r2 − ln (x)) (r2 − (1− ln (x)))
> 0. (14)
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A.2 Proof of Proposition 1

The stated comparative statics of ẑ, the interior solution to (8), with respect to ℓL, k, and pℓ
are obtained using the implicit function theorem. The second-order conditions are:

d2Π
dz2 = −pR

(
dθ ∗

L

dz

)2

− p[Rθ
∗
L − (1− k)r2]

d2θ ∗
L

dz2 − c < 0,
d2Π

dzdℓL
= −pR

dθ ∗
L

dz
dθ ∗

L

dℓL
− p[Rθ

∗
L − (1− k)r2]

d2θ ∗
L

dzdℓL
< 0

d2Π
dzdk

= −p
[

R
dθ ∗

L

dk
+ r2

]
dθ ∗

L

dz
− p[Rθ

∗
L − (1− k)r2]

d2θ ∗
L

dzdk
< 0,

d2Π
dzd p

= [Rθ
∗
L − (1− k)r2]

(
−dθ ∗

L

dz

)
> 0,

where we used d2θ ∗
L /dzdk = d2θ ∗

L /dℓdk > 0 as shown in the proof of Lemma 1 and
Rdθ ∗

L /dk + r2 < 0. To see this, we use the expression for dθ ∗
L /dk in (14) and, after a

manipulation, we obtain:

R
dθ ∗

L
dk

+ r2 = −r2

[
r2

r2 − (1− ln(x))
r2 − (x− ln(x))
r2 − (1− ln(x))

−1
]
< 0, (15)

because r2
r2−(1−ln(x)) > 1 and x = ℓ

1−k < 1 so that also r2−(x−ln(x))
r2−(1−ln(x)) > 1. Therefore, dẑ/dℓL < 0

dẑ/dk < 0, dẑ/dc < 0 and dẑ/d p > 0 and the proposition follows. □

A.3 Proof of Lemma 2

Proof by contradiction. Recall that dẑ/dℓL < 0 from Proposition 1 and ∂θ ∗
L /∂ z≡ ∂θ ∗

L /∂ℓL <

0. Consider two different values for ℓL, ℓ′L and ℓ′′L, with ℓ′L < ℓ′′L, and suppose that, contrary
to the claim, θ ∗

L (z
∗ (ℓL) ,ℓL) actually increases in ℓL, so that θ ∗

L (z
′ (ℓ′L) ,ℓ′L) < θ ∗

L (z
′′ (ℓ′′L) ,ℓ′′L),

where z′ and z′′ represent the bank’s optimal choices of z in each case. Since θ ∗
L (ẑ (ℓL) ,ℓL)

decreases in ℓL for a given z, we can only have θ ∗
L (z

′ (ℓ′L) ,ℓ′L) < θ ∗
L (z

′′ (ℓ′′L) ,ℓ′′L) if z′ >> z′′.
Moreover, ℓ′L + z′ > ℓ′′L + z′′ must hold. Consider the FOC for the case of ℓL = ℓ′′L. To be
explicit, we rewrite it with ℓ′′L and z′′:

−p
∂θ ∗

L (z
′′ (ℓ′′L) ,ℓ′′L)
∂ z

(Rθ
∗
L (z

′′ (ℓ′′L) ,ℓ′′L)− (1− k)r2)− cz′′ = 0.

Suppose the solution to the risk management problem is interior and denote by ž the
value of z that would give the same run threshold if instead ℓL = ℓ′L: θ ∗

L (ž (ℓ
′
L) ,ℓ′L) =

θ ∗
L (z

′′ (ℓ′′L) ,ℓ′′L), and note that ž ∈ (z′′,z′). Now consider the derivative of bank profits,
evaluated at z = ž and ℓL = ℓ′L:

−p
∂θ ∗

L (ž (ℓ
′
L) ,ℓ′L)

∂ z
(Rθ

∗
L (ž (ℓ

′
L) ,ℓ′L)− (1− k)r2)− cž.
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Since θ ∗
L (ž (ℓ

′
L) ,ℓ′L) = θ ∗

L (z
′′ (ℓ′′L) ,ℓ′′L) and ℓ′L + ž = ℓ′′L + z′′, this can be rewritten as:

−p
∂θ ∗

L (z
′′ (ℓ′′L) ,ℓ′′L)
∂ z

(Rθ
∗
L (z

′′ (ℓ′′L) ,ℓ′′L)− (1− k)r2)− cž.

The expression above is the same as the FOC for the case where ℓL = ℓ′′L, except for the
last term, cž. However, we know that at equilibrium the derivative of bank profits equals
zero when evaluated at z = z′′. Hence, this derivative must be negative for z = ž. Hence,
contrary to the supposition, it cannot be optimal for the bank to choose a value of z such
that ℓ′L + z′ > ℓ′′L + z′′. Then, implies that θ ∗

L (z
′ (ℓ′L) ,ℓ′L) < θ ∗

L (z
′′ (ℓ′′L) ,ℓ′′L) cannot hold. □

A.4 Proof of Proposition 2

Denote ast ẑ(ℓ,c) the interior solution to the first-order condition in (8) for a given interim
asset interim value ℓ and variable cost parameter c. This solution exists whenever the
run threshold is responsive to risk management, that is when θ ∗(ẑ,ℓL) < θ . Conversely,
risk management becomes ineffective at altering the run threshold for some z ≥ 0 when
θ ∗(ẑ,ℓL) = θ , resulting in a corner solution of z = 0. The proof considers both possibilities.

We begin the proof by establishing some preliminary results in the following two
Lemmas. Lemma 7 builds on Lemma 2 and characterizes expected bank profits as the
interim asset value changes. Lemma 8 describes the solutions to Equation (8) and defines
the variable cost threshold ĉ in Equation (16), which we assume to be consistent with
ℓL + ẑ < ℓH . Note that c > ĉ is a sufficient condition for the cutoff ℓ̃L to be strictly positive.

Lemma 7. For all ℓL such that θ ∗
L (ẑ,ℓL) < θ , the bank’s expected profits Π(ẑ,ℓL) increase in ℓL.

Proof. We prove Lemma 7 by using the Envelope theorem. Denote as Π = Π (ẑ,ℓL) the
bank’s expected profits evaluated at the ẑ obtained from the bank’s FOC with respect to z:

Π (ẑ,ℓL) = (1− p)
∫ 1

θ∗
H

(Rθ − (1− k)r2)dθ + p
∫ 1

θ∗
L (ẑ,ℓL)

(Rθ − (1− k)r2)dθ − c
2

ẑ2 −F1{ẑ>0}.

We can compute dΠ(ẑ,ℓL)
dℓL

= ∂ Π
∂ z

dẑ
dℓL

+ ∂ Π
∂ℓL

, where we use ∂ Π/∂ z = 0 from the FOC with
respect to z for an interior solution. The overall sign then just equals the sign of ∂ Π/∂ℓL,
where dΠ

dℓL
= ∂ Π

∂ℓL
=−p∂θ∗

L (ẑ)
∂ℓL

(
Rθ ∗

L (ẑ)− (1−k)r2

)
> 0. Expected bank profits increase in ℓL.

□

Lemma 8. Consider a cutoff ĉ for the variable cost parameter, defined as the positive and finite
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value that solves the following equation evaluated at z = ℓ and ℓL → 0:

p[Rθ
∗
L − (1− k)r2]

(
−dθ ∗

L
dz

)
≡ ĉℓ, (16)

where the interim asset value threshold ℓ solves θ ∗
L (0,ℓ) = θ . For any c > ĉ, we have:

1. for ℓL > ℓ, the interior solution ẑ(ℓL,c) > 0 is the only solution to Equation (8);

2. for ℓL ∈ (ℓ(c),ℓ], there are two solutions, ẑ(ℓL,c) > 0 and the corner solution z = 0;

3. for ℓL ≤ ℓ(c), the corner solution z = 0 is the only solution,

where the interim asset value threshold ℓ(c) and the associated ẑ(ℓ,c) jointly solve:

lim
ℓL→ℓ

(
p[Rθ

∗
L − (1− k)r2]

(
−dθ ∗

L
dz

)∣∣
ℓL+ẑ(ℓL,c)− cẑ(ℓL,c)

)
= 0, (17)

where θ ∗
L (ℓ+ ẑ(ℓ,c)) = θ .

Proof. The proof of Lemma 8 builds on the previous lemmas. From Proposition 1, the
interior solution to Equation (8) for a given interim asset value and cost parameter, ẑ(ℓL,c),
is continuous and decreasing in ℓL and in c. In addition, there can be the corner solution
z = 0 when risk management becomes ineffective at altering the run threshold for some
z ≥ 0, because θ ∗(ℓL) = θ ≈ 1.

The first-order condition has one or two solutions. For c > ĉ, where ĉ is defined in
Equation (16), we can distinguish between three different cases depending on the level
of the interim asset value ℓL. For ℓL > ℓ the interior solution to the first-order condition,
ẑ(ℓL,c)> 0, is the only solution to Equation (8), because the first-order condition is strictly
positive when evaluated at z = 0. The result follows directly from our specification, which
is designed to make risk management as easy as possible: the marginal benefit at z = 0 is
strictly positive while the marginal cost is zero.

For ℓL ∈ (ℓ,ℓ] there are two solutions to the first-order condition, the interior solution
ẑ(ℓL,c) > 0 and the corner solution z = 0, where ℓ(c) is defined in Equation (17). To see
that for any c > ĉ there there exists a unique ℓ that solves the system, recall that ẑ(ℓL,c)
decreases in c and that ℓL + ẑ(ℓL,c) increases in ℓL, which means that θ ∗

L (ℓL + ẑ(ℓL,c))
decreases in ℓL, as shown in Lemma 2. Hence, there must be a point where we enter
the upper dominance region as ℓL decreases, because ẑ(ℓL,c) < ℓ for c > ĉ. This point is
reached at ℓL = ℓ(c) < ℓ. Specifically, for ℓL > ℓ there exists a sufficiently large ẑ(ℓL,c) that
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solves the first-order condition, but there is a discontinuity at ℓL = ℓ where the derivative
of the run threshold drops to zero and the interior solution ceases to exist. The argument
relies on the observation that dθ ∗

L /dz is finite for any ℓL. Finally, for ℓL ≤ ℓ(c) the corner
solution z = 0 is the only solution to the first-order condition. □

Based on Lemmas 2, 7 and 8, we can prove Proposition 2. From Lemma 8 it immediately
follows that for ℓL ≤ ℓ(c) zero risk management is optimal for any F ≥ 0 and the bank fails
with probability one. Instead, for ℓL > ℓ, the bank’s probability of failure is strictly less
than one, and it depends on the level of the fixed cost whether the bank optimally engages
in risk management or not. Therefore, we need to compare expected profits with and
without risk management to determine the bank’s optimal risk management strategy.

We start with a discussion of the intermediate region ℓL ∈ (ℓ(c),ℓ]. It is optimal for
the bank to engage in risk management as long as its expected profits upon the negative
shock net of the fixed cost F are higher than its expected profits in the absence of risk
management: Π(ẑ(ℓL)|ℓL)−Π(0|ℓL) ≥ 0. To obtain the cutoff ℓ̃L(F ,c) in the proposition,
denote F̂(ℓ̃L,c) = F as the solution to:

F = p
∫

θ∗
L (ℓ̃L<ℓ)=θ≈1

θ∗
L (ℓ̃L+ẑ(ℓ̃L,c))

[Rθ − (1− k)r2]dθ − c(ẑ(ℓ̃L,c))2

2
, (18)

with ℓ̃L + ẑ(ℓ̃L,c) > ℓ and dℓ̃L/dc < 0. To see this, recall that c > 0 and ẑ(ℓL,c) > 0. Thus,
z∗ = 0 for all ℓL < ℓ̃L and for any F ≥ 0. The RHS in (18) increases in ℓL, so dℓ̃L/dF > 0.

Next, we turn to the case ℓL > ℓ. Now the upper bound of the integral in Equation (18)
is θ ∗

L (ℓL,0)< θ and we can show by contradiction that there does not exist another interim
asset value threshold, say ℓ̃′L > ℓ, such that the bank stops doing risk management for all
ℓL < ℓ̃′L. In other words, the cutoff ℓ̃L is unique. The result of Proposition 2 follows. □

A.5 Proof of Corollary 1

Take F̂(ℓL,c) from Appendix A.4. It is strictly positive for ℓL ∈ (ℓ̃L(0,c),ℓ). This cutoff is
unique and increases in ℓL since both ẑ(.) and θ ∗(ℓL, ẑ(.)) decrease in ℓL. The result follows.

A.6 Alternative fundamental and signal distribution

Here, we present an alternative specification that shows that our main result (the bank
chooses not to do any risk management when the shock becomes sufficiently severe) need
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not rely on the upper dominance region. All that is necessary is that the value of risk
management decrease as shocks become more extreme, as shown below. The result holds
for any arbitrarily small (but strictly positive) fixed cost. As argued before, some fixed cost
seems natural for the application and we do not view this as a limitation of our result.

Model. Relative to the baseline model, we make two modifications. First, the funda-
mental θ at t = 2 is drawn from a Beta(δ ,δ ) distribution with δ > 1, whose density is
denoted by h and satisfies h(0) = h(1) = 0. Second, depositors’ private signals at t = 1 are
given by:

si = θ +σηi, (19)

where σ > 0 is arbitrarily small and ηi is i.i.d. across depositors with density g and zero
mean, following Morris and Shin (2003). We assume g is symmetric and satisfies the
monotone likelihood ratio property (MLRP). A sufficiently precise private signal ensures
a unique cutoff equilibrium in which depositors follow a threshold strategy (Morris and
Shin, 2003). Henceforth, we focus on the limit of vanishing private signal, σ → 0.

Withdrawal incentives. Letting G denote the CDF of ηi, then for vanishing private sig-
nal noise, the marginal depositor receiving sA expects a fraction q = limσ→0 Pr(si < sA|θ =

sA) = G(0) ∈ (0,1) of other depositors to run (for symmetric noise, q = 1/2). The marginal
depositor is indifferent precisely when the expected withdrawals equal the bank’s re-
sources, n̂(θ ∗

L ,ℓ) = q. Solving this critical mass condition for θ ∗
L yields the equilibrium run

threshold:
θ
∗
L (ℓ) =

(1− k)(1−q)r2

R
(

1− (1−k)q
ℓ

) for ℓ > (1− k)q. (20)

Note that we recover the run threshold from the main text for q = α/r2. Similarly, one can
see that when ℓ ≤ (1− k)q, θ ∗

L (0,ℓL) = θ ≈ 1 and, hence, there exists a ℓA > (1− k)q that
solves θ ∗

L (0,ℓL) = θ . For all ℓ > ℓA, θ ∗
L (0,ℓL) is strictly below θ . Moreover, observe that

the prior distribution of θ , H, does not affect the equilibrium run thresholds. It affects,
however, the marginal benefit of risk management, as we will show below. Note that the
dependency of the run threshold on bank capital and the interim asset value are:

∂θ ∗
L

∂ℓ
= − qθ ∗

L
ℓ− (1− k)q

1− k
ℓ

< 0;
∂θ ∗

L
∂k

= −
∂θ∗

L
∂ℓ

θ ∗
L

< 0;

∂ 2θ ∗
L

∂ℓ2
L

=
∂ 2θ ∗

L
∂ℓL∂ z

=
∂ 2θ ∗

L
∂ z2 =

(
∂θ∗

L
∂ℓ

)2

θ ∗
L

+
θ ∗

L (1− k)q(2ℓ− (1− k)q)
(ℓ2 − (1− k)qℓ)2 > 0.

The qualitative results are identical to our baseline model. Furthermore, we can show
that the sensitivity of the run threshold to changes in the interim asset value is bounded
and finite. First, recall that ∂θ ∗

L /∂ℓL = 0 for ℓL ≤ ℓA. Second, we calculate the derivative at
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the point where ℓL decreases toward ℓA, ∂θ∗
L

∂ z

∣∣∣∣
ℓL→ℓA,z=0

= − Rq
(1−q)r2ℓ

2
A
>−∞.

Risk management incentives. The FOC of the risk management problem is

dΠ
dz

= p[Rθ
∗
L − (1− k)r2]h(θ ∗

L )

(
−dθ ∗

L
dz

)
︸ ︷︷ ︸

≡Ω(ℓL,z)

−cz = 0, (21)

which is the same as in the main text, up to a factor of the density h(θ ∗
L ) instead of one in

the marginal benefit of risk management. Differentiating (21) with respect to z:

d2Π
dz2 =−pR

(
h(θ ∗

L )+
[
θ
∗
L −

(1− k)r2

R

]dh(θ ∗
L )

dθ ∗
L

)(
dθ ∗

L
dz

)2

− p[Rθ
∗
L − (1−k)r2]h(θ ∗

L )
d2θ ∗

L
dz2 −c,

(22)
which is negative for a sufficiently large c, which we assume henceforth. So an interior
solution for risk-management exists, as in the baseline model, and we again denote it as ẑ.

We can now establish a parallel result as in the main text for when the bank chooses to
do zero risk management. This happens when Π(ẑ(ℓL),ℓL)−Π(0,ℓL)≤ 0, which simplifies
to:

p
∫

θ∗
L (0,ℓL)

θ∗
L (ẑ(ℓL),ℓL)

[Rθ − (1− k)r2]h(θ )− c
(ẑ(ℓL))2

2
≤ F . (23)

The expression in (23) can be rearranged as,

p
∫ ẑ

0

[
−∂θ ∗

L (z,ℓL)

∂ z
(Rθ

∗(z,ℓL)− (1− k)r2)h(θ ∗(z,ℓL))− cz
]

dz ≤ F . (24)

Denote the LHS in (24) as ∆Π. Differentiating it with respect to ℓL, we obtain:

d∆Π
dℓL

= p
∂ ẑ
∂ℓL

[Ω(ẑ,ℓL)− cẑ]− p
∫ ẑ

0

[
∂ 2θ ∗

L
∂ z∂ℓL

Φh(θ ∗
L )+

∂θ ∗
L

∂ z
R

∂θ ∗
L

∂ℓL
h(θ ∗

L )+
∂θ ∗

L
∂ z

h′(θ ∗
L )

∂θ ∗
L

∂ℓL
Φ
]

dz,

where Φ = Rθ ∗
L − (1− k)r2, ∂θ∗

L
∂ z =

∂θ∗
L

∂ℓL
< 0 and ∂ 2θ∗

L
∂ z∂ℓL

> 0. Note that the first term is zero
from the Envelope Theorem. Hence, the sign depends only on the second term. With
the distribution considered, it is easy to see that h′(θ ∗

L ) < 0 if θ ∗
L ∈ (1/2,1) and positive

otherwise. It follows immediately that the term in the square bracket is positive when
θ ∗

L < 1/2, thus making d∆Π
dℓL

< 0. Hence, a necessary condition for d∆Π
dℓL

> 0 is that the
shock is sufficiently severe so that θ ∗

L > 1/2. In other words, a necessary condition is that
ℓL < ℓL,1/2, where ℓL,1/2 is the value of ℓL at which θ ∗

L = 1/2. Consider the case ℓL < ℓL,1/2.
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Using the expression derived earlier for the derivatives of the run thresholds, we can
rewrite the integrand as ∂ 2θ∗

L
∂ z2

{
1

θ∗
L
+

θ∗
L (1−k)q(2ℓL−(1−k)q)

(ℓ2
L−(1−k)qℓL)2 h(θ ∗)Φ+Rh(θ ∗)+Φh′(θ ∗)

}
. The

above is negative, as desired, if −h′(θ∗
L )

h(θ∗
L )

> 1
θ∗

L
+

θ∗
L (1−k)q(2ℓL−(1−k)q)

(ℓ2
L−(1−k)qℓL)2 + R

Φ . The ratio on the

LHS simplifies to (δ −1) 1−2θ∗
L

θ∗
L (1−θ∗

L )
so that we can rewrite the inequality above as:

δ > 1+
[

1
θ ∗

L
+

θ ∗
L (1− k)q(2ℓL − (1− k)q)

(ℓ2
L − (1− k)qℓL)2 +

R
Φ

]
θ ∗

L (1−θ ∗
L )

1−2θ ∗
L

, (25)

with the RHS being independent of δ and only a function of ℓL. It can be seen immediately
that as ℓL → ℓA, so that θ ∗

L → 1, the inequality above holds for any δ > 1. Combining this
with the fact that the slope of the profit gains (LHS in (24)) is positive when ℓL = ℓL,1/2, it
must be the case that it becomes negative for some ℓL ∈ {ℓA,ℓL,1/2}, for a sufficiently large
δ . In other words, the inequality above holds also for a larger ℓL so that θ ∗

L < θ < 1. This
implies that, given a fixed cost F for which the bank may find it optimal to engage in risk
management for smaller shocks to ℓL, the bank will instead find it optimal to choose z∗ = 0
for ℓL small enough, but still strictly greater than ℓA.

The numerical example in Figure 4 helps to build intuition. The top panel shows the
two forces that are at play as the severity of the negative shock increases (lower values of
ℓL): (1) the run threshold becomes more sensitive to the interim asset value, as in the main
text; and (2) the probability density gets smaller as the run threshold moves into the tail.
Taken together, the net benefit of doing risk management can be hump-shaped: it first
increases in the severity of the shock and then decreases in it. Importantly, the benefit to
risk management upon a large negative shock is smaller than the cost required to move
the run thresholds away from the tail. We find that (a) for a given level of fixed cost F > 0,
the bank stops doing risk management when the shock is severe, and (b) that this result
does not rely on the insensitivity of the run threshold in the upper dominance region.
Moreover, the sufficient condition in (25) makes clear that a larger value of δ , which makes
the tails thinner, allows the risk-management result to occur for a lower fixed cost.
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Risk management choice

Figure 4: The the left-hand side of Equation (23) against the fixed cost F for two levels of the
distribution parameter, δ ∈ {5,10}. For the prior with thinner tails (δ = 10), the benefit of risk
management starts decreasing in the size of the negative shock, and falls short of the fixed cost,
for higher levels of ℓL, compared to the prior with fatter tails (δ = 5). The left panel shows the risk
management intensity z∗ as a function of ℓL (red solid line). The right panel shows the equilibrium
run threshold θ ∗

L as a function of ℓL for z = 0 (dashed line) as well as z∗ = ẑ > 0 (solid line).
Parameters: R = 5/2, p = 1/4, k = 1/10, c = 70, F = 1/100, p = 1/4 δ = 10 and r2 = 6/5.

A.7 Proof of Proposition 3

Focus on the range ℓ < ℓ and consider the cutoff F̂ corresponding to the solution to (18) in
Proposition 2. Taking the derivative with respect to bank capital gives:

dF̂
dk

= −p

∂θ ∗
L

∂k︸︷︷︸
<0

+
∂θ ∗

L
∂ z︸︷︷︸
<0

dz∗

dk︸︷︷︸
<0

 [Rθ
∗
L − (1− k)r2]+ p

∫ 1

θ∗
L

r2dθ − cz
dz∗

dk︸︷︷︸
<0

= −p
∂θ ∗

L
∂k

[Rθ
∗
L − (1− k)r2]+

dz∗

dk

−p
∂θ ∗

L
∂ z

[Rθ
∗
L − (1− k)r2]− cz︸ ︷︷ ︸

FOCz

+ p
∫ 1

θ∗
L

r2dθ > 0.
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The first term is positive because ∂θ ∗
L /∂k < 0, as is the third term. The second term is zero,

as the term in brackets is the same as the FOC for z as given in (8). The result follows. □

A.8 Proof of Lemma 3

This proof is analogous to that of Lemma 1. We derive the thresholds for a generic ℓ, which
takes one of two values depending on the realized shock. The lower dominance region
is similar to the baseline model (because this bound assumes no withdrawals). However,
here we have to average over deposit rates:

θ σ ≡ 1− k
R

[σrI
2 +(1−σ)rU

2 ] =
1− k

R
r2,σ . (26)

For any θ > θ σ , it is useful to distinguish between different levels of DI coverage σ :

Case (i): High level of DI coverage, 1 ≥ σ ≥ rU
2

1−k
ℓ −1

(rU
2 −1) 1−k

ℓ

⇔ ℓ≥ ℓ̌σ (k)

Case (ii): Intermediate level of DI coverage, 1− ℓ/(1− k) ≤ σ < rU
2

1−k
ℓ −1

(rU
2 −1) 1−k

ℓ

⇔ (1−σ)(1− k) ≤ ℓ < ℓ̌σ (k)

Case (iii): Low level of DI coverage, 0 ≤ σ < 1− ℓ/(1− k) ⇔ ℓ≤ (1−σ)(1− k).

The equilibrium run threshold takes a different functional form for each case, and we
consider the three cases in turn. We also formally derive the threshold ℓ̌σ . For low levels
of deposit insurance coverage, 0 ≤ σ < 1−ℓ/(1−k), the bank may become illiquid at time
1 if a large fraction of uninsured depositors decide to withdraw, leading to rationing at
the interim date, as in our baseline model. Given a proportion n of uninsured depositors
running, the bank becomes insolvent whenever n > n̂σ (θ ), solves the following equation:

Rθ

(
1− n (1− k) (1−σ)

ℓ

)
− (1−n) (1− k) (1−σ) rU

2 − (1− k)σrI
2 = 0, (27)

which gives n̂σ (θ ) =
Rθ−(1−k)(1−σ)rU

2 −σ(1−k)rI
2

Rθ
(1−k)(1−σ)

ℓ −(1−k)(1−σ)rU
2

. It is easy to see that (27) decreases in n:

−Rθ
(1−k)(1−σ)

ℓ +(1− k) (1−σ) rU
2 < 0 ⇔ (1−k)(1−σ)

ℓ

[
−Rθ + ℓrU

2
]
< 0, since ℓ < (1− k) and

θ > θ σ , as we are now considering the intermediate region where θ ∈
(
θ σ ,θ

)
. Hence, the

indifference condition of uninsured depositors is
∫ n̂σ (θ )

0 rU
2 dn =

∫ nσ

0 dn+
∫ 1

nσ

ℓ
(1−k)(1−σ)ndn,

where the liquidation needs are insufficient to meet withdrawals by uninsured depositors
if n> nσ ≡ ℓ/((1−k)(1−σ))> n. Note that nσ ≤ 1 iff 0≤ σ ≤ 1−ℓ/(1−k), which describes
the parameter condition for Case (iii), where the level of DI coverage is low.

Let ασ ,r ≡
∫ n

0 dn+
∫ 1

n
ℓ

(1−k)(1−σ)ndn. Following the same steps as in the baseline model,
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we obtain:

rU
2 n̂σ (θ ) = ασ ,r ⇔ θ

∗
σ ,r ≡ θ σ

rU
2 − rU

2 (1−σ)
r2,σ

ασ ,r

rU
2 − (1−k)(1−σ)

ℓ ασ ,r

. (28)

Since the first term is the fundamental run threshold, we can see that θ ∗
σ ,r is above it because

rU
2 − rU

2 (1−σ)
r2,σ

ασ ,r > rU
2 − (1−k)(1−σ)

ℓ ασ ,r, given that rU
2 /r2,σ < (1− k)/ℓ for σ ≤ 1− ℓ/(1− k).

That is, Case (iii) features panic runs, as in our baseline model.

Next, we move to Case (ii), where the level of deposit insurance coverage is in the
intermediate range. The lower bound of the intermediate range follows from nσ ≥ 1,
which implies that the bank is never illiquid at time 1. In other words, there is no rationing
at the interim date. We continue by deriving the equilibrium run threshold for Case (ii)
and, thereafter, the upper bound of the intermediate range, which demarks the point when
there are only fundamental and no panic runs. For Case (ii) the indifference condition of
uninsured depositors is

∫ n̂σ (θ )
0 rU

2 dθ = 1 because nσ > 1. Defining ασ ,nr ≡ 1 and following

the same steps as before, we obtain rU
2 n̂σ (θ ) = ασ ,nr ⇔ θ ∗

σ ,nr ≡ θ σ

rU
2 −

rU2 (1−σ)

r2,σ
ασ ,nr

rU
2 −

(1−k)(1−σ)
ℓ ασ ,nr

. Also

Case (ii) features panic runs despite the absence of rationing at time 1, since rU
2 − rU

2 (1−σ)
r2,σ

>

rU
2 − (1−k)(1−σ)

ℓ , which holds if and only if the level of DI coverage is below the upper
bound of the intermediate range, or equivalently, if the interim value falls below ℓ̌:

σ < rU
2

1−k
ℓ −1(

rU
2 − rI

2

) 1−k
ℓ

⇔ ℓ < ℓ̌σ (k) ≡
(
(1−σ)+σ

rI
2

rU
2

)
(1− k) =

(
1−σ +

σ

rU
2

)
(1− k), (29)

where we used the result that rI
2 = 1. This arises from the run threshold increasing in

rI
2 and bank profits if no run occurs decreases in it as well. Hence, the bank chooses the

lowest possible value of rI
2. This, combined with the fact that depositors receive 1 at time 1

when a run occurs, implies that, with ρD = 1, the lowest possible level is rI
2 = 1. We revisit

this aspect in Section 5.1.

Finally, in Case (i) the level of insurance coverage is in the the upper range such
that Inequality (29) holds. Importantly, by rearranging σ ≥

(1−k
ℓ −1

)
/
((

rU
2 −1

) 1−k
ℓ

)
and

expressing it as a function of ℓ, we obtain the cutoff ℓ̌ of the proposition. In this range,
the indifference condition does not apply for uninsured depositors, since rU

2 ≥ 1, and
they optimally choose to run if and only if θ < θ σ . To see this, observe that n̂σ (θ ) |ℓ=ℓ̌ =
Rθ−(1−k)(1−σ)rU

2 −σ(1−k)rI
2

RθrU
2

1−σ

r2,σ
−(1−k)(1−σ)rU

2
=

r2,σ
(1−σ)rU

2
and

∫ n̂σ |ℓ=ℓ̌(θ )
0 rU

2 dθ =
r2,σ
1−σ

> 1.

To complete the proof we compute ∂θ ∗
σ /∂σ . Thereafter, we derive additional com-

parative static results that will be useful in the subsequent analysis. ∂θ ∗
σ /∂ℓ, ∂ 2θ ∗

σ /∂ℓ2,
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∂ 2θ ∗
σ /∂ℓ∂σ , ∂θ ∗

σ /∂ rI
2 and ∂θ ∗

σ /∂ rU
2 . Differentiating (28) with respect to σ , we obtain:

∂θ ∗
σ

∂σ
=

(1− k)
(
rI

2 − rU
2

)
R

rU
2 − rU

2 (1−σ)ασ

r2,σ

rU
2 − (1−k)(1−σ)

ℓ ασ

+
(1− k) r2,σ

R

− ∂ασ

∂σ

(1−σ)rU
2

r2,σ
−ασ

−rU
2 r2,σ−rU

2 (1−σ)(rI
2−rU

2 )
r2

2,σ

rU
2 − (1−k)(1−σ)

ℓ ασ

−(1− k) r2,σ

R

(
rU

2 − rU
2 (1−σ)ασ

r2,σ

)(
− ∂ασ

∂σ

(1−k)(1−σ)
ℓ +ασ

1−k
ℓ

)
(

rU
2 − (1−k)(1−σ)

ℓ ασ

)2 < 0,

where ασ = 1 and ∂ασ

∂σ
= 0 in Case (ii) and ∂ασ

∂σ
=

∫ 1
n

ℓ

(1−k)(1−σ)2n
dn> 0 and ασ − ∂ασ

∂σ
(1−σ) =∫ nσ

0 dn+
∫ 1

nσ

ℓ
(1−k)(1−σ)ndn−

∫ 1
nσ

ℓ
(1−k)(1−σ)ndn =

∫ nσ

0 dn > 0 in Case (ii). Next, the derivative
with respect to ℓ is:

∂θ ∗
σ

∂ℓ
=

(1− k) rU
2

R
− ∂ασ

∂ℓ (1−σ)

rU
2 − (1−k)(1−σ)

ℓ ασ

−θ
∗
σ

∂ασ

∂ℓ
(1−k)(1−σ)

ℓ + (1−k)(1−σ)
ℓ2 ασ

rU
2 − (1−k)(1−σ)

ℓ ασ

< 0,

where ασ = 1 and ∂ασ

∂ℓ = 0 in Case (ii) and ∂ασ

∂ℓ =
∫ 1

nσ

1
(1−k)(1−σ)ndn> 0 and−∂ασ

∂ℓ
(1−k)(1−σ)

ℓ +

ασ
(1−k)(1−σ)

ℓ2 = (1−k)(1−σ)
ℓ2

(
−ℓ∂ασ

∂ℓ +ασ

)
= (1−k)(1−σ)

ℓ

∫ nσ

0 dn > 0 in Case (ii).

The second derivative with respect to ℓ can be derived as:

∂ 2θ ∗
σ

∂ℓ2 =
(1− k) rU

2 (1−σ)

R
(

rU
2 − (1−k)(1−σ)

ℓ ασ

)2

{
− ∂ 2ασ

∂ℓ2

(
rU

2 − (1− k) (1−σ)

ℓ
ασ

)
−
(

∂ασ

∂ℓ

)2 (1− k) (1−σ)

ℓ
+

∂ασ

∂ℓ

(1− k) (1−σ)

ℓ2 ασ

}

− ∂θ ∗
σ

∂ℓ

∂ασ

∂ℓ
(1−k)(1−σ)

ℓ + (1−k)(1−σ)
ℓ2 ασ

rU
2 − (1−k)(1−σ)

ℓ ασ

−θ
∗
σ

∂ 2ασ

∂ℓ2
(1−k)(1−σ)

ℓ − ∂ασ

∂ℓ
(1−k)(1−σ)

ℓ2 −2ασ
(1−k)(1−σ)

ℓ3 + ∂ασ

∂ℓ
(1−k)(1−σ)

ℓ2

rU
2 − (1−k)(1−σ)

ℓ ασ

+θ
∗
σ

∂ασ

∂ℓ
(1−k)(1−σ)

ℓ +ασ
(1−k)(1−σ)

ℓ2(
rU

2 − (1−k)(1−σ)
ℓ ασ

)2
(1− k) (1−σ)

ℓ2 ασ > 0.

Note that ∂ 2ασ

∂ℓ2 = 0 in Case (ii) and ∂ 2ασ

∂ℓ2 = −∂nσ

∂ℓ
(1−k)(1−σ)
(1−k)(1−σ)ℓ

< 0 in Case (ii). The terms in
the second line (curly bracket) sum up to a positive for Case (iii) and they are zero for Case
(ii). The third, forth and fifth lines are positive. Next, we derive the cross-partial as:

∂θ ∗
σ

∂ℓ∂σ
=

(1− k) rU
2

R
− ∂ 2ασ

∂ℓ∂σ
(1−σ)+ ∂ασ

∂ℓ

rU
2 − (1−k)(1−σ)

ℓ ασ

+
(1− k) rU

2
R

− ∂ασ

∂ℓ (1−σ)
(

∂ασ

∂ℓ
(1−k)(1−σ)

ℓ −ασ
(1−k)

ℓ

)
(

rU
2 − (1−k)(1−σ)

ℓ ασ

)2

−∂θ ∗
σ

∂ℓ

∂ασ

∂ℓ
(1−k)(1−σ)

ℓ + (1−k)(1−σ)
ℓ2 ασ

rU
2 − (1−k)(1−σ)

ℓ ασ

−θ
∗
σ

∂ 2ασ

∂ℓ∂σ

(1−k)(1−σ)
ℓ − ∂ασ

∂ℓ
1−k
ℓ − 1−k

ℓ2 ασ + (1−k)(1−σ)
ℓ2

∂ασ

∂σ

rU
2 − (1−k)(1−σ)

ℓ ασ

+θ
∗
σ

(
+ ∂ασ

∂ℓ
(1−k)(1−σ)

ℓ + (1−k)(1−σ)
ℓ2 ασ

)2

(
rU

2 − (1−k)(1−σ)
ℓ ασ

)2 > 0,

where again ∂ 2ασ

∂ℓ∂σ
= 0 in Case (ii) and ∂ 2ασ

∂ℓ∂σ
=−∂nσ

∂ℓ / (1−σ)+
∫ 1

nσ

1
(1−k)(1−σ)2n

dn=− 1
(1−k)(1−σ)2 +
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∫ 1
nσ

1
(1−k)(1−σ)2n

dn < 0 in Case (iii). Recall that ασ − ∂ασ

∂σ
(1−σ) =

∫ nσ

0 dn > 0 and also
(1−k)(1−σ)

ℓ2

(
−ℓ∂ασ

∂ℓ +ασ

)
= (1−k)(1−σ)

ℓ

∫ nσ

0 dn > 0, as well as ℓ ∂ 2ασ

∂ℓ∂σ
+ ∂ασ

∂σ
< 0. Therefore, all

terms are positive in Case (iii), while the second, third and forth terms are positive in Case
(iii), and the other terms are zero.

Finally, taking the derivative with respect to rI
2 and rU

2 , we obtain:

∂θ ∗
σ

∂ rI
2

=
∂θ σ

∂ rI
2

rU
2 − rU

2 (1−σ)ασ

r2,σ

rU
2 − (1−k)(1−σ)

ℓ ασ

+θ σ

rU
2 (1−σ)ασ

r2
2,σ

σ

rU
2 − (1−k)(1−σ)

ℓ ασ

> 0

∂θ ∗
σ

∂ rU
2

=
∂θ σ

∂ rU
2

rU
2 − rU

2 (1−σ)ασ

r2,σ

rU
2 − (1−k)(1−σ)

ℓ ασ

+θ σ

1− 1−σ

r2,σ
ασ +

rU
2 (1−σ)2

ασ

r2
2,σ

rU
2 − (1−k)(1−σ)

ℓ ασ

−θ σ

rU
2 − rU

2 (1−σ)ασ

r2,σ(
rU

2 − (1−k)(1−σ)
ℓ ασ

)2 ,

where the last derivative has again an ambiguous sign. This completes the proof. □

A.9 Proof of Proposition 4

To study risk management incentives, we differentiate Πσ (z;ℓL,ℓH) w.r.t. z, again ignoring
F , to compute the level of risk management that maximizes profits. The FOC is:

dΠσ (z;ℓL,ℓH)

dz
= p[Rθ

∗
L − (1− k)(σrI

2 +(1−σ)rU
2 )]

(
−dθ ∗

L
dz

)
− cz = 0. (30)

As in (8), the first term is the marginal benefit of risk management and the second term is
the marginal cost. However, the solution to (30), denote as ẑσ , is now a function of σ .

We focus on panic runs, ℓ < ℓ̌σ . Differentiating the FOC with respect to ℓL and σ gives:

d2Πσ

dzdℓL
= −p

(
d2θ ∗

L
dzdℓL

)
[Rθ

∗
L − (1− k)(σrI

2 +(1−σ)rU
2 )]− p

dθ ∗
L

dz
dθ ∗

L
dℓL

R < 0

d2Πσ

dzdσ
= −p

(
d2θ ∗

L
dzdσ

)
[Rθ

∗
L − (1− k)(σrI

2 +(1−σ)rU
2 )]− p

dθ ∗
L

dz
[R

dθ ∗
L

dσ
− (1− k)(rI

2 − rU
2 )] < 0,

where dθ ∗
L /dℓ = dθ ∗

L /dz < 0, d2θ ∗
L /dℓdz > 0, dθ ∗

L /dσ < 0, d2θ ∗
L /dℓdσ > 0 and R∂θ∗

L
∂σ

−
(1− k)

(
rI

2 − rU
2
)
< 0, which together with d2Πσ /dz2 < 0 leads to the results in Proposition

4, concluding the proof. □
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A.10 Proof of Proposition 5

We follow the argument of the proof of Proposition 2. Lemmas 2, 7, and 8 continue to hold
with minor modifications. Similar to Lemma 8, there exists a positive, finite value of the
variable cost parameter ĉσ . Take c > ĉσ and ℓL → 0, then ẑσ (0,c) < ℓσ from Lemma 8 and
Inequality (31) is violated for any F ≥ 0. Since θ ∗

σ (ẑσ (ℓL),ℓL) decreases in ℓL, bank profits
increase in ℓL. Thus, for c > ĉσ there exists a strictly positive cutoff value ℓ̃L(F) ∈ (0,ℓσ )

with associated optimal effort ẑσ (ℓ̃L(F),c) that solves the differential profit condition with
equality. The first result in Proposition 5 follows. Consider the role of DI coverage. As in
the proof of Proposition 2, F̂σ solves:

F̂σ = pℓ
∫ 1

θ ∗
L,σ (z∗σ )

[Rθ − (1− k)r2]dθ − c
(z∗σ )

2

2
, (31)

where z∗σ solves the FOCz = 0, as defined in (30). The derivative of the RHS of (31) is:

∂ F̂σ

∂σ
= −pℓ

∂θ ∗
L,σ (z

∗
σ )

∂σ︸ ︷︷ ︸
<0

+
∂θ ∗

L,σ (z
∗
σ )

∂ z︸ ︷︷ ︸
<0

dẑσ

dσ︸︷︷︸
<0

 [Rθ
∗− (1− k) r2]− pℓ

∫ 1

θ ∗
L,σ (z∗σ )

(1− k)
(
rI

2 − rU
2
)︸ ︷︷ ︸

<0

dθ − cz∗σ
dẑσ

dσ︸︷︷︸
<0

,

which yields ∂ F̂σ

∂σ
=−pℓ

∂θ∗
L,σ

∂σ
[Rθ ∗− (1− k) r2]+ pℓ

∫ 1
θ∗

L,σ
(1−k)

(
rI

2 − rU
2
)

dθ , because ∂θ ∗
L,σ /∂σ <

0 and the second term is zero because z is chosen optimally. Hence, dF̂σ /dσ > 0. □

A.11 Proof of Lemma 4

The bank chooses r2 so as to maximize its expected profits as given in (4) subject to the
participation constraint in Condition (10). Differentiating (4) with respect to r2, we obtain:

FOC = −pℓ
∫ 1

θ∗
L

(1− k)dθ − pℓ
∂θ ∗

L
∂ r2

[Rθ
∗
L − (1− k) r2]− (1− pℓ)

∫ 1

θ∗
H

(1− k)dθ +(1− pℓ)
∂θ ∗

H
∂ r2

[Rθ
∗
H − (1− k) r2] = 0.

The equilibrium is r∗2 = max
{

rΠ
2 ,rV

2
}

, where rΠ
2 is the solution to (32), while rV

2 is the
solution to (10) holding with equality. We start with rΠ

2 and compute SOC ≡ ∂FOC/∂ r2

by differentiating (32) with respect to r2. Hence, we obtain:

SOC = +pℓ (1− k)
∂θ ∗

L

∂ r2
− pℓ

∂ 2θ ∗
L

∂ r2
2
[Rθ

∗
L − (1− k) r2]− pℓR

(
∂θ ∗

L

∂ r2

)2

+ pℓ (1− k)
∂θ ∗

L

∂ r2
+(1− pℓ) (1− k)

∂θ ∗
H

∂ r2

−(1− pℓ)
∂ 2θ ∗

H

∂ r2
2
[Rθ

∗
H − (1− k) r2]− (1− pℓ)R

(
∂θ ∗

H

∂ r2

)2

+(1− pℓ) (1− k)
∂θ ∗

H

∂ r2
< 0,
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because ∂θ ∗
i /∂ r2 < 0 and ∂ 2θ ∗

i /∂ r2
2 > 0. The former derivative was derived in Lemma 1

and can be rearranged as 1−k
R

r2−α

r2−α
(1−k)

L

+
θ−θ∗

i

r2−α
(1−k)

L

. This must be negative as otherwise the

FOC will be negative and so rΠ
2 cannot be a solution. The latter derivative equals:

∂ 2θ ∗
i

∂ r2
2

=
1− k

R
−α +α

(1−k)
L(

r2 −α
(1−k)

L

)2 +
(1− k)

R
1

r2 −α
(1−k)

L

− ∂θ ∗
i

∂ r2

1

r2 −α
(1−k)

L

+
θ ∗

i −θ

r2 −α
(1−k)

L

> 0.

for i = {L,H}. Given SOC < 0, using the implicit function theorem, the sign of drΠ
2 /dℓL is

equal to the sign of ∂FOC/∂ℓL, which equals:

pℓ
∂θ ∗

L
∂ℓL

(1− k)− pℓ
∂ 2θ ∗

L
∂ r2∂ℓL

[Rθ
∗
L − (1− k) r2]− pℓ

∂θ ∗
L

∂ r2
R

∂θ ∗
L

∂ℓL
< 0,

since ∂θ ∗
L /∂ℓL < 0, ∂ 2θ ∗

L /∂ r2∂ℓL > 0 and ∂θ ∗
L /∂ r2 < 0, which is a necessary condition for

r∗2 = rΠ
2 . Thus, dr∗2/dℓL < 0 if r2 = rΠ

2 .

Next, consider rV
2 . The effect of a change in ℓL on rV

2 can be computed using the IFT
drV

2
dℓL

= −∂V /∂ℓL
∂V /∂ r2

. The numerator is always positive; differentiating (10) w.r.t. ℓL gives:

pℓ
∫

θ∗
L

0

1
1− k

dθ − ∂θ ∗

∂ℓL

(
r2 −

ℓL + z
1− k

)
> 0.

To sign the denominator, we consider separately the case in which ∂θ ∗/∂ r2 < 0 and when
∂θ ∗/∂ r2 > 0. In the former case, we can immediatelly see that if r2 increases V increases
due to both an increase in the repayment if no run occurs and because the run thresholds
decreases in r2. When ∂θ ∗/∂ r2 > 0, it is less straightforward as the increase in the run
thresholds decreases the expected payoffs of depositors, which constitutes an opposing
effect. We, next, prove that ∂θ ∗/∂ r2 > 0 leads to a contradiction and can, thus, be excluded.
Note first that ∂θ ∗/∂ r2 > 0 is incompatible with a slack depositor participation constraint.
To see this, observe that if the constraint were slack, then the bank would want to reduce r2

in order to increase its profits, and would do so until the participation constraint becomes
binding, i.e., V = ρD. Next, along the binding participation constraint, if r2 is chosen such
that ∂θ ∗/∂ r2 > 0, then it must be that depositor expected payoffs are increasing in r2:
dV /dr2 > 0. This is the case because otherwise the bank would instead prefer to reduce
r2 instead, since that would increase its profits, and would make depositors better off,
which would be inconsistent with saying that r2 has been chosen optimally. We arrive at
a contradiction, because the depositor participation constraint cannot be slack. A similar
argument can be made for changes in ℓH . The result in Lemma 4 follows. □
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A.12 Proof of Lemma 5

To study the indirect effect via changes in the repayment of depositors, consider the bank’s
problem:

max
r2

p
∫ 1

θ∗
L (r2)

(Rθ − (1− k) r2)dθ +(1− p)
∫ 1

θ∗
H (r2)

(Rθ − (1− k) r2)dθ −kρE s.t.V (r2,ℓL,ℓH)≥ ρD,

where we introduce a modified notation to highlight the dependence of the run thresh-
olds on the repayment to depositors, i.e., θ ∗

L,H(r2). Next, assuming that the depositor
participation constraint binds, we can rewrite the bank’s problem as:

max
r2

p
∫

θ∗
L (r2)

0
(ℓL+z)dθ + p

∫ 1

θ∗
L (r2)

Rθdθ +(1− p)
∫

θ∗
H (r2)

0
ℓHdθ +(1− p)

∫ 1

θ∗
H (r2)

Rθdθ −(1− k)ρD−kρE .

Observe that the bank has one policy variable, r2, which affects the equilibrium run
thresholds in both states in a deterministic way. From the above, it is clear that the
objective of the bank is to select r2 so as to minimize the overall run probability.

For a given ℓL, we have an optimal solution r∗2 which pins down θ ∗
L and θ ∗

H . Now
suppose ℓL decreases to some ℓ′L < ℓL. From Lemma 2 we know that ℓ′L + (z∗)′ < ℓL + z∗

and θ ∗
L (ℓ

′
L+(z∗)′)> θ ∗

L (ℓL+ z∗) for a given r2. Now the depositors’ participation constraint
would no longer be satisfied, both because ℓL went down, but also because all things equal
the run risk would increase as well. So r2 needs to increase in order to satisfy depositors’
participation constraint.

Next, we argue that the fall in ℓL cannot lead to both θ ∗
L and θ ∗

H going down in equilib-
rium, after the adjustment in r2. First, observe that the bank’s profits are unambiguously
decreasing in the level of fragility. Second, let r2(ℓ′L) be the level of deposit repayment cho-
sen when ℓL falls to ℓ′L. If both run thresholds were to go down when ℓL = ℓ′L and r2 = r2(ℓ′L),
then it would be the case that profits evaluated at the original ℓL and r2 = r2(ℓ′L) would
be even higher. This means that it would have been optimal for the bank to choose this
level of deposit repayment even before the drop in ℓL since depositors’ participation con-
straint was for sure satisfied with r2 = r2(ℓ′L). Since the bank had chosen a lower one,
it cannot be that r2(ℓ′L) is associated with a lower level of fragility in both states. Given
that θ ∗

H does not depend on ℓL and r2(ℓ′L)> r2(ℓL) from Lemma 4, it must be the case that
θ ∗

H(r2(ℓ′L))< θ ∗
H(r2(ℓL)) from Lemma 1 . Therefore, we must also have that θ ∗

L (ℓ
′
L)> θ ∗

L (ℓL),
as stated in the lemma. This argument holds taking into account the risk management
choice. □
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A.13 Proof of Proposition 6

As in the proof of Proposition 2, bank engages in risk management as long as it obtains
a net gain in terms of expected profits from it in the event of a negative shock (i.e., when
ℓ = ℓL). This is given by the differential profit condition in the proof of Proposition 2,
which we restate here:

pℓ
∫

θ∗
L (0,ℓL)

θ∗
L (z,ℓL)

[Rθ − (1− k) r2 (ℓL)]dθ − c
z2

2
≥ F , (32)

where θ ∗
L (0,ℓL) represents the run threshold without any risk management, z∗ = 0. Hence,

the two extremes of the integral only differ because of z. Consider the upper bound. The
run threshold θ ∗

L (0,ℓL) converges to 1 when ℓL falls below some positive threshold ℓ̌.
Formally, we show that ∃ ℓ̌ ∈ (0,1−k) such that θ ∗

L → θ ≈ 1 for ℓL → ℓ̌ > 0. To see this, it is
useful to rewrite θ ∗

L (0) as follows:

θ
∗
L (0,ℓL) =

(1− k) r2

R

r2 (ℓL)− ℓL
1−k

(
1− ln

(
ℓL

1−k

))
r2 (ℓL)−

(
1− ln

(
ℓL

1−k

)) .

First, notice that for θ ∗
L to exist the following two conditions are necessary:

r2(ℓL)− ℓL/(1− k) (1− ln (ℓL/(1− k))) > r2(ℓL)− (1− ln (ℓL/(1− k))) (33)

r2(ℓL)− (1− ln (ℓL/(1− k))) > 0, (34)

where the second inequality follows from depositor indifference. Both the numerator
and the denominator of θ ∗

L are monotonically decreasing in ℓL. Furthermore, the bank
operates only with non-negative profits, which imposes an upper bound on r2 (ℓL), i.e.
r2 (ℓL) < R/(1− k) independent on whether it is determined by (10) or (32).

As ℓL → 0, the left-hand-side of Inequality (33) goes to r2 < R/(1− k), while the right-
hand side is strictly negative. Conversely, for ℓL → 1−k, both sides of Inequality (33) go to
r2. Thus, by continuity and monotonicity, ∃ ℓ̌ > ˇ̌ℓ such that θ ∗

L (0,ℓL) = 1 for all ℓL ∈ [0, ℓ̌].
Next, the cutoff ℓ̃r2 ∈ (0, ℓ̌) in the proposition can be obtained denoting F̂(ℓ̃r2 ,c), as the
unique solution to:

F̂(ℓ̃r2 ,c) = p
∫

θ∗
L (ℓ̃r2<ℓ)=θ≈1

θ∗
L (ℓ̃r2+ẑ(ℓ̃r2 ,c))

[Rθ − (1− k)r2(ℓ̃r2)]dθ − c(ẑ(ℓ̃r2 ,c))2

2
,

where the RHS increases in ℓ̃r2 , because dr∗2/dℓL < 0 from Lemma 4. Following the same
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argument as in the proof of Proposition 2, we can show that zero risk management is
optimal for all ℓL < ℓ̃r2 and for any F ≥ 0 and c > č, where č is defined in an analogous
way. This completes the proof. □

A.14 Proof of Proposition 7

We assume that R is high enough to ensure that financial intermediation is profitable and
the participation constraint of the banker is always slack, Π ≥ 0. Since the participation
constraint of depositors binds, it pins down r∗2 for any level of bank capital k. That is,
V (r∗2,k) = ρD for all k < 1−ℓ. Multiplying the binding participation constraint by deposits
(1−k) and inserting into the bank’s expected profits yields the following reduced problem:

max
k

Π = p
(∫

θ ∗
L

0
(ℓL + z)dθ +

∫ 1

θ ∗
L

Rθdθ

)
+(1− p)

(∫
θ ∗

H

0
ℓHdθ +

∫ 1

θ ∗
H

Rθdθ

)
− (1− k)ρD − kρE − c

z2

2
−F1{z>0}.

Let z = z∗(k) be the optimal future choice of risk management. There are two cases:
z∗ = ẑ and z∗ = 0, which we consider in turn. First, consider the interior solution ẑ > 0
and invoking the envelope theorem and dΠ/dz = 0, we have the following first-order
condition for bank capital:

dΠ
dk

= p [Rθ
∗
L − (ℓL + z)]

(
−dθ ∗

L
dk

)
+(1− p) [Rθ

∗
H − ℓH ]

(
−dθ ∗

H
dk

)
− (ρE −ρD) = 0, (35)

where the failure thresholds and their derivatives are evaluated at z = ẑ. Equation (35)
shows the trade-off associated with more bank capital. The first two terms are the en-
dogenous expected marginal benefit of capital in terms of improving bank stability in
both states of the world. The last term is the marginal cost of capital because capital is
assumed to be a more expensive form of bank funding. Each of the first two terms are
strictly positive, while the last term converges to zero as ρE → ρD. Therefore, it is optimal
for the bank to raise a strictly positive amount of bank capital as long as ρE is not too much
larger than ρD.

Next, we consider the case of z = 0. Then, the first-order condition is:

dΠ
dk

= p [Rθ
∗
L − ℓL]

(
−dθ ∗

L
dk

)
+(1− p) [Rθ

∗
H − ℓH ]

(
−dθ ∗

H
dk

)
− (ρE −ρD), (36)

where the failure thresholds and their derivatives are evaluated at z = 0. Again, the first
two terms are positive, representing the marginal benefit of capital as a non-contingent
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tool, while the marginal cost converges to zero as ρE → ρD. Therefore, k∗ > 0.

As a final step, note that we held z = 0 constant as we changed the level of capital in
the second case. While the optimal level of z may increase in response to such a change,
here we show that this channel works against our desired result. Recall that bank capital
and risk management effort are complements at the extensive margin, so dΠ

dk evaluated
at z = 0 is a lower bound on dΠ

dk . Therefore, allowing risk management effort to increase
in response to a change in k would only strengthen our case, generating a higher level of
optimal bank capital. This completes the proof. □

A.15 Proof of Lemma 6

To analyze the alternative model of risk management, we start by deriving the equilibrium
run thresholds, focusing on the aspects that differ from the main specification. We start
from the bad state, ℓ= ℓL. There are now three cases for interim withdrawals. We consider
them in turn.

Case 1: n ≤ z/(1− k) ≡ n. No liquidation is needed to serve withdrawals because the
cash received from the risk management contract suffices. Thus, the bank is liquid at t = 1
and stores the remainder, z−n(1− k), until time 2. The bank is solvent at t = 2 whenever
Rθ + z−n(1−k)≥ (1−k)(1−n)r2. Note that the lower dominance bound is also different
relative to the baseline model and now solves Rθ + z = (1− k)r2, so the fundamental
threshold changes to:

θ L,S ≡
(1− k)r2 − z

R
,

where S stands for the modelling of risk management with swaps. We have the following
ranking: θ L,S < θ . Since θ ≥ θ L,S holds when establishing the bank failure threshold, the
bank is always solvent at t = 2. To see this, Rθ L,S + z−n(1− k)≥ (1− k)(1−n)r2 ⇔ r2 ≥ 1,
which always holds.

Case 2: z/(1− k) < n ≤ nL,S ≡ (ℓL + z)/(1− k). For intermediate levels of withdrawals,
the bank is liquid at t = 1 and can meet all withdrawals, so depositors who withdraw
early are repaid in full. To ensure this, some liquidation is required, namely the fraction
(1− k)(n−nL,S)/ℓL of investment. Thus, the bank is solvent at t = 2 if Rθ

[
1− (1−k)n−z

ℓL

]
≥

(1− k)(1− n)r2, so n̂L,S ≡
Rθ

(
1+ z

ℓL

)
−(1−k)r2

Rθ

(
1−k
ℓL

)
−(1−k)r2

. We focus on parameters such that z∗ is low

enough in order to ensure that n̂L,S ≤ 1.

Case 3: nL,S < n. Full liquidation occurs at t = 1 and withdrawing depositors receive a
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pro-rata share of liquidation proceeds. Depositors who wait until t = 2 receive nothing.
For vanishing private noise, the usual Laplacian property holds. Thus, a marginal de-
positor’s expected payoff from withdrawing early is αL,S =

∫ nL,S
0 dn+

∫ 1
nL,S

ℓL+z
(1−k)ndn. As in

the baseline model, risk management effort z increases depositors’ expected payoff from
withdrawing. The effect is twofold. First, it increases the pro-rata share upon bank failure
at t = 1. Second, it makes bank failure at t = 1 less likely. Thus, ∂αL,S/∂ z > 0. The
equilibrium failure threshold again solves

∫ n̂L,S
0 r2dn = αL,S, so:

θ
∗
L,S =

(1− k)r2

R
r2 −αL,S(

1+ z
ℓL

)
r2 −

αL,S(1−k)
ℓL

. (37)

We turn to good state, ℓ = ℓH . The bank is illiquid at t = 1 if withdrawals and swap
payment exhaust the interim value of investment: (1−k)n+ z = ℓH . Thus, nH,S =

ℓH−z
1−k < 1

because ℓH < 1− k. Intuitively, a higher interest rate swap payment reduces the liquidity
available to depositors at the interim date, dnH,S

dz = − 1
1−k < 0. For n ≤ nH,S, the bank

continues until date 2 and fails due to insolvency if n > n̂H,S ≡
Rθ

(
1− z

ℓH

)
−(1−k)r2

Rθ (1−k)
ℓH

−(1−k)r2
, where

n̂H,S solves the insolvency condition, Rθ

[
1− z+(1−k)n

ℓH

]
− (1− k)(1− n)r2 = 0. Moreover,

dn̂H,S
dz < 0. The lower dominance bound is:

θ H,S =
(1− k)r2

R
(

1− z
ℓH

) =
r2

R
ℓH

nH,S
. (38)

We can define αH,S ≡ ℓH−z
1−k

[
1− ln

(
ℓH−z
1−k

)]
= nH,S [1− ln (nH,S)], so dαH,S

dnH,S
= − ln(nH,S) > 0.

For future reference: dαH,S
dz =

∂αH,S
∂ z = 1

1−k ln
(
ℓH−z
1−k

)
= 1

1−k ln (nH,S) < 0 from the chain rule,

where the first inequality arises from ∂αH,S
∂nS

= 0. The indifference condition r2n̂H,S ≡ αH,S

yields the failure threshold:

θ
∗
H,S ≡ r2(1− k)

R
r2 −αH,S

r2

(
1− z

ℓH

)
− (1− k)αH,S

ℓH

= θ H,S
r2 −αH,S

r2 −αH,S
1−k
ℓH−z

> θ H,S, (39)

where the existence of panic runs arises from 1− k > ℓH − z. As it is useful later for
the derivatives, we re-express the failure threshold in terms of nS and αS only: θ ∗

H,S ≡
r2
R ℓH

r2−αH,S
r2nH,S−αH,S

.

Next, we proceed to sign the effect of higher risk management on bank fragility. Let
xL,S ≡ ℓL+z

1−k . Then, we can again express the expected payoff from withdrawing early
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compactly as αL,S ≡ xL,S(1− ln(xL,S)). Using this expression for αL,S, we can express the
failure threshold as:

θ
∗
L,S = θ

ℓL

ℓL + z
r2 − xL,S(1− ln(xL,S))

r2 − (1− ln(xL,S))
.

It is immediate that dθ ∗
L,S/dz < 0. The first factor is independent of risk management, the

second factor decreases in risk management, and the third factor has the same mathemat-
ical structure as before, so dθ ∗

L,S/dxL,S < 0 and dxL,S/dz > 0 (see also Appendix A.1).

Consider now state H. Differentiating (39) with respect to z, we obtain: dθ∗
z,H

dz =
θ∗

z,H
ℓH−z −

θ∗
z,H ln

(
ℓH−z
1−k

)
(1−k)(r2−αz,H )

+
θ∗

z,H
ℓH−z

1
r2−αz,H

1−k
ℓH−z

> 0, where we used dαz,H
dz

1−k
ℓH−z + αz,H

1−k
(ℓH−z)2 = 1

ℓH−z . This

completes the proof. □

A.16 Proof of Proposition 8

The bank manages risk when it improves expected profits upon a negative shock. The
differential profit condition is equivalent to that in the proof of Proposition A.4:

1
2

∫
θ ∗

L,S(0)

θ ∗
L,S(z)

[Rθ − (1− k)r2]dθ +
1
2

∫ 1

θ ∗
L,S(z)

zdθ − 1
2

∫
θ ∗

H,S(z)

θ ∗
H,S(0)

[Rθ − (1− k)r2]dθ − 1
2

∫ 1

θ ∗
H,S(z)

z
ℓH

dθ ≥ F . (40)

First, note that because θ ∗
L,S(z,ℓL) =

ℓL
ℓL+zθ ∗

L (z,ℓL), a sufficient condition for limℓL→0 θ ∗
L,S(z,ℓL) =

θ is given by z ≤ ℓS ≡ (1− k)e1−r2 . Next, define zS as the solution to ℓL + zS = (ℓH − zS)/ℓH

and note that:

θ
∗
H,S(zS,ℓH) = θ

1
ℓL + z

r2 −αH,S(zS)

r2 − 1−k
ℓH−zαH,S(zS)

> θ
∗
L,S(zS,ℓL) = θ

ℓL

ℓL + z
r2 −αL,S(zS)

r2 − 1−k
ℓL+zαL,S(zS)

, (41)

where αH,S(zS) > αL,S(zS). Therefore, for ℓL → 0, a sufficient condition for z∗ = 0 is given
by θ ∗

S,H(zS,ℓH) ≥ θ when z = zS. This is guaranteed by ℓH being small enough. Using the
expression above, we can formally derive an upper bound for ℓH that is ℓH <

(1−k)e1−r2

1−(1−k)e1−r2
.

Next, the left-hand side of Inequality (40) is continuous in ℓL and negative under the
sufficient condition for ℓL → 0, when the run threshold is at its upper bound. Furthermore,
the first derivative of the left-hand side of Inequality (40) with respect to z is strictly positive
when evaluated at ℓL → ℓH . By continuity, there exists some ℓ̃L,S > 0, which we define as
the smallest solution that satisfies (40) with equality, such that the bank chooses not do
risk management when the interim asset value falls below the cutoff ℓ̃L,S. Note that such
a value exists even for F = 0. This completes the proof. □
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A.17 Proof of Proposition 9

Differentiating the second integral in Equation (11) with respect to z, we obtain the
marginal costs of risk management, which can be expressed as:

C′(z) ≡ (1− p)
[
Rθ

∗
H,S

(
1− z

ℓH

)
− (1− k)r2

]dθ ∗
H,S

dz
+

1− p
ℓH

∫ 1

θ∗
H,S

Rθdθ > 0,

because the marginal profit at the failure threshold is positive (due to panic runs). It
follows from the expression above that the cost of risk management is convex if:

C′′(z) ≡ (1− p)R
(

dθ ∗
H,S

dz

)2(
1− z

ℓH

)
+(1− p)[Rθ

∗
H,S(z)− (1− k)r2]

d2θ ∗
H,S

dz2 −2
1− p
ℓH

Rθ
∗
H,S

dθ ∗
H,S

dz
> 0.

Note that d2θ∗
H,S

dz2 ≥ 0 and ℓH−z
2

dθ∗
H,S

dz ≥ θ ∗
H,S are sufficient for convexity (where the second

sufficient condition arises from combining the first and third term of the second derivative).
We can then express the derivative of θ ∗

H,S obtained in the proof of Proposition 6 as follows:

dθ ∗
z,H

dz
= θ

∗
z,H

 1
ℓH − z

−
ln
(
ℓH−z
1−k

)
(1− k)(r2 −αz,H)

+
1

ℓH − z
1

r2 −αz,H
1−k
ℓH−z

 (42)

Denote the term in the square bracket as Φ. Then, we can write the second derivative as
follows d2θ∗

z,H
dz2 =

dθ∗
z,H

dz Φ+ θ ∗
z,H

dΦ
dz . Hence, it follows immediately that d2θ∗

z,H
dz2 > 0 if dΦ

dz ≥ 0.
Taking out the term 1

1−k from the expression for Φ, and substituting for nS, we can simplify
this term as follows:

Φ(nS) ≡
1

1− k

[
1
nS

− ln(nS)

r2 −αS
+

1
r2nS −αS

]
,

so dΦ
dz ≥ 0 whenever dΦ

dnS
≤ 0 (because dnS

dz =− 1
1−k < 0). Computing this derivative, we have:

dΦ
dnS

=
1

1− k

[
− 1

n2
S
− 1

nS(r2 −αS)
− ln(nS)

(r2 −αS)2
dαS

dnS
− 1
(r2nS −αS)2

(
r2 −

dαS

dnS

)]
< 0.

This (desired) sign arises for two reasons (and under a sufficient condition). First, consider
the fourth term and note that r2 − dαS

dnS
> 0 ⇔ r2 >− ln(nS) because r2 > 1− ln(nS) from the

definition of the failure threshold (a positive denominator). Thus, the fourth term has the
desired sign. Second, the third term has the opposing sign. Combining the first and the
third term, a sufficient condition for dΦ

dnS
< 0 is− 1

n2
S
− ln(nS)

(r2−αS)2
dαS
dnS

≤ 0⇔ n2
S ln(nS)

2 ≤ (r2−αS)
2.
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A sufficient condition for the latter inequality is r2 −αS ≥−nS ln(nS). Since r2 > 1− ln(nS)

and −nS ln(nS) < nS(1− ln(nS)), a sufficient condition for the desired inequality is:

1− ln(nS)−nS(1− ln(nS))≥ nS(1− ln(nS))⇔ 1−nS ≥ nS.

Since z ≥ 0, a sufficient condition is ℓH ≤ (1− k)/2. This is quite restrictive, but our
numerical example in the main text shows that the desired result holds more broadly.
Taken together, under this condition, the failure threshold is convex in risk management
effort. Using Equation (42), we can rewrite the second sufficient condition as r2−αz,H

r2−
αz,H

nS

≥

nS ln(nS), which always holds because the LHS is proportional to θ ∗
H,S and thus positive,

while the RHS is negative (because nS < 1). The proposition follows. □

A.18 Derivations of CRM model and Proof of Proposition 10

In the model with credit risk management (CRM) and exogenous capital and bank de-
posits, the bank failure threshold is:

θ
∗
CRM =

(1− k)r2

R
r2 −α

r2 − α(1−k)
ℓ

, (43)

where R ∈ {RL + z,RH}. Accordingly, we have ∂θ∗
CRM

∂RL
=

∂θ∗
CRM
∂ z = − θ∗

CRM
RL+z < 0 and ∂ 2θ∗

CRM
∂R2

L
=

∂ 2θ∗
CRM

∂ z2 =
∂ 2θ∗

CRM
∂RL∂ z = −

∂θ∗CRM
∂RL

(RL+z)−θ∗
CRM

(RL+z)2 = 2 θ∗
CRM

(RL+z)2 > 0. Optimal CRM, z∗CRM, maximizes:

ΠCRM(z)≡ p
∫ 1

θ ∗
L,CRM

[(RL+z)θ −(1−k)r2]dθ +(1− p)
∫ 1

θ ∗
H,CRM

[RHθ −(1−k)r2]dθ −c
z2

2
−F1{z>0}, (44)

which yields ẑCRM as the solution to:

I ≡ dΠCRM

dz
= −p

∂θ ∗
L,CRM

∂ z
[(RL + z)θ ∗

L,CRM − (1− k)r2]+ p
∫ 1

θ∗
L,CRM

θdθ − cz = 0, (45)

where a high enough c, which we maintain henceforth, ensures a unique solution ẑCRM be-
cause the second-order condition is d2ΠCRM

dz2 = p
(
1+ 1

R

) ∂θ∗
L,CRM
∂ z [(RL + z)θ ∗

L,CRM − (1−k)r2]−

2p
∂θ∗

L,CRM
∂ z θ ∗

L,CRM − c is negative for a high enough variable cost parameter c.

Turning to zero risk management on the extensive margin, the proof parallels that of
Lemma 2 and Proposition 2 and is skipped for brevity. The important sufficient condition
is again a high enough variable cost parameter c, where ĉCRM is the analog cutoff value.
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In addition to the (indirect) effect of RL on bank fragility, which is same as in Proposition
2, there is also a direct effect present in the model with CRM: a lower value of RL enters
the expected bank profit ΠCRM directly, so the objective function is pushed down even
further as RL decreases, making the desired result easier to establish. Thus, our previous
conditions for the case of liquidity risk management are sufficient to establish the result
for CRM. This completes the proof. □

A.19 Proof of Proposition 11

To see the effect of commitment on deposit rates, consider the participation constraint
of investors, given in Condition (10). Using the implicit function theorem, higher risk
management reduces the deposit rate, i.e. dr∗2

dz < 0. To see this, note that a greater amount
of risk management and a higher deposit rate increase the value of the deposit claim V :

∂V
dz

= pℓ

{∫
θ∗

L

0

1
1− k

dθ +

[
r2 −

ℓL + z
1− k

](
−dθ ∗

L
dz

)}
> 0

∂V
dr2

= pℓ
∫ 1

θ∗
L

dθ +(1− pℓ)
∫ 1

θ∗
H

dθ +

[
r2 −

ℓL + z
1− k

](
−dθ ∗

L
dr2

)
+

[
r2 −

ℓH

1− k

](
−dθ ∗

H
dr2

)
,

because risk management reduces bank fragility upon a shock, dθ ∗
L /dz < 0. A higher

deposit rate directly increases the value of the deposit claim and has an indirect effect
via bank fragility. A sufficient condition for the value of the claim to increase in deposit
rates, ∂V /dr2 > 0, is that a higher deposit rate reduces fragility, which arises for a low
equilibrium deposit rate r∗2 (Lemma 1). For example, a high enough return on investment
R suffices for this to arise. Similarly, a higher deposit rate directly reduces bank profits
and has an indirect effect via fragility:

∂ Π
∂ r2

=−(1−k) [pℓ(1−θ
∗
L )+ (1− pℓ)(1−θ

∗
H)]− pℓ [Rθ

∗
L − (1− k)r2]

∂θ ∗
L

∂ r2
−(1− pℓ) [Rθ

∗
H − (1− k)r2]

∂θ ∗
H

∂ r2
.

If the value of the deposit claim increases in the deposit rate, then ∂ Π/∂ r2 < 0 must hold
in equilibrium. The intuition is as follows. If the participation constraint were to bind for
a deposit rate at which marginal profits still increase in the deposit rate, the bank would
voluntarily pay higher deposit rates (in order to benefit from the beneficial effect via lower
fragility). Then, the participation constraint would be slack and the equilibrium deposit
rate pinned down by zero marginal profits. Since we focus on parameters for which the
participation constraint binds in equilibrium, it must be that higher deposit rates reduce
expected bank profits, as was to be shown.
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Equipped with these results, we can turn to the planner’s risk management choice. We
maintain the assumption that the bank and the planner are at the participation constraint.
Denote as ẑP the equivalent of ẑ for the planner, and similarly for r2,P. The first-order
condition that pins down ẑP is:

dΠ
dz

≡ ∂ Π
∂ z

+
∂ Π

∂ r2,P

dr2,P

dz
, (46)

where dr2,P
dz comes from the binding participation constraint and ∂ Π

∂ z = 0 pins down ẑ for
the bank. Since ∂ Π

∂ r2,P

dr2,P
dz > 0, we must have ∂ Π

∂ z |z=ẑP < 0. By the concavity of Π in z from the
bank’s problem, it immediately follows that ẑP > ẑ. In words, when abstracting from the
fixed cost, there exists a solution to the planner’s problem with a higher risk management
than the bank because the planner internalizes its benefit for reducing deposit rates.

Turning to risk management failures, we see that the planner’s commitment to fu-
ture risk management also has implications for whether the bank engages in any risk
management in the first place. The result is straightforward from the following considera-
tions. The planner maximizes welfare SW (z), while the bank maximizes Π(z). Therefore,
it is immediate that SW (ẑp) ≥ SW (ẑ), with the inequality strict whenever ẑp ̸= ẑ. Now,
Π(z) = SW (z)−V (z). Since the participation constraint binds throughout, we have that
V (ẑp) =V (ẑ), which then implies that Π(ẑp)≥ Π(ẑ), with the inequality again strict when-
ever ẑp ̸= ẑ. This implies that for any given ℓL, if the differential in bank profits between
hedging and not is exactly equal to zero when F = F̂ and the bank chooses z = ẑ, they
must be strictly positive when the planner chooses z = ẑp. Hence, F̂P > F̂ . □
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